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Preface

This volume contains the proceedings of the 19th International Conference on
Concurrency Theory (CONCUR 2008) which took place at the University of
Toronto in Toronto, Canada, August 19-22, 2008. CONCUR, 2008 was co-located
with the 27th Annual ACM SIGACT-SIGOPS Symposium on the Principles
of Distributed Computing (PODC 2008), and the two conferences shared two
invited speakers, some social events, and a symposium celebrating the lifelong
research contributions of Nancy Lynch.

The purpose of the CONCUR conferences is to bring together researchers,
developers, and students in order to advance the theory of concurrency and
promote its applications. Interest in this topic is continuously growing, as a
consequence of the importance and ubiquity of concurrent systems and their
applications, and of the scientific relevance of their foundations. Topics include
basic models of concurrency (such as abstract machines, domain theoretic mod-
els, game theoretic models, process algebras, and Petri nets), logics for con-
currency (such as modal logics, temporal logics and resource logics), models of
specialized systems (such as biology-inspired systems, circuits, hybrid systems,
mobile systems, multi-core processors, probabilistic systems, real-time systems,
synchronous systems, and Web services), verification and analysis techniques for
concurrent systems (such as abstract interpretation, atomicity checking, model-
checking, race detection, run-time verification, state-space exploration, static
analysis, synthesis, testing, theorem proving and type systems), and related pro-
gramming models (such as distributed or object-oriented).

Of the 120 regular and 5 tool papers submitted this year, 33 regular and
2 tool papers were accepted for presentation and are included in the present vol-
ume. During the reviewing process, at least three reviews were collected for each
regular paper and at least four reviews for each tool paper. In total, 416 reviews
were collected.

The conference also included talks by:

— Tevfik Bultan (University of California, Santa Barbara, USA)

Joseph Halpern (Cornell University, Ithaca, USA) — shared with PODC

— Prakash Panangaden (McGill University, Montreal, Canada) — shared with
PODC

— Shaz Qadeer (Microsoft Research, Redmond, USA)

Abstracts of these talks can be found in the present volume.
The symposium “Nancy Lynch Celebration: Sixty and Beyond” included
talks by:

— Hagit Attiya (Technion, Haifa, Israel)
— Michael Fischer (Yale University, New Haven, USA)
— Seth Gilbert (EPFL, Lausanne, Switzerland)



VI Preface

Maurice Herlihy (Brown University, Providence, USA)
— Roberto Segala (University of Verona, Italy)
Jennifer Welch (Texas A&M University, College Station, USA)

CONCUR 2008 had eight satellite workshops:

— Workshop on Approximate Behavioral Equivalences (ABE 2008), organized
by Franck van Breugel

— International ~Workshop on Concurrency in FEnterprise Systems
(COINES 2008), organized by Matthias Anlauff and Asuman Suenbuel

— Workshop on Distributed Computing, Concurrency Theory, and Verification
(DisCoVeri 2), organized by Yoram Moses, Uwe Nestmann and Mark R.
Tuttle

— 15th International Workshop on Expressiveness in Concurrency (EXPRESS
2008), organized by Daniele Gorla and Thomas Hildebrandt

— Workshop on Formal Methods for Wireless Systems (FMWS 2008), orga-
nized by Jens Chr. Godskesen and Massimo Merro

— 10th International Workshop on Verification of Infinite-State Systems
(INFINITY 2008), organized by Peter Habermehl and Tomas Vojnar

— 6th International Workshop on Security Issues in Concurrency (SecCo 2008),
organized by Steve Kremer and Prakash Panangaden

— Young Researchers Workshop on Concurrency Theory (YR-CONCUR, 2008),
organized by Joost-Pieter Katoen and P. Madhusudan

We would like to thank the Program Committee members and the refer-
ees who assisted in the process of putting together an excellent scientific pro-
gram for CONCUR. Many thanks to the Workshops Chair, Richard Trefler, and
the workshop organizers. We would also like to thank the invited speakers, the
authors of submitted papers, and the participants of the conference. Finally,
we thank Joan Allen and many volunteers from the University of Toronto and
York University without whom the conference could not run, as well as the
organizers of PODC (Rida Bazzi, Faith Ellen, Boaz Patt-Shamir, Eric Ruppert,
and Srikanta Tirthapura) and the organizers of the symposium for Nancy Lynch
(Hagit Attiya, Victor Luchangco, Roberto Segala, Frits Vaandrager and Jennifer
Welch), who helped shape the common agenda of the event.

We gratefully acknowledge the use of easychair for conducting the review
process and support from ACM’s SIGACT and SIGOPS, the Fields Institute,
IBM, Microsoft, SAP, the Department of Computer Science of the University
of Toronto, and the Department of Computer Science and Engineering of York
University.

June 2008 Franck van Breugel
Marsha Chechik
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Beyond Nash Equilibrium:
Solution Concepts for the 21st Century

Joseph Y. Halpern*

Cornell University

Nash equilibrium is the most commonly-used notion of equilibrium in game theory.
However, it suffers from numerous problems. Some are well known in the game the-
ory community; for example, the Nash equilibrium of repeated prisoner’s dilemma is
neither normatively nor descriptively reasonable. However, new problems arise when
considering Nash equilibrium from a computer science perspective: for example, Nash
equilibrium is not robust (it does not tolerate “faulty” or “unexpected’” behavior), it does
not deal with coalitions, it does not take computation cost into account, and it does not
deal with cases where players are not aware of all aspects of the game. Solution con-
cepts that try to address these shortcomings of Nash equilibrium are discussed.

The paper appears in the Proceedings of the Tventy-Seventh Annual ACM Sympo-
sium on Principles of Distributed Computing, 2008.

* Work supported in part by NSF under grants ITR-0325453 and 11S-0534064, and by AFOSR
under grant FA9550-05-1-0055.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, p. 1, 2008.
(© by the Author 2008



Service Choreography and Orchestration with
Conversations

Tevfik Bultan

Department of Computer Science
University of California, Santa Barbara
bultan@cs.ucsb.edu

Service oriented computing provides technologies that enable multiple organiza-
tions to integrate their businesses over the Internet. Typical execution behavior
in this type of distributed systems involves a set of autonomous peers interacting
with each other through messages. Modeling and analysis of interactions among
the peers is a crucial problem in this domain due to following reasons: 1) Orga-
nizations may not want to share the internal details of the services they provide
to other organizations. In order to achieve decoupling among different peers, it is
necessary to specify the interactions among different services without referring to
the details of their local implementations. 2) Modeling and analyzing the global
behavior of this type of distributed systems is particularly challenging since no
single party has access to the internal states of all the participating peers. De-
sired behaviors have to be specified as constraints on the interactions among
different peers since the interactions are the only observable global behavior.
Moreover, for this type of distributed systems, it might be worthwhile to specify
the interactions among different peers before the services are implemented. Such
a top-down design strategy may help different organizations to better coordinate
their development efforts.

This type of distributed systems can be modeled as a composite Web service
that consists of a set of peers that interact with each other via synchronous
and/or asynchronous messages [3]. A conversation is the global sequence of mes-
sages exchanged among the peers participating in a composite Web service [2].
A choreography specification identifies the set of allowable conversations for a
composite Web service. An orchestration, on the other hand, is an executable
specification that identifies the steps of execution for the peers.

This conversation based modeling framework leads to the following interest-
ing problems: realizability, synthesis, conformance, and synchronizability [4]. A
choreography specification is realizable if the corresponding conversation set can
be generated by a set of peers [6l9]. This step is necessary to guarantee that the
choreography specifications that are developed in a top-down manner are imple-
mentable. A related problem is automated synthesis of peer implementations from
a given choreography specification. Another interesting problem is investigating
the conformance between orchestration and choreography specifications. An or-
chestration specification conforms to a choreography specification if the global se-
quence of messages generated by the orchestration is allowed by the choreography
specification. Finally, synchronizability analysis [BIT0] investigates the effects of

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 2 2008.
© Springer-Verlag Berlin Heidelberg 2008



Service Choreography and Orchestration with Conversations 3

asynchronous versus synchronous communication to improve the efficiency of in-
teraction analysis. A set of asynchronously communicating peers are synchroniz-
able if their conversation set does not change when asynchronous communication
is replaced with synchronous communication. Replacing asynchronous communi-
cation with synchronous communication enables more efficient analysis by remov-
ing the communication channels from the state space of the system.

Web Service Analysis Tool (WSAT) [7] is a tool for analyzing conversations.
WSAT verifies LTL properties of conversations, checks sufficient conditions for
realizability and synchronizability and synthesizes peer implementations from
choreography specifications. In order to model XML data, WSAT uses a guarded
automata model where the guards of the transitions are written as XPath ex-
pressions. WSAT uses the explicit-state model checker SPIN [I1] for LTL model
checking by translating the guarded automata model to Promela [8]. WSAT
has been used to analyze realizability and synchronizability of composite Web
services specified using the BPEL orchestration language [I] and conversation
protocols [6], which is a formalism for choreography specification and analysis.

References

1. Web services business process execution language version 2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html

2. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: A new approach
to design and analysis of e-service composition. In: Proceedings of the Twelfth
International World Wide Web Conference, pp. 403-410 (May 2003)

3. Bultan, T., Fu, X., Su, J.: Analyzing conversations of web services. IEEE Internet
Computing 10(1), 18-25 (2006)

4. Bultan, T., Fu, X., Su, J.: Analyzing conversations: Realizability, synchronizabil-
ity, and verification. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis of Web
Services, pp. 57-85. Springer, Heidelberg (2007)

5. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Pro-
ceedings of the 13th International World Wide Web Conference, pp. 621-630 (May
2004)
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Knowledge and Information in Probabilistic Systems

Prakash Panangaden

School of Computer Science, McGill University, Montreal, Quebec, Canada

Concurrency theory is in an exciting period of confusion. Confusion is always exciting
because it heralds the coming of new ideas and deeper understanding. There are several
ingredients in the cauldron: some new, some not so new. The old ingredients are process
algebra, bisimulation and other equivalences and modal logics. The not-so-old ingredi-
ents are probability, mobility and real-time, and the new ingredients are knowledge,
games and information theory.

Of course, knowledge in the form of epistemic logic — and especially common knowl-
edge and it variants —is well known to the PODC community. It is well over twenty years
since Halpern and Moses wrote their influential paper on common knowledge. Proba-
bilistic epistemic logic and dynamic epistemic logic have also been extensively studied.
It is time to synthesize these ideas with the world of concurrency theory.

How does concurrency theory accommodate the concept of knowledge? One way is
to think of concurrent processes as agents playing games. We have just begun to ex-
plore these ideas. There are certain situations — arising in security — where epistemic
concepts fit perfectly with the idea of agents playing games. The time is ripe for explor-
ing new forms of process algebra inspired by the idea of processes being agents playing
games. It is likely possible that this will lead to new types of interactions other than
synchronization and value passing. Indeed, one can argue that composition of strategies
is already an example of a new type of interaction between processes.

It is even possible that mobility can be understood as an epistemic concept: but now I
am speculating wildly. Roughly speaking, the thinking is that spatial concepts underlie
many recent developments in concurrency: for example, ambients. In many instances,
for example, knowledge in distributed systems, the epistemic modality captures a local
versus global view of space. Of course, much needs to be thought through.

Where does information theory fit in? If we are to think of knowledge as flowing
between agents in a probabilistic system then it is natural to think of quantifying the
“amount” of knowledge: this leads directly to ideas of information theory. I will de-
scribe some recent work along these lines by Parikh and his co-workers. Indeed, infor-
mation theory may serve as a kind of probabilistic epistemic “logic” just as measure
theory serves as a kind of probabilistic propositional logic: an analogy emphasized by
Kozen.

I would like to thank Samson Abramsky for numerous enlightening conversations
and for his inspirational paper, “Retracing some path in process algebra,” an invited
talk at CONCUR in 1996. I have also enjoyed enlightening conversations with Kostas
Chatzikokolakis, Joe Halpern, Sophia Knight, Radha Jagadeesan, Catuscia Palamidessi,
Rohit Parikh and especially Dexter Kozen who set me on the probabilistic path over 20
years ago.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, p. 4, 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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Concurrency, as a basic primitive for software construction, is more relevant today than
ever before, primarily due to the multi-core revolution. General-purpose software ap-
plications must find ways to exploit concurrency explicitly in order to take advantage
of multiple cores. However, experience has shown that explicitly parallel programs are
difficult to get right. To deliver compelling software products in the multi-core era, we
must improve our ability to reason about concurrency.

Generalizing well-known sequential reasoning techniques to concurrent programs is
fundamentally difficult because of the possibility of interference among concurrently-
executing tasks. In this lecture, I will present reduction and context-bounding — two
ideas that alleviate the difficulty of reasoning about interference by creating a simpler
view of a concurrent execution than an interleaving of thread instructions. Reduction
reduces interference by making a sequence of instructions in a thread appear as a sin-
gle atomic instruction; it allows the programmer to view an execution as a sequence of
large atomic instructions. Context-bounding reduces interference by focusing on exe-
cutions with a small number of context switches; it allows the programmer to view an
execution as a sequence of large thread contexts. I will present the theory behind these
two approaches and their realization in a number of program verification tools I have
worked on over the years.
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Abstract. Dynamic separation is a new programming discipline for sys-
tems with transactional memory. We study it formally in the setting of
a small calculus with transactions. We provide a precise formulation of
dynamic separation and compare it with other programming disciplines.
Furthermore, exploiting dynamic separation, we investigate some possi-
ble implementations of the calculus and we establish their correctness.

1 Introduction

Several designs and systems based on transactions aim to facilitate the writing
of concurrent programs. In particular, software transactional memory (STM)
appears as an intriguing alternative to locks and the related machinery for
shared-memory concurrency [14]. STM implementations often allow transactions
to execute in parallel, optimistically, detecting and resolving conflicts between
transactions when they occur. Such implementations guarantee that transac-
tions appear atomic with respect to other transactions, but not with respected
to direct, non-transactional accesses to memory. This property has been termed
“weak atomicity” [6], in contrast with the “strong atomicity” that programmers
seem to expect, but which can be more challenging to provide.

Therefore, it is attractive to investigate programming disciplines under which
the problematic discrepancy between “weak” implementations and “strong” se-
mantics does not arise. In these disciplines, basically, transactional and non-
transactional memory accesses should not be allowed to conflict. Much as in
work on memory models (e.g., [4]), these disciplines can be seen as contracts be-
tween the language implementation and the programmer: if a program conforms
to certain restrictions, then the language implementation must run it with strong
semantics. Such contracts should be “programmer-centric” —formulated in terms
of programs and their high-level semantics, not of implementation details. The
selection of particular restrictions represents a tradeoff.

— Stronger restrictions give more flexibility to the implementation by requir-
ing it to run fewer programs with strong semantics An example of such a
restriction is the imposition of a static type system that strictly segregates
transacted and non-transacted memory (e.g., [A2I12]). This segregation of-
ten implies the need to copy data across these two parts of memory.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 6[20] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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— Conversely, weaker restrictions give more flexibility to the programmer but
may enable fewer implementation strategies. For example, violation-freedom
prohibits only programs whose executions cause conflicts at run-time, ac-
cording to a high-level, strong, small-step operational semantics [2] (see
also [BI3E]). Violation-freedom does not consider lower-level conflicts that
may arise in implementations with optimistic concurrency; so these imple-
mentations may not run all violation-free programs with strong semantics,
and may therefore be disallowed.

We are exploring a new programming discipline that we call dynamic separa-
tion. Its basic idea is to distinguish memory locations that should be accessed
transactionally from those that should be accessed directly, allowing this distinc-
tion to evolve dynamically in the course of program execution. The programmer
(perhaps with the assistance of tools) indicates transitions between these modes.
Dynamic separation restricts only where data is actually accessed by a program,
not how the data is reachable through references.

Dynamic separation is intermediate between violation-freedom and static sep-
aration. Like violation-freedom, it does not require copying between two memory
regions; like static separation, on the other hand, it enables implementations with
weak atomicity, optimistic concurrency, lazy conflict detection, and in-place up-
dates. Indeed, dynamic separation is compatible with a range of transactional-
memory implementations. Moreover, dynamic separation does not necessitate
changes in how non-transactional code is compiled. This property makes trans-
actions “pay-to-use” and lets non-transacted code rely on features not available
for re-compilation (cf., e.g., [IH]).

A companion paper [I] studies dynamic separation informally. That paper
provides a more detailed design rationale, an instantiation for C#, and some
conceptually easy but useful refinements, in particular for read-only data. It
also discusses implementations, describing our working implementation (done in
the context of Bartok-STM [I0]) and a variant that serves as a debugging tool
for testing whether a program obeys the dynamic-separation discipline. As a case
study, it examines the use of dynamic separation in the context of a concurrent
web-proxy application built over an asynchronous IO library.

The present paper focuses on the formal definition and study of dynamic sep-
aration. It provides a precise formulation of dynamic separation, in the setting
of a small calculus with transactions (Sections BH). It also establishes precise
comparisons with static separation and with violation-freedom (Section [). Fur-
thermore, it considers two possible lower-level implementations of the calculus
(Sections [l and [M). One of the implementations relies on two heaps, with mar-
shaling between them. The other includes optimistic concurrency and some other
challenging features; it models important aspects of our Bartok-STM implemen-
tation. We establish the correctness of both implementations: we prove that, if
a program conforms to the dynamic-separation discipline, then the two imple-
mentations will run it with strong semantics.

We present our results focusing on the Automatic Mutual Exclusion (AME)
model [TTJ2] (Section [2). However, as explained in our companion paper, our
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approach applies also to other models for programming with transactions, for
instance to TIC [16].

2 AME and the AME Calculus

In this section we describe the AME programming model and the AME calculus,
a small language with AME constructs that serves as the setting of our formal
study. This section is mostly an informal review; in addition it introduces the
new constructs for indicating transitions between modes, named protect and
unprotect, into the AME calculus. We postpone a formal semantics of the
calculus to Section [

2.1 AME

AME distinguishes “protected” code, which executes within transactions, from
ordinary “unprotected” code. Importantly, the default is protected code.

Running an AME program consists in executing a set of asynchronous method
calls. The AME system guarantees that the program execution is equivalent to
executing each of these calls (or their atomic fragments, defined below) in some
serialized order. The invocation async MethodName (<method arguments>) cre-
ates an asynchronous call. The caller continues immediately after this invocation.
In the conceptual serialization of the program, the asynchronous callee will be
executed after the caller has completed. AME achieves concurrency by executing
asynchronous calls in transactions, overlapping the execution of multiple calls,
with roll-backs when conflicts occur. If a transaction initiates other asynchro-
nous calls, their execution is deferred until the initiating transaction commits,
and they are discarded if the initiating transaction aborts.

Methods may contain invocations of yield(), which break an asynchronous
call into multiple atomic fragments, implemented by committing one transaction
and starting a new one. With this addition, the overall execution of a program
is guaranteed to be a serialization of its atomic fragments.

Methods may also contain statements of the form blockUntil (<p>), where
p is a predicate. ;From the programmer’s perspective, an atomic fragment exe-
cutes to completion only if all the predicates thus encountered in its execution
evaluate to true. The implementation of blockUntil(<p>) does nothing if p
holds; otherwise it aborts the current atomic fragment and retries it later.

In order to allow the use of legacy non-transacted code, AME provides block-
structured unprotected sections. These must use existing mechanisms for syn-
chronization. AME terminates the current atomic fragment before the code, and
starts a new one afterwards.

2.2 The AME Calculus (with protect and unprotect)

The AME calculus is a small but expressive language that includes constructs for
AME, higher-order functions, and imperative features. The following grammar
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defines the syntax of the calculus, with the extensions required for dynamic
separation.
Ve Value =c| x| Ax.e
¢ € Const = unit | false | true
xz,y € Var
e,feEmp =V]ef
| refe|le|e:=f
| async e | blockUntil e
| unprotected e
| protect e | unprotect e

This syntax introduces syntactic categories of values, constants, variables, and
expressions. The values are constants, variables, and lambda abstractions (Az. e).
In addition to values and to expressions of the forms async e, blockUntil e,
and unprotected e, expressions include notations for function application (ef),
allocation (ref e, which allocates a new reference location and returns it after
initializing it to the value of e), dereferencing (e, which returns the contents
in the reference location that is the value of e), and assignment (e := f, which
sets the reference location that is the value of e to the value of f). Expressions
also include the new forms protect e and unprotect e, which evaluate e to a
reference location, then make its value usable in transactions and outside trans-
actions, respectively. We treat yield as syntactic sugar for unprotected unit.
We write let x = ¢ in ¢’ for (Az. €') e, and write ¢; ¢’ for let & = e in ¢’ when
x does not occur free in €.

We make a small technical restriction that does not affect the expressive-
ness of the calculus: in any expression of the form async e, any occurrences
of unprotected are under a \. Thus, with our syntactic sugar, we can write
async (unit;unprotected €’), but not async (unprotected e’). More gener-
ally, we can write async (unit;e’), for any €’. This technical restriction roughly
ensures that an unprotected computation is not the first thing that happens in
an asynchronous computation. It is needed only for Theorem 2] below.

3 An Example

This section presents an example, informally. Although this example is small and
artificial, it serves to explain several aspects of our work. The example concerns
the following code fragment:

let z = ref false in

let y = ref false in

let z = ref false in

async (z := true);

async (z := false; (blockUntil (lz)); y := true);
unprotected ((blockUntil (ly)); z := true)

This code first creates three reference locations, initialized to false, and binds
z, y, and z to them, respectively. Then it forks two asynchronous executions. In
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one, it sets x to true. In the other, it sets x to false, checks that x holds true,
then sets y to true. In addition, the code contains an unprotected section that
checks that y holds true, then sets z to true.

In reasoning about such code, programmers (and tools) should be entitled to
rely on the high-level semantics of the AME constructs, without considering their
possible implementation details. According to this high-level semantics, the two
asynchronous executions are serialized. Therefore, the predicate !z in the second
asynchronous execution can never hold, so y := true is unreachable. Hence the
predicate !y in the unprotected section can never hold either, so z will never be
set to true. The formal semantics of Section [] justifies this reasoning.

On the other hand, lower-level implementations, such as that modeled in
Section [, may exhibit different, surprising behavior. With optimistic concur-
rency, the two asynchronous executions may be attempted simultaneously. For
efficiency, updates to reference locations may be done in place, not buffered.
So, if the assignment z := true immediately follows the assignment z :=
false, then the predicate !z in the second asynchronous execution will hold,
and y := true will execute. After the assignment x := true, the execution of
(blockUntil (!z)); y := true is a “zombie” [7], doomed to roll back. With lazy
conflict detection, a conflict may not yet be apparent. With weak atomicity,
moreover, the unprotected section has an opportunity to execute, and the pred-
icate !y holds, so z will be set to true. When the two asynchronous executions
attempt to commit, conflict detection will cause a roll-back of their effects on
x and y, but not of the indirect effect on z. Therefore, the code may terminate
with z holding true.

Despite the surprising behavior, we may want to allow such lower-level im-
plementations because of their potential efficiency and compatibility with legacy
code. So we may want to find criteria to exclude problematic programs. As
indicated in the introduction, static separation is such a criterion; it statically
segregates transacted and non-transacted memory. The code in our example does
not obey static separation because (without dead-code elimination) y seems to
be accessed both in a transaction and in the unprotected section. Unfortunately,
static separation also forbids many reasonable code fragments, implying the need
to marshal data back and forth between the two parts of memory.

Another possible criterion is violation-freedom. However, the code in our ex-
ample is violation-free. In particular, according to the high-level semantics, there
are no conflicting accesses to y at run-time, since y := true should never exe-
cute. Therefore, violation-freedom does not seem to be quite stringent enough
to enable the use of some attractive implementation strategies.

Nevertheless, violation-free programs can often be instrumented with calls to
protect and unprotect in order to conform to the dynamic-separation disci-
pline. In this example, our particular formulation of dynamic separation requires
adding two calls to unprotect in the last line of the code:

unprotected (unprotect y; unprotect z; (blockUntil (ly)); z := true)

Assuming that z, y, and z are initially in the mode where they are usable in
transactions, we can reason that the placement of unprotect implies that z, v,
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and z are always used in the appropriate mode, so the code does conform to
the dynamic-separation discipline. In this reasoning, we need to consider only
the behavior of the code in the high-level semantics. Although the high-level
semantics of unprotect is quite straightforward—and resembles that of no-op—
an implementation of unprotect may do non-trivial work. Sections [6 and [1
provide two illustrations of this point, in the latter case modeling important
aspects of our actual implementation in Bartok-STM. In particular, unprotect y
may block while y is being written in a transaction, even if the transaction is a
zombie. Moreover, updating y in a transaction may check that y is protected.
Crucially, neither of these implementation refinements require any changes to
non-transactional access to y. In combination, these refinements can prevent the
problematic behavior of this code, guaranteeing that it runs correctly.

Zombies constitute only one of several problems in this area. Others include
the so-called privatization and publication problems (e.g., [2I17]). Although we
do not discuss those in detail, our approach and our results address them as
well. In particular, the correctness theorems below imply that publication and
privatization idioms can execute correctly.

4 Semantics

The strong semantics of the AME calculus is a small-step operational semantics
in which at most one transaction may take steps at any one time, and non-
transacted code may take steps only when there is no current transaction taking
steps [2]. We extend this strong semantics to the new constructs.

States. A state (o, 7,T,e) consists of a reference store o, a protection state 7, a
collection of expressions T, and a distinguished active expression e. A reference
store o is a finite mapping of reference locations to values. Similarly, a protection
state 7 is a finite mapping of reference locations to protection modes, which we
write P and U. It is a “history variable”, in the sense that it is determined by
the history of execution and does not influence this history. Reference locations
are simply special kinds of variables that can be bound only by the respective
store and protection state. We write RefLoc for the set of reference locations;
we assume that RefLoc is infinite. For every state (o,7,T,e), we require that
dom(c) = dom(r) and, if r € RefLoc occurs in (o, 7,T, ), then r € dom(c). We
set:

S e State C RefStore x ProtState x FExpSeq x Exp

o € RefStore = RefLoc — Value

T € ProtState = RefLoc — {P,U}

r €  RefLoc C Var

T € ExpSeq = Exp”

Steps. As usual, a context is an expression with a hole [ ], and an evaluation
context is a context of a particular kind. Given a context C and an expression e,
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(o, 7, T,P[ (Az.e) V]) ——gs (o, 7, T, Pl e[V/x]]) (Trans Appl P)g
(o, 7, T.U[ (Az.e) V ].T, uit) g (o, 7, T.U[ e[V/x] |. T, unit) (Trans Appl U),
(o, 7, T, P[ref V ]) ——gs (o[r — V], 7[r — P, T,P[r]) (Trans Ref P)g
if » € RefLoc — dom/(o)
(o, 7, T.U[ ref V ].T’, unit) ——s (o[r+— V], 7[r — U], T.U[ r |.T', wmit) (Trans Ref U),
if r € RefLoc — dom(o)
(o, 7, T,P[!r]) ——gs (o, 7, T,P[V]) (Trans Deref P)g
if o(r) =V
(o, 7, T-U[ v |.T', unit) g (o, 7, T.U[ V ].T', unit) (Trans Deref U)
if o(r) =V
(o, 7, T, Pl r:=V]) g (o[r — V], 7, T, P[ unit ]) (Trans Set P)
(0,7, T.U[ 7 :=V |.T' unit) s (o[r — V], 7, T.U[ wit ].T/, unit) (Trans Set U),
(o, 7, T, P[ async e ]) ——gs (o, 7,e.T, P[ unit ]) (Trans Async P)g
(o, 7, T.U[ async e |.T', unit) g (o, T, e.T.U[ wit |.T', unit) (Trans Async U),
(o, T, T, P[ blockUntil true ]) ——g (o, 7, T, P[ unit ]) (Trans Block P)g
(o, 7, T.U[ blockUntil true .7/, wnit) ——s (o, 7, T.U[ unit |.T/, unit) (Trans Block U)
(o, 7, T, P| unprotected e ]) +——5 (o, 7, T.P| unprotected e ], unit) (Trans Unprotect) g
(o, 7, T.E[ unprotected V ].T/, unit) +——g (o, 7, T.E[ V ].T/, unit) (Trans Close)
(o, 7, T.e.T', unit) s (o, 7, T. T, e) (Trans Activate) g
(o, T, T.U[ protect r |.T’, unit) ——s (o, T[r — P|, T.U[ r |.T', unit) (Trans DynP)g
(o, 7, T.U[ unprotect = |. T, unit) g (o, T[r — U], T.U[  ].T’, wit) (Trans DynU)

Fig. 1. Transition rules with dynamic separation

we write C[ e ] for the result of placing e in the hole in C. We use several kinds
of evaluation contexts, defined by:

P=[]|Pe|VP|ref P|/P|P:=¢]|r:=P|blockUntil P
| protect P | unprotect P
U = unprotected & | U e |V U |ref U | WU |U =€ | r:=U | blockUntil U
| protect U | unprotect U
E=[]|€e|VE|refE|IE|E:=e]|r:=&E]DblockUntil &
| unprotected £ | protect £ | unprotect £

A context £ is a general evaluation context; a context U is one where the hole
is under unprotected; a context P is one where it is not.

Figure [1 gives rules that specify the transition relation that takes execution
from one state to the next. In these rules, we write e[V/xz] for the result of
the capture-free substitution of V for x in e, and write o[r — V] for the store
that agrees with o except at r, which is mapped to V. The subscript s in ——
indicates that this is a strong semantics.

In rules (Trans Ref P), and (Trans Ref U)j, the reference-allocation construct
ref e initializes the new location’s mode to P (when allocating inside a transac-
tion) or to U (otherwise). In rules (Trans DynP)s and (Trans DynU), the new
constructs protect and unprotect set the mode to P and to U respectively. It is
not an error to call protect on a reference location already in mode P. Similarly,
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it is not an error to call unprotect on a reference location already in mode U.
This design choice enables a broader range of implementations, as discussed in
our companion paper.

According to the rules, protect and unprotect work only outside trans-
actions. They get stuck otherwise. Fundamentally, we do not want to rely on
protect and unprotect in transactions because of questionable interactions,
such as the possibility of zombie updates to the protection state.

5 The Dynamic-Separation Discipline

We give a precise definition of dynamic separation. We also establish results that
relate dynamic separation to static separation and to violation-freedom.

5.1 Definition

The definition of dynamic separation says that, in the course of an execution,
reads and writes to a reference location should happen only if the protection
state of the reference location is consistent with the context of the operation.
The definition is intended to constrain expressions, but more generally it applies
to initial states of executions.
Given a state (o, 7,T,¢), a read or a write may occur in two cases:
— e is of the form P[!r ] or P[r:=V ]; or
— e=unit and T contains an expression of the form U[ Ir | or U[ r:=V .
Accordingly, we say that a state S obeys the dynamic-separation discipline,
and write DS(S), if whenever S+——* (o, 7, T, e), the state (o, 7, T, e) is such that:
— if e is of the form P[ !r ] or P[ r := V|, then 7(r) = P;
— if e = unit and T contains an expression of the form U[ Ir | or U[ r:=V ],
then 7(r) = U.

In sum, a state S obeys the dynamic-separation discipline if, in S, reads or
writes to a reference location r can happen only if 7’s protection state (P or U)
is consistent with the context (transacted or not, respectively) of the operation,
and if the same is true for any state reachable from S.

5.2 Comparison with Static Separation

Static separation can be defined as a type system; its details are straightforward,
and for AME they are given in [2, Section 6.2]. There, the judgment E I (o, T €)
says that the state (o, T,e) obeys the static-separation discipline in a typing
environment £, which gives types of the form Refp t or Refy ¢ for the free
reference locations of the state. The state does not include a protection state 7,
since separation is static. Given E, however, we write 7g for the protection state
that maps each reference location to P or U according to its type in E. We obtain:

Theorem 1. If B+ (0,T,¢) then DS({o,7r,T,€)).

The converse of this theorem is false, not only because of possible occurrences
of protect and unprotect but also because of examples like that of Section Bl
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5.3 Comparison with Violation-Freedom

As discussed above, violation-freedom is a condition that prohibits programs
whose executions cause certain conflicts at run-time. More precisely, we say that
a state (o, 7,T,e) has a violation on r when:

— e is of the form P[ ¢’ ],

— T contains an expression of the form U[ e” |,

— ¢’ and e” are of the form !r or r := V for some V, and at least one is of the
latter form.

(Note that the second of these clauses does not require e = unit, unlike the
corresponding part of the definition of dynamic separation.) We say that a state
S obeys the violation-freedom discipline, and write VF(S), if whenever S——* 5,
the state S’ does not have violations on any 7.

In general, dynamic separation is not sufficient for violation-freedom. For in-
stance, the state

(@[r — false|,@[r — P],unprotected (r := true),blockUntil !7")

obeys the dynamic-separation discipline, but has an obvious violation on r. This
violation never leads to an actual concurrent access under the strong semantics.

Dynamic separation does however imply violation-freedom for initial states of
the form (o, 7,T,unit), in which there is no active transaction—but of course a
transaction may be activated. We regard this result, together with Theorem [T, as
proof of our informal statement that dynamic separation is intermediate between
violation-freedom and static separation.

Theorem 2. If DS({(o,7,T,unit)), then VF({o,7,T,unit)).

Conversely, violation-freedom is not a sufficient condition for dynamic separa-
tion, for several reasons. Most obviously, violation-freedom does not require
the use of explicit calls to protect and unprotect. In addition, violation-
freedom does not constrain read-read concurrency, while dynamic separation
does. Strengthening violation-freedom so that it also constrains read-read con-
currency, we have developed a method for taking a violation-free expression
and adding calls to protect and unprotect so as to make it obey dynamic
separation. We omit the details of our method, but briefly note its two main
assumptions: (1) The method requires the absence of race conditions in unpro-
tected computations, because race conditions could cause instrumentation to
work incorrectly. (2) It also assumes that we can distinguish transacted and
non-transacted code at instrumentation time; code duplication can make this
task trivial.

6 An Implementation with Two Heaps

In this section, we consider an abstract machine with two separate heaps ac-
cessed by transactional and non-transactional code, respectively. The constructs
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(01,02, 7, T, P[ (Az.e) V]) ——¢ (01,02, 7, T, Pl e[V/x]]) (Trans Appl P);

(o1,09, 7, T.U[ (Az. e) V |.T', unit) ——y (01,00, 7, T.U[ e[V/z] ].T’, unit) (Trans Appl U),

(01,02, 7, T, P[ et V ]) ==y (o1[r— V], og[r — V], 7[r — P, T, P[r]) (Trans Ref P)y
it 7 € RefLoc — dom (o)

(01,09, 7, T.U[ ref V ].T', unit) ——y (o1[r— V], oa[r — V], 7[r — U], T.U[ r |.T', wmit) (Trans Ref U),
if 7 € RefLoc — dom (o)

(1,02, 7, T, P[!r]) =t (01,00, 7, T, P[ V]) (Trans Deref P),
if o1(r) =V

(01,09, 7, T.U[ v ].T', uit) ¢ (01,09, 7, T-U[ V |.T, unit) (Trans Deref U),
if og(r) =V

(01,00, 7, T, P[r:=V]) ——¢ (o1[r— V],o2,7, T, P[ mit ]) (Trans Set P)

(o1,00,7, T.U[ 7 :=V |.T/, unit) ¢ (01, 09[r — V], 7, T.U[ wit ].T, unit) (Trans Set U),

(61,09, 7, T, P[ async e ]) ¢ (01,09, T, e.T, P| it ]) (Trans Async P);

(01,09, T, T.U[ async e ].T', unit) ——y (01,09, 7, e.T.U[ unit ]. T/, unit) (Trans Async U),

(01,09, 7, T, P[ blockUntil true ]) ¢ (01,09, 7, T, P[ wit ) (Trans Block P),

(01,09, T, T.U[ blockUntil true .7/, unit) ——¢ (01, 0o, 7, T.U[ wnit |. 7", unit) (Trans Block U);

(01,09, 7, T, P| unprotected e ]) +——¢ (01,09, 7, T.P| unprotected e ], unit) (Trans Unprotect),

(01,09, T, T.E] unprotected V .7/, unit) +——y (01,090, 7, T.E[ V ].T’, unit) (Trans Close);

(01,09, 7, T.e.T’, unit) st (01,09, 7, T.T &) (Trans Activate);

(01,09, , T.U[ protect = |.T/, unit) ¢ (01,00, 7, T-U[ 7 ].T, uit) (Trans DynP (1)),
it 7(r) =P

(01,09, T, T.U|[ protect » ].T', unit) ——y (o1 [r — og(r)], g, T[r — P}, T.U[ r |. T’ wmit) (Trans DynP (2)),
it m(r) =0

(01,09, T, T.U[ unprotect = |. T/, unit) ¢ (01, 0g[r — o1(r)], 7[r +— U], T.U[ r ].T/ , wit) (Trans DynU (1)
P

if 7 (r) =
(01,09, 7, T.U[ unprotect = |. T/, unit) ¢ (01,09, 7, T-U[ 7 ].T, uit) (Trans DynU (2))4
if 7(r) =U

Fig. 2. Transition rules with two heaps

protect and unprotect marshal between these heaps. Although this two-heap
scheme is not particularly efficient, it is reminiscent of some practical systems
that use different data formats in transactional and non-transactional code. It is
also an interesting approximation of a static-separation regime, and illustrates
that protect and unprotect may do more than in the high-level semantics of
Figure [l Still, for expressions that obey the dynamic-separation discipline, we
prove that this two-heap implementation respects the high-level semantics.

6.1 Operational Semantics

We define the two-heap implementation as a lower-level semantics, in the style
of that of Section M though with some additional intricacies.

States. The components of a state are much like those in Section [l except that
there are two reference stores rather than one. A state (o1, 09,7, T, €) consists of
two reference stores o1 and o3, a protection state 7, a collection of expressions T,
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and a distinguished active expression e. We require that dom(o1) = dom(oz2) =
dom(7) and that, if » € RefLoc occurs in the state, then r € dom(o1). So we set:

S € State C RefStore x RefStore x ProtState x ExpSeq x Exp

Steps. Figure 2 gives rules that specify the transition relation of this semantics.
According to these rules, ref e sets the protection state of a new reference loca-
tion 7 and initializes the contents of r in each of the reference stores. Initializing
the contents in the appropriate reference store would suffice, provided r is added
to the domain of both reference stores. While reading or writing a location, the
context in which an expression executes determines which reference store it ac-
cesses. Finally, protect r and unprotect r perform marshaling, as follows. If
already has the desired protection state, then no copying is required. (In fact,
copying could overwrite fresh contents with stale ones.) Otherwise, r’s contents
are copied from one reference store to the other.

6.2 Correctness

The two-heap implementation is correct under the dynamic-separation discipline,
in the following sense:

Theorem 3. Assume that DS({o,T,T,€)), that dom(c) = dom(c1) = dom(o2),
and that o1(r) = o(r) if 7(r) = P and o2(r) = o(r) if 7(r) = U. Consider a
computation with two heaps:

* !/ / / !/ /
(01,00, 7,T,€) —] (07,05, 7, T €
Then there is a computation:
T * !/ / T/ /
<J7 T7 ) e> S <O— b T b b € >

for some o' such that dom(c’) = dom(c}) = dom(ch) and, for every r €
dom(d’), if T'(r) =P, then o (r) = o'(r), and if 7'(r) = U, then ob(r) = o' (r).

This simulation result implies that the contents of a reference location r is always
correct in the reference store that corresponds to r’s current protection state.
The dynamic-separation hypothesis is essential: it is required for extending the
simulation in the cases of (Trans Deref ...); and (Trans Set ...);. Without it,
the execution with two heaps may produce incorrect results.

7 An Implementation with Optimistic Concurrency

Going further, we treat a lower-level implementation in which multiple trans-
actions execute simultaneously, with roll-backs in case of conflict. This imple-
mentation is based on one studied in our previous work [2], with the addition
of dynamic separation. As explained there, various refinements are possible, but
they are not necessary for our present purposes. Our goal is to show how dynamic
separation works (correctly) in a setting with realistic, challenging features such
as in-place updates (e.g., [13]). The model developed in this section is an abstract
version of our actual implementation in Bartok-STM.
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7.1 Operational Semantics

Again, we define the implementation as a lower-level semantics.

States. States become more complex for this semantics. In addition to the com-
ponents o, 7, and T that appear in the earlier semantics, we add constructs for
roll-back and optimistic concurrency. In order to support, roll-back, we maintain
a log [ of the reference locations that have been modified, with their correspond-
ing original values. In the case of roll-back, we use the log to restore these values
in the reference store. For optimistic concurrency, we have a list of tuples instead
of a single active expression. Each of the tuples is called a try, and consists of
the following components:

— an active expression e,

— another expression f from which e was obtained (its “origin”),

— a description of the accesses that e has performed, which are used for conflict
detection and which here is simply a list of reference locations,

— a list P of threads to be forked upon commit.

For every state (o,7,T,0,l), we require that dom(o) = dom(7) and that, if
r € RefLoc occurs in the state, then r € dom(o). We set:

S e State C RefStore x ProtState x ExpSeq x TrySeq x Log
o € RefStore = RefLoc — Value
T € ProtState = RefLoc — {P,U}
le Log = (RefLoc x Value)*
r €  RefLoc C Var
T,Pc ExpSeq = Exp*
O€ TrySeq = Try*
de Try = Exp x Exp x Accesses X ExpSeq
a € Accesses = RefLoc™

Steps. Figure [ gives the rules of this semantics, relying on these definitions:

— (es, fi, ai, P;) and (ej, fj, a;, P;) conflict if a; and a; have at least one element
in common.

— (e, f,a, P) conflicts with O if (e, f, a, P) conflicts with some try in O.

Given a log [ and a list of reference locations a, [ — a is the log obtained from

[ by restricting to reference locations not in a.

IfOis (e1, fr,a1, P1). - .(en, fn,an, Pn) then origin(O) is the list fy.--- . f,.

— ol is the result of applying all elements of [ to o.

Many aspects of this semantics are explained in our previous work. Here we focus
on the new ones, namely those related to dynamic separation.

Rule (Trans DynU), requires that, when a reference location is unprotected, it
is not being written by any try. This restriction is a formalization of one present
in our Bartok-STM implementation (where “being written” means, more specif-
ically, “open for update”). The restriction on (Trans DynU), can be satisfied
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(o, 7, T,0(P[ (A\z.e) V], f, a, P).O" 1) 0 (0,7, T, 0. (P[ e[V/2] ], f,a, P).O’ 1) (Trans Appl P),

(o, 7, T.U[ (Az.e) V ].T', O, 1) o (o, 7, T.U[ e[V/z] ].T', O, 1) (Trans Appl U),

(0,7, T,O.(P[ et V |, f,a, P).O", 1) ——o (o[r > V], 7[r — P, T,0(P[ r ], f,a, P).O’ 1) (Trans Ref P),
it 7 € RefLoc — dom(o)

(0,7, T.U[ ret V ].T', 0, 1) o (o[r — V], r[r — U], T.U[ r ].T, O, 1) (Trans Ref U),
it 7 € RefLoc — dom(o)

(o,7,T,0.(P['r], f,a, P).O" 1) 0 (0,7, T, O (P[ V], f, 7.a, P).O" 1) (Trans Deref P),
it o(r) =V

(o, 7, T.U[ v ].T", O, 1) o (o, 7, T.U[ V |.T!,0,1) (Trans Deref U),,
ifo(r) =V

(0,7, T, O (P[r:=V ], f a, P) O 1) o (o[r — V], 7, T,0.(P[ wmit |, f, r.a, P).O’ I’y  (Trans Set P),

where I/ = if » € dom(l) then [ else l.[r — o(r)]
and 7(r) =P

(o, 7, TU[ r:=V ].T, O,1) o (o[r — V], 7, T.U[ wmit ].T, O, 1) (Trans Set U),
(o, 7,T,O.(P[ async e |, f,a, P).O', 1) o (0,7, T, O.(P[ mit |, f, a,e.P).0O’ 1) (Trans Async P),
(o, 7, T.U[ async e |.T', O, 1) o (o, T, . T.U[ wmit |.T, O, 1) (Trans Async U),,
(o, 7, T, O.(P[ blockUntil true |, f, a, P).O’, 1) ——¢ (o, 7, T, O.(P[ wmit ], f, a, P).O’, 1) (Trans Block P),
(o, T, T.U[ blockUntil true ].T', O, 1) ——o (o, 7, T.U[ wit ].T', O, 1) (Trans Block U),
(o, 7, T, O, 1) o (ol, T, origin(O).T, 0, ) (Trans Undo),,
(o, 7, T, O.(P[ unprotected e |, f,a, P).O’,1) +——¢ (0,7, T.P|[ unprotected e |.P, 0.0’ ,1 — a) (Trans Unprotect)
if (P[ unprotected e ], f, a, P) does not conflict with 0.0’
(o, 7, T, O.(umit, f,a, P).O', 1) 0 (0,7, T.P,0.0", 1 — a) (Trans Done),,
if (unit, f, a, P) does not conflict with 0.0’
(o, 7, T.E[ unprotected V ].T', O, 1) o (o, 7, T.E[ V ].T',0,1) (Trans Close),,
(0,7, T.e.T', O, 1) o (o, 7, T. T, (e,e,0,0).0,1) (Trans Activate),,
(o, T, T.U[ protect r |.T/, 0, 1) ——o (o, T[r — P, T.U[ 7 ].T', O, 1) (Trans DynP),
(o, 7, T.U[ unprotect r |.T, O, 1) o (o, T[r — U], T.U[ 7 ].T', O, 1) (Trans DynU),,
if r & dom(l)

Fig. 3. Transition rules with optimistic concurrency and dynamic separation

by performing an undo. However, an undo is never forced to happen. Indeed,
the rules allow undo to happen at any point—possibly but not necessarily when
there is a conflict. Conflict detection may be eager or lazy; the rules do not
impose a particular strategy in this respect.

There is no corresponding subtlety in rule (Trans DynP),. Bartok-STM em-
ploys a more elaborate version of this rule in order to allow compiler optimiza-
tions that reorder accesses.

When writing to a reference location from within a transaction (rule (Trans
Set P),), the protection state of that reference location is verified. Even with
dynamic separation, this check is essential for correctness because of the possi-
bility of zombie transactions. On the other hand, a check is not needed for reads
(rule (Trans Deref P),), nor for accesses in unprotected code (rules (Trans Deref
U), and (Trans Set U),). These features of the rules correspond to important
aspects of our Bartok-STM implementation, which aims to allow the re-use of
legacy code without instrumentation.
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7.2 Correctness

The implementation with optimistic concurrency is correct with respect to the
strong semantics of Section [ in the following sense:

Theorem 4. Assume that DS({(o,7,T,unit)). Consider a computation:
(0,7.1,0,0) —7 (o', 7', T",0,0)

Then there is a computation:

/

(o,7,T,unit) —* (", 7" T" unit)

for some o, 7", and T" such that o’ is an extension of o', 7/ is an extension

of 7", and T" = T" up to reordering.

Much as for Theorem 3 the dynamic-separation assumption is essential for The-
orem [l However, Theorem M is much harder than Theorem

8 Conclusion

A notable aspect of our research on AME is that we have developed formal
semantics alongside our software artifacts. The formal semantics have helped
guide the practical implementation work and vice versa. As in the present study
of dynamic separation, formal semantics shed light on the behavior of constructs
and the properties of programming disciplines, even in the face of diverse imple-
mentation techniques.

Our objective is to enable the creation of programs by programmers with nor-
mal (not exceptional) skills, such that the programs will be satisfactory on current
and future hardware, especially multi-processor and multi-core hardware. The pro-
grams must be semantically correct and must actually run correctly—at least the
semantics and the implementations should be well-defined and simple enough that
they are not an obstacle to correctness. The programs should also be efficient, so
they should utilize concurrency where appropriate. Transactional memory with
dynamic separation appears as a promising element in reconciling these goals.

Acknowledgements. This work was done at Microsoft Research. We are grate-
ful to Katie Coons, Rebecca Isaacs, Yossi Levanoni, and JP Martin for helpful
discussions and comments, and to Andrew Birrell, Johnson Hsieh, and Michael
Isard for our joint work, which gave rise to the present paper.
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Completeness and Nondeterminism in
Model Checking Transactional Memories*

Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh

EPFL, Switzerland

Abstract. Software transactional memory (STM) offers a disciplined
concurrent programming model for exploiting the parallelism of mod-
ern processor architectures. This paper presents the first deterministic
specification automata for strict serializability and opacity in STMs. Us-
ing an antichain-based tool, we show our deterministic specifications to
be equivalent to more intuitive, nondeterministic specification automata
(which are too large to be determinized automatically). Using determin-
istic specification automata, we obtain a complete verification tool for
STMs. We also show how to model and verify contention management
within STMs. We automatically check the opacity of popular STM algo-
rithms, such as TL2 and DSTM, with a universal contention manager.
The universal contention manager is nondeterministic and establishes
correctness for all possible contention management schemes.

1 Introduction

Software transactional memory (STM) has gained much recent interest with the
advent of multicore architectures. An STM enables the programmer to structure
her application in terms of coarse-grained code blocks that appear to be exe-
cuted atomically [7T2]. Behind the apparent simplicity of the STM abstraction,
however, lie challenging algorithms that seek to ensure transactional atomicity
without restricting parallelism. Despite the large amount of experimental work
on such algorithms [§], little effort has been devoted to their formalization [3ITT].

We believe that an approach to formalizing and verifying STM algorithms
can only have impact if it is accepted by the transactional memory community,
and this concern has guided our decisions in choosing the correctness properties
that STMs should satisfy. For this reason we consider strict serializability [9]
and opacity [3] as the two measures of the correctness of STMs. The former
requires committed transactions to appear as if executed at indivisible points in
time during their lifetime. Opacity goes a step further and also requires aborted
transactions to always access consistent state. The notion of opacity corresponds
closest to an emerging consensus about correctness in the transactional software
community [2I6]. The motivation of this work is to formally check popular STM
algorithms such as DSTM [6] and TL2 [2] against opacity.
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Our first step in this direction addressed the problem of space explosion in
STMs []. We restricted our attention to STMs that satisfy certain structural
properties, and we proved that the correctness of such an STM for 2 threads
and 2 variables implies the correctness of the STM for an arbitrary number of
threads and variables. Then, to check the correctness of an STM for 2 threads
and 2 variables, we modeled an STM as a deterministic transition system. At
the same time, we constructed nondeterministic specification automata for the
strictly serializable and opaque words on 2 threads and 2 variables. An STM
is then correct if the language of the STM transition system is included in the
language of the specification automaton. Since checking language inclusion was
too expensive, we resorted to checking the existence of a simulation relation. As
the existence of a simulation relation is a sufficient, but not a necessary, condition
for language inclusion with nondeterministic specifications, our procedure was
sound but not complete.

In this paper, we provide deterministic specification automata for strict serial-
izability and opacity. Constructing such deterministic specifications is non-trivial.
Roughly speaking, the difficulty comes in specifying opacity in the presence of
aborting transactions. In this scenario, some conflicts between transactions are
transitive, whereas others are not. The determinism of the specification automata
allows for an efficient check of language inclusion (by constructing the product of
the specification and implementation), which results in a complete verification pro-
cedure. Moreover —and perhaps surprisingly— the deterministic specification au-
tomata are significantly smaller than their nondeterministic counterparts, which
provide more intuitive specifications. As the nondeterministic automata are too
large to be determinized explicitly, we use an antichain-based tool [I3] to prove
the correctness of our deterministic specifications. The tool shows language equiv-
alence of our deterministic automata with the natural, nondeterministic specifica-
tions, without an explicit subset construction. The smaller, deterministic
specification automata speed up the verification of STMs like DSTM and TL2 by
an order of magnitude. This speed-up allows us to check the correctness of STMs
with much larger state spaces. We use this gain to verify nondeterministic STMs
that model realistic contention management schemes like exponential backoff and
prioritized transactions.

In practice, STMs employ an external contention manager to enhance live-
ness [BII0]. The idea of the contention manager is to resolve conflicts between
transactions on the basis of their past behavior. Various contention managers
have been proposed in the literature. For example, the Karma contention man-
ager prioritizes transactions according to the number of objects opened, whereas
the Polite contention manager backs off conflicting transactions for a random
duration [I0]. For verification purposes, modeling a contention manager explic-
itly is infeasible. First, it would blow up the state space, as the decision of a
contention manager often depends on the past behavior of every thread in an
intricate manner. Second, many contention managers break the structural prop-
erties that the model checking approach [4] expects in order to reduce the prob-
lem to two threads and two variables. Third, an STM is designed to maintain
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safety for all possible contention managers, which can be changed independent
of the STM.

To tackle these issues, we model the effect of all possible contention man-
agers on an STM by defining a universal contention manager. An STM with the
universal contention manager is a nondeterministic transition system that con-
tains transitions for all possible decisions of any contention manager. Moreover,
the universal contention manager does not break any structural property of the
STM, which allows us to reduce the verification problem to two threads and
two variables. Putting everything together, we are able to automatically verify
opacity for STMs such as DSTM and TL2 for all contention managers.

Related work. This work improves the model-checking approach [] for trans-
actional memories in terms of both the generality of the model (including non-
deterministic contention management) and the efficiency and completeness of
the verification procedure. There also has been recent independent work on the
formal verification of STM algorithms [I]. That verification model checks STMs
applied to programs with a small number of threads and variables against the
safety criteria of Scott [I1], which are stronger than opacity.

2 Framework

We describe a framework to express transactions and their correctness properties.

Preliminaries. Let V be a set {1,...,k} of k variables, and let C' = {commit} U
({read, write} x V') be the set of commands on the variables V. Also, let C =
C U {abort}. Let T = {1,...,n} be a set of n threads. Let S = C' x T be the
set of statements. Also, let S = C' x T. A word w € S* is a finite sequence of
statements. Given a word w € S*, we define the thread projection wl; of w on
thread ¢ € T as the subsequence of w consisting of all statements s in w such that
seC x {t}. Given a thread projection w|; = s¢ ... s, of a word w on thread ¢,
a statement s; is finishing in w|; if it is a commit or an abort. A statement s; is
ingtiating in w|; if it is the first statement in w|¢, or the previous statement s;_;
is a finishing statement.

Transactions. Given a thread projection wl; of a word w on thread ¢, a consec-
utive subsequence x = sq ... s,, of w|; is a transaction of thread ¢t in w if (i) s¢ is
initiating in w|y, and (ii) Sy, is either finishing in w|¢, or sy, is the last statement
in wl¢, and (iii) no other statement in z is finishing in w|;. The transaction x is
committing in w if s, is a commit. The transaction x is aborting in w if s,, is an
abort. Otherwise, the transaction x is unfinished in w. Given a word w and two
transactions x and y in w (possibly of different threads), we say that « precedes
y in w, written as x <,, y, if the last statement of x occurs before the first state-
ment of i in w. A word w is sequential if for every pair z,y of transactions in w,
either x <, y or y <, x. We define a function com : S§* — §* such that for all
words w € S’*, the word com(w) is the subsequence of w which consists of every
statement in w that is a part of a committing transaction. A transaction z of a
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thread ¢ writes to a variable v if 2 contains a statement ((write, v),t). A statement
s = ((read,v),t) in x is a global read of a variable v if there is no statement
((write, v), t) before s in the transaction z. A transaction x of a thread ¢ globally
reads a variable v if there exists a global read of variable v in transaction x.

Correctness properties. We consider two correctness properties for transac-
tional memories: strict serializability and opacity. Strict serializability [9] re-
quires that the order of conflicting statements from committing transactions is
preserved, and the order of non-overlapping transactions is preserved. Opacity,
in addition to strict serializability, requires that even aborting transactions do
not read inconsistent values. The motivation behind the stricter requirement for
aborting transactions in opacity is that in STMs, inconsistent reads may have
unexpected side effects, like infinite loops, or array bound violations.

A statement s; of transaction x and a statement sy of transaction y (Where T
is different from y) conflict in a word w if (i) s1 is a global read of some variable
v, and s9 is a commit, and y writes to v, or (ii) s; and so are both commits, and x
and y write to some variable v. This notion of conflict corresponds to the deferred
update semantics [§] in transactional memories, where the writes of a transaction
are made global upon the commit. A word w = sq... S, is strictly equivalent to
a word w' if (i) for every thread ¢t € T', we have w|, = w'|;, and (ii) for every pair
54, 5; of statements in w, if s; and s; conflict and 7 < j, then s; occurs before s;
in w’, and (iii) for every pair x,y of transactions in w, where x is a committing
or an aborting transaction, if z <, y, then it is not the case that y <, z. We
define the correctness property strict serializability wss C S* as the set of words
w such that there exists a sequential word w’, where w’ is strictly equivalent to
com(w). Furthermore, we define opacity mo, C S* as the set of words w such that
there exists a sequential word w’, where w' is strictly equivalent to w. We note that
Top C Tss, that is, if a word is opaque, then it is strictly serializable.

3 Transactional Memory Specifications

We capture correctness properties using TM specification automata. A transition
system is a 3-tuple (Q, ginit, 6), where @ is a set of states, g;n;+ is the initial state,
and § C Q x S x Q is a transition relation. A transition system is deterministic
if for every state ¢ € Q and every statement s € S, there is at most one state
¢ € Q such that (q,s,q") € 6. A word sg. .. s, is a run of the transition system
if there exist states qq . ..gm+1 in @ such that ¢y = qini¢ and for all ¢ such that
0 < i < m, we have (g, $i, gi+1) € 6. The language L of a transition system is the
set of all runs of the transition system. A TM specification X for a correctness
property 7 is a transition system such that L(X) = 7. A TM specification is
deterministic if it is a deterministic transition system.

Strict serializability and opacity have been formally defined so far using non-
deterministic TM specifications [4]. The nondeterminism allows a natural con-
struction of the specification, where a transaction nondeterministically guesses
a serialization point during its lifetime. A branch of the nondeterministic spec-
ification corresponds to a specific serialization choice of the transactions, which
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makes the construction simple and intuitive, though redundant. Due to the non-
determinism of the specification, the existence of a simulation relation is a suf-
ficient but not a necessary condition for language containment. This makes the
decision procedure incomplete [4]. Moreover, these specifications are too large to
be determinized automatically.

3.1 Difficulties in Providing Deterministic TM Specifications

It turns out that creating deterministic TM specifications for strict serializability
and opacity is a non-trivial problem. We first give some examples that manifest
the subtleties involved.

Analysis of strict serializability. We look at two words and reason whether
they are strictly serializable.

\i (w,v1)2 \i (w,01)2
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z | (r,v2)3 z | (rv
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time c3 time c3
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Fig. 1. Examples for strict serializability. The words are fragmented into transactions
of different threads. We use the notation: w for write, r for read, ¢ for commit, and a
for abort.

— Consider the word w = ((write, v1), t2), ((read, vy1), t1), ((read, vq), t3),
(commit, t2), ((write, va), 1), ((read, v1), t3), (commit, 1), (commit, ¢3). The
word w is illustrated in Figure[L(a)] The transaction x has to serialize before
y due to a conflict on vy (as  reads v before y commits and y writes to v1).
Similarly, the transaction z has to serialize before x due to a conflict on v,.
However, z has to serialize after y due to a conflict on v; (z reads v; after
vy is written and committed by y). So, w is not strictly serializable. On the
other hand, if one of the transactions had not committed, the word would
have been strictly serializable.

— Consider the word w = ((write, v1), t2), ((read, vq), t2), ((read, vs), t3),
((read, v1), t1), (commit, t2), ((write, va), t3), ((write, vs), t1), (commit, t1),
(commit, t3). The word is illustrated in Figure The transaction x has
to serialize before y due to a conflict on v;. Similarly, the transaction z has
to serialize before x due to a conflict on v3. Also, z writes to the variable
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vo which is read by transaction y before z commits. Thus, z has to serialize
after y. This makes w not strictly serializable.

These examples show that strict serializability is a property concerned with
committing transactions. OQur deterministic TM specification maintains all con-
flicts as part of the state. We define that a transaction x is a weak predecessor
of transaction y in a word w if y must serialize after x for both x and y to be
committing transactions. When a transaction y commits, all weak predecessors
of y become weak predecessors of the threads of which y is a weak predecessor.
Note that the relation weak predecessor itself is not a transitive relation. The
deterministic TM specification ensures that a transaction x cannot commit if
x is a weak predecessor of itself. Moreover, when a transaction commits, the
information of reads and writes of the transaction has to be provided to all weak
predecessors of the transaction.

Analysis of opacity. Designing a deterministic specification for opacity requires
even further care. This is because even aborting transactions should be prevented
from reading inconsistent values. To demonstrate the intricacies involved, we
again give two examples.

\L (w,v1)2 \L (w,v1)2
\i (ryv1)1 E (r,v1)1
\i (r,v2)3 c2
2 \i (r,v2)3
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time time
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Fig. 2. Examples for opacity. The words are fragmented into transactions of different
threads.

— Consider the word w = ((write, v1), t2), ((read, v1), t1), ((read, vo), t3),
(commit, t2), ((write, va), ¢1), ((read, v1), ¢3), (commit, ¢t1). The word is
illustrated in Figure Transaction x has to serialize before y due to a
conflict on vy. Also, z has to serialize after y due to a conflict on vy, and
before x due to a conflict on vs. Note that although z does not commit,
opacity requires that transaction x does not commit. So, w is not opaque.

— Consider the word w = ((write, v1), t2), ((read, v1), t1), (commit, t2), ((read,
va), t3), (abort, t3), ((write, va), t1), (commit, ¢1). The word is illustrated in
Figure Transaction z has to serialize before y due to a conflict on ;.
Transaction z has to serialize after y as they do not overlap in w. Also, z
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has to serialize before x due to the conflict on vo. This makes w not opaque.
This shows how a read of an aborting transaction may disallow a commit of
another transaction, for the sake of opacity.

Opacity concerns committing as well as aborting transactions. Again, the de-
terministic TM specification for opacity maintains all conflicts as part of the
state. As for strict serializability, we again use the notion of weak predecessors
to store intransitive conflicts. We say that a transaction x is a strong predecessor
of transaction y in a word w if y must serialize after x in w. Unlike weak prede-
cessor, strong predecessor is a transitive relation. The specification for opacity
ensures that a transaction y cannot execute any statement s if s makes some
transaction x a strong predecessor of x. This shows how opacity poses a restric-
tion on commands other than commit.

3.2 Deterministic TM Specifications

We now present the formal definitions of the deterministic TM specifications for
strict serializability and opacity. The deterministic TM specification for strict
serializability X is given by the tuple (Q, Ginit, 6ss). A state ¢ € Q is a T-tuple
(Status, rs, ws, prs, pws, wp, sp), where Status : T — {started, invalid, pending,
finished} is the status, rs : T — 2V is the read set, ws : T — 2V is the write
set, prs : T — 2V is the prohibited read set, pws : T — 2V is the prohibited
write set, wp : T — 27 is the weak predecessor set, and sp : T — 27T is the
strong predecessor set for the threads. If v € prs(t) (resp. v € pws(t)), then
the status of the thread ¢ is set to invalid if ¢ globally reads (resp. writes to) wv.
A thread u is in the weak predecessor set of thread ¢ if the unfinished trans-
action of u is a weak predecessor of the unfinished transaction of ¢. The initial
state Qinit is (Statuso, 150, wWso, Prsg, PWSy, WPy, SPo), Where Statuso(t) = finished
for all threads ¢ € T, and 15¢(t) = wso(t) = prsg(t) = pwsy(t) = wpy(t) =
spo(t) = 0 for all threads ¢ € T. The transition relation s is obtained from
Algorithm 1. For all states ¢ € @ and all statements s € S’, the following
hold: (i) if specTransition(q, s, mss) =L, then there is no state ¢’ € @ such that
(¢,8,q") € bss, and (ii) if specTransition(q,s,7ss) = ¢’ for some state ¢’ € Q,
then (q,s,q") € bss. Given a state ¢ = (Status, rs, ws, prs, pws, wp, sp) and a
thread ¢t € T, the procedure ResetState(q,t) changes Status(t) to finished and
the sets 7s(t), ws(t), prs(t), pws(t), wp(t), and sp(t) to . The deterministic TM
specification for opacity builds upon the deterministic TM specification for strict
serializability. The difference comes in the strong predecessor set. We exploit the
relation of strong predecessors in such a way that even aborting transactions see
consistent values. For example, if a thread w is a strong predecessor of ¢, and ¢
is a weak predecessor of u, then u cannot commit but ¢ can. Many similar cases
of conflict have to be carefully considered to capture the exact notion of opacity,
that is, L(X,,) = mop. The deterministic TM specification for opacity Xop is
given by the tuple (Q, Ginit, dop). The set of states and the initial state are the
same as those for Xs. Also, the transition relation d,, can be similarly obtained
from Algorithm 1 using the property m,, in place of ;.
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Algorithm 1. specTransition({Status, rs, ws, prs, pws, wp, sp), s, )
if s = ((read,v),t) then
if v € ws(t) then return (Status, rs, ws, prs, pws, wp, sp)
if m = 7m,, then
U:={u€T|veprs(u) orv € prs(u’) such that u € sp(u’)}
if t € U or there exists a thread u € U such that ¢t € sp(u) then return L
if Status(t) = finished then
add all threads u € T such that Status(u) = pending to wp(t) and sp(t)
add all threads u’ € T to sp(t) such that v’ € sp(u) and Status(u) = pending
Status(t) := started
rs(t) := rs(t) U{v}
if v € prs(t) then Status(t) := aborted
for all threads v € T' do
if v € ws(u) then wp(u) = wp(u) U {t}
if v € prs(u) then wp(t) := wp(t) U{u}
if 7 = 7w then return (Status, rs, ws, prs, pws, wp, sp)
for all threads u € T such that u =t or t € sp(u) do sp(u) := sp(u) UU
for all threads u € T such that u € sp(t) do
pws(u) := pws(u) U {v}
if v € ws(u) then Status(u) := aborted
if s = ((write,v),t) then
if Status(t) = finished then
add all threads u € T such that Status(u) = pending to wp(t) and sp(t)
add all threads u’ € T to sp(t) such that v’ € sp(u) and Status(u) = pending
Status(t) := started
ws(t) == ws(t) U{v}
if v € pws(t) then Status(t) := aborted
for all threads v € T' do
if v € rs(u) then
wp(t) = wp(t) U {u}
if = m,, and ¢ € sp(u) then Status(t) := aborted
if v € pws(u) then wp(t) := wp(t) U {u}
if s = (commit,t) then
if ¢t € wp(t) then return L
if m =7,y then
U:={u|uewp(t) orue sp(u) for some v’ € wp(t)}
if t € U or there exists a thread w € U such that ¢ € sp(u) then return L
for all threads u € T such that v € wp(t) do
if ws(u) Nws(t) # 0 then Status(u) := aborted else Status(u) := pending
prs(u) := prs(u) U prs(t) U ws(t)
pws(u) := pws(u) U pws(t) U ws(t) U rs(t)
for all threads v’ € T such that ¢ € wp(u') or ws(u') N ws(t) # 0 do
wp(u') = wp(u') U {u}
for all threads u € T such that u =t or t € sp(u) do sp(u) := sp(u) UU
ResetState(q, t)
if s = (abort,t) then ResetState(q,t)
return (Status, rs, ws, prs, pws, wp, sp)



Completeness and Nondeterminism 29

3.3 Model Checking with Deterministic TM Specifications

It has been shown [4] that for a transactional memory which satisfies certain
structural properties, it is sufficient to show its correctness for all programs with
two threads and two variables in order to prove the correctness of the transac-
tional memory for all programs. These properties were shown for transactional
memories like DSTM [6] and TL2 [2]. The nondeterministic TM specifications
presented [4] are too huge to be automatically determinized. However, surpris-
ingly enough, the deterministic TM specifications we present in this paper turn
out to be much smaller in size. Using an antichain-based tool [I3], we establish
that for two threads and two variables, the language of our deterministic TM
specification for strict serializability (resp. opacity) is equivalent to the language
of the nondeterministic specification for strict serializability (resp. opacity) [4].

For strict serializability, our deterministic TM specification Yy has only 3520
states, whereas the nondeterministic one A,s has 12345 states. Similarly, for
opacity, X,, has 2272 states, while the nondeterministic specification A,, re-
quires 9202 states. Moreover, the deterministic TM specifications allow for an
efficient procedure that directly checks, whether the language of the TM algo-
rithm is included in the language of the deterministic TM specifications. This

Table 1. Time for simulation (resp. language inclusion) checking for STMs on a quad
dual core 2.8 GHz server with 16 GB RAM. In case simulation (resp. language inclusion)
holds, we write Y followed by the time required for finding it. Otherwise, we write N
followed by the counterexample produced, followed by the time required to prove that
no simulation exists (resp. language inclusion does not hold), followed by the time
required to find the counterexample. A ‘*’ for the search for simulation relation means
that it does not complete in 2 hours, but we do find a counterexample. A ‘-’ means
that the search for both, the simulation relation and the counterexample, does not
complete in 2 hours.

TM algo- Number

rithm A of states A= A A= Aoy L(4) € L(Zs)  L(A) € L(Zop)

Deterministic STMs [4]

seq 3 Y, 0.8s Y, 0.7s Y, 0.01s Y, 0.01s
2PL 99 Y, 13s Y, 8s Y, 0.01s Y, 0.01s
dstm 944 Y, 127s Y, 82s Y, 0.09s Y, 0.07s
TL2 11840 Y, 1647s Y, 1438s Y, 1.2s Y, 1s

occ 4480 Y, 765s N, wq, 567s,4s Y, 0.46s N, wq, 0.41s, 4s

TL2 mod. 17520 N, w2, *, 9s N, we, *, 95 N, wa, 2.7s, 95 N, wa, 2.1s, 8s
Nondeterministic STMs

dstm 1846 Y, 303s Y, 279s Y, 0.16s Y, 0.13s
TL2 21568 - - Y, 3.2s Y, 2.4s

Counterexamples

w1 (wal)Qa(T71)1a627(rv 1)1
w2 (wa2)1a(w7 1)2,(7‘,2)2,(7’, 1)1702701
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procedure makes our model checking complete too. We show the results in
Table[ll For deterministic STMs [4], we observe that checking language inclusion
with deterministic TM specifications is much faster than checking existence of a
simulation relation with nondeterministic TM specifications.

4 Nondeterministic Transactional Memories

Our succinct deterministic TM specifications tempt us to go a step further in
model checking transactional memories. Transactional memories often employ
nondeterministic schemes to resolve conflicts, in the face of thread failures or
repetitive aborts of a thread. These schemes are generally treated externally
to the transactional memory, and are referred to as contention managers. The
notion of a contention manager helps to keep the design of a transactional mem-
ory modular. This allows a transactional memory to switch from one contention
manager to another, depending upon the contention scenario [5]. An STM is
designed in such a way that it maintains its correctness property for all possible
contention managers.

Transactional memories have been modeled in a restrictive framework as TM
algorithms [], where a transactional memory is tied to an implicit, specific con-
tention manager. We now give a general formalism which is practically more
useful, where a transactional memory is separated from the contention manager.

4.1 A Formalism for TM with Contention Managers

Programs. We express a thread program as an infinite binary trees on com-
mands. For every command of a thread, we define two successor commands, one
if the command is successfully executed, and another if the command fails due
to an abort of the transaction. We use a set of thread programs to define a mul-
tithreaded program. Formally, a thread program 6 on a set C' of commands is a
function 6 : B* — C. We define a (multithreaded) program p on n threads and k
variables as an n-tuple p = (0',...,0") of thread programs on C.

TM algorithms. We model transactional memories using TM algorithms. A
TM algorithm consists of a set of states, an initial state, an extended set of com-
mands depending on the underlying TM, a conflict function, a pending function,
and a transition relation between the states. The extended commands include
the set C' of commands, and TM specific additional commands. For example, a
given TM may require that a thread locks a variable before writing to the vari-
able. Every extended command is assumed to execute atomically. The conflict
function captures the statements in the states, when the TM algorithm needs
to consult a contention manager for a decision. The pending function represents
the pending command of a thread in a state, and ensures that if a thread has
not finished the execution of a particular command, then no other command is
executed by the thread.
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We define a TM algorithm A = {Q, Ginit, D, ®,7,6), where @ is a set of states,
Qinit 18 the initial state, D is the set of extended commands with C' C D, ¢ : Q %
D — B is the conflict function, v : @ x T — CU{L} is the pending function, and
5 C QxCxSpx RespxQ is the transition relation, where Sp = (DU{abort})x T
and Resp = {1,0,1}. For a TM algorithm A = (Q, ¢init, D, ¢, 7, 6), the following
rules hold:

— For all threads ¢t € T, we have ¥(qinit,t) =L.

— For all states ¢, ¢’ € Q such that there is an incoming transition (g, ¢, (d, t),r, q)
toq in 6, if r =1, then (¢, t) = ¢, otherwise v(¢',t) = L.

— For all states ¢, ¢’ € Q such that there is an incoming transition (g, ¢, (d, t),7,¢)
to ¢’ in 6, then v(q¢’, u) = v(q, u) for all threads u # t.

— For all states ¢ and all threads t, if v(q,t) = ¢ where ¢ #.1, then for all
outgoing transitions (g, ¢1, (d,t),r,q’) from ¢ in §, we have ¢; = c.

— For all states ¢ and all threads ¢, if v(¢,t) =L, then there is an outgoing
transition (q, ¢, (d,t),r, ¢ from ¢ in é for every command ceC.

— For all ¢ € Q, for all transitions (g, ¢, (d,t),r,¢') in 6, we have d = abort if
and only if r = 0.

Note that the rules above restrict the transition relation ¢ and the pending
function v such that 7 is unique. A command c is enabled in a state ¢ for thread
tif v(q,t) € {L,c} (i.e., either no command is pending, or c itself is pending). A
command c is abort enabled in a state g for thread ¢ if ¢ is enabled in ¢ for thread
t and there is no transition (g, ¢, (d,t),7,¢') € 6 such that d € D. A transition
relation ¢ is deterministic if for all ¢ € Q and (c,t) € S, if (¢, ¢, (d1,t),71,q1) € 6
and (gq, ¢, (da,t),7r2,q2) € 6, then dq = da, r1 = 79, and ¢1 = g2. A TM algorithm
is deterministic if its transition relation is deterministic.

Contention managers. When the transactional memory detects a conflict (the
conflict function is true), it requests the contention manager to resolve the con-
flict. The contention manager proposes the TM algorithm the next statement to
be executed. Formally, a contention manager cm on a set D of commands is a
function cm : S} — 250 such that if the last statement of w is from thread ¢,
then every statement in c¢m(w) is a statement of .

Given a TM algorithm A = (Q, ¢init, D, ¢,7y, 6) and a contention manager cm :
S’B — 250 we define a TM algorithm and contention manager pair (M, cm) =
(Qx, (Ginit, €), D, vx,0x), where Q = Q X S'B is the set of states, vx : Qx XT —
C'U{L} is the pending function such that for all states g« € Q« and all threads
t € T, we have yx(qx,t) = 7(q,t) where gx = (¢, w) for some word w € §
0y € Qx« X C x Sp x Resp X Q« is the transition relation such that for all
states qx, ¢y € Qx, for all commands ¢ € C’, for all statements s € SD, and for
all responses r € Resp, we have (¢x,c,s,7,¢)) € 6x if and only if (i) there is
a transition (¢, ¢, s,7,¢') € 6, and (ii) if ¢(q,s) = true, then s € em(w), where
w € 31’5 and ¢, ¢ € @ such that ¢x = (¢,w) and ¢, = (¢/,w - s).

Runs and languages of TM algorithms. On putting the pieces together, a

TM algorithm interacts with a program, a scheduler, and a contention manager
(see Fig. B]). A thread of the program is chosen by the scheduler, and the next
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command of the thread is given to the TM algorithm. The TM algorithm decides
whether the command can be executed in a single or several atomic steps, or the
command is in conflict. The commands executed by the TM algorithm are also
reported to the contention manager for its bookkeeping. If the TM algorithm
finds a conflict, the TM algorithm resolves the conflict using the contention
manager. The TM algorithm makes a transition accordingly, and gives back to
the program a response. The response is L if the TM algorithm needs additional
steps to complete the command, 0 if the TM algorithm needs to abort the
transaction of the scheduled thread, and 1 if the TM algorithm has completed
the command. Given a program, a scheduler, a TM algorithm, and a contention
manager, we get a run. Projecting the run to the set of successful statements
(that is, aborts, and statements that get response 1) gives an infinite word. The
language of a TM algorithm and contention manager pair is the set of infinite
words that the TM algorithm can produce for any program and any scheduler,
where conflicts are resolved using the specific contention manager.

Formally, a scheduler o on T is a function o : N — T. Let p = (9,...,0") be
a program, and let o be a scheduler. A run p = {(qo, lo, (do,t0),70){q1, 11, (d1, 1),
r1) ... of a TM algorithm A with scheduler o on program p and contention man-
ager c¢m is an infinite sequence of tuples of states, program locations, statements,
and responses, where [; = <lj1, ., 07) € (B*)" for all j > 0 and the following
hold: (i) qo = qinit and lp = (e, ..., €), and (ii) for all j > 0, there exists a transi-
tion (g, ¢, (dj,t5),75,qj+1) € 6 such that if ¢(q;, (d;,t;)) = true, then (d;,t;) €
em((do,to) ... (dj—1,tj_q)), and (iii) t; = o(j), and (iv) ¢; = 0% (l;j), and (v) for
allt € T, we have I}, | = I} if either t # t; or r; =1, and I, | = I} -7; otherwise.
A statement s; € S is successful in the run p = (90,10, s0,70){q1, 11,81, 71) ... if
(i) r; € {0,1}, or (ii) 7z = 1 with j < k and 7,41 ...7%—1 are all equal to L.
We define the language L((A, cm)) of a (A, cm) pair as the set of all infinite
words w € 8% such that w is the sequence of all successful statements in a run
of A with some scheduler on some program and the contention manager cm. A
TM algorithm A with a contention manager c¢m ensures a correctness property
7 C 5* if every finite prefix of every word in L((A, ¢m)) is in .

Command Request
Thread Response Statement
Run

Fig. 3. Interaction in the model

Modeling contention managers explicitly in our formalism is not a feasible
option. First of all, contention managers may blow up the state space as their
decisions may depend intricately on past behavior. For example, a simple ran-
dom backoff contention manager, that asks a conflicting thread to back off for
a random amount of time could blow up the state space. Secondly, some of the
structural properties break when we model a TM algorithm in conjunction with
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a particular contention manager. For example, if a contention manager priori-
tizes transactions according to the number of times it has aborted in the past,
then the TM algorithm does not satisfy the structural property of ‘transactional
projection’ [4]. This is because, an abort of a transaction of thread ¢ may be the
reason why the next transaction of thread ¢ commits. As the remaining structural
properties build upon the transactional projection property, they also collapse
for specific contention managers.

We take a novel approach to model check transactional memories with differ-
ent contention managers. Given a TM algorithm A with extended alphabet D,
we define a universal contention manager ucm such that for all words w € S’E,
we have ucm(w) = Sp. The idea of the universal contention manager is to allow
nondeterministically all choices that the TM algorithm has. It is easy to observe
that the transition relation for the pair (A4, ucm) is identical to that of the TM
algorithm A. From the definition of the language of a TM algorithm and a con-
tention manager pair, we get L((4, cm)) C L({A, ucm)) for every contention
manager c¢m. Thus, if a TM algorithm ensures a correctness property with the
universal contention manager, then the TM algorithm is correct for all contention
managers. Moreover, if a TM algorithm A satisfies the structural properties, then
the pair (A, uem) also satisfies the structural properties [4]. Thus, verifying the
correctness of the TM algorithm with ucm for two threads and two variables
proves the correctness of the TM algorithm for arbitrary number of threads and
variables for all possible contention managers.

We now provide, as examples, nondeterministic DSTM and nondeterministic
TL2, combined with the universal contention manager. We then verify their
correctness.

4.2 Nondeterministic DSTM

Dynamic software transactional memory (DSTM) [G] is one of the most popular
transactional memories. DSTM faces a conflict when a transaction wants to own
a variable which is owned by another thread. We define the nondeterministic
DSTM algorithm Aggm as (Q, Qinit, D, 7, Oastm). A state ¢ € @ is defined as a
3-tuple (Status,rs, os), where Status : T — {aborted, validated, invalid, finished}
is the status function, and rs : T' — V is the read set, and os : T' — V is the
ownership set.

The initial state giie = (Statusg, rso, 0sg), where for all threads ¢ € T', we have
Statuso(t) = finished and rso(t) = 0so(t) = 0. The set of extended commands is
D = CU({own} x V)U{validate}. The transition relation 6 4ss,, is obtained from
Algorithm 2. For all states ¢ € @, all commands ¢ € C, all extended commands
d € D U {abort}, all threads ¢ € T, and all responses r € Resp, we have: (i)
if dstmTransition(q,c,d,t,r) =1, then there does not exist a state ¢’ € @ such
that (¢, ¢, (d,t),7,q") € dastm, and (ii) if dstmTransition(q,c,d,t,r) = ¢’ for some
state ¢ € Q, then (q,c, (d,t),7,q¢") € Sastm.-

Our second example is a model of another popular transactional memory,
transactional locking 2 (TL2) [2] with the universal contention manager. We give
an informal description of the role of uem in TL2. TL2 uses locks for ensuring
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Algorithm 2. dstmTransition({Status, s, 0s),c,d, t,r)

if ¢ is not enabled in ¢ for thread ¢ then return L
if ¢ = (read,v) then
if d =cand v € 0s(t) and r = 1 and Status(t) # aborted then return ¢
if d=cand v ¢ o0s(t) and r = 1 and Status(t) = finished then
rs(t) := rs(t) U{v}
return ¢
if ¢ = (write,v) then
if d =cand v € 0s(t) and r =1 and Status(t) # aborted then return ¢
if d = (own,v) and r =1 and Status(t) # aborted then
0s(t) := os(t) U {v}
for all threads u # ¢ such that v € os(u) do
Status(u) := aborted rs(u) :=0 os(u) =10
return q
if ¢ = commit then
if d = validate and r =1 and Status(t) = finished then
Status(t) := validated
for all threads u # ¢ such that rs(t) N os(u) # 0 do
Status(u) := aborted rs(u) :=0 os(u) =10
return q
if d=cand r =1 and Status(t) = validated then
Status(t) := finished rs(t) :=0 os(t) :=10
for all threads u # ¢ such that rs(u) N os(t) # @ do Status(u) := invalid
return q
if d = abort and r = 0 then
Status(t) := finished rs(t) :=0 os(t):=0
if ¢ is abort enabled in ¢ and d = abort and r = 0 then return q
if ¢ = (write,v) and v ¢ o0s(t) and v € os(u) s.t. u # t then return ¢
if ¢ = commit and Status(t) = finished and rs(t) N os(u) # 0 s.t. u # t then
return ¢
return L

opacity. A thread locks all the variables in the write set at the time of commit.
With TL2 algorithm using the universal contention manager, whenever a thread ¢
conflicts due to a variable being locked by another thread u, the nondeterministic
TL2 algorithm has the following transitions: one to abort ¢, and others to allow
the thread ¢ to proceed by setting the abort flag of some thread wu.

We note that nondeterministic DSTM and nondeterministic TL2, combined
with the universal contention manager satisfy the transactional projection prop-
erty, as aborting or unfinished transactions can influence committing transac-
tions only by forcing them to abort. The remaining structural properties depend
on the transactional projection property, but are not influenced by a contention
manager. Thus, all required structural properties do hold for nondeterministic
DSTM and nondeterministic TL2 obtained with the universal contention man-
ager. We check whether the language of these nondeterministic STMs is included
in the language of the deterministic TM specifications. Our results, shown in
Table [l establish that DSTM and TL2 ensure opacity for an arbitrary number
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of threads and variables for all contention managers. We observe that the number
of states in the nondeterministic TM algorithm using the universal contention
manager is nearly double the number of states in the corresponding determinis-
tic TM algorithm. We note that the nondeterministic specifications are unable
to verify the correctness properties for the nondeterministic TL2 algorithm.

5 Conclusion

We presented deterministic specifications for two key correctness properties,
strict serializability and opacity, in transactional memories. Our deterministic
specifications make the model checking procedure for transactional memories
complete and efficient. We formalized the notion of nondeterministic transac-
tional memories to capture realistic contention management. We proved that
DSTM and TL2 ensure opacity with arbitrary numbers of threads and variables
for all possible contention managers.

Acknowledgment. We are thankful to Laurent Doyen for his kind support in
checking language inclusion with his antichain based tool.
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Abstract. We investigate a general model of concurrency for shared-memory
systems. We introduce some intuitive interleaving semantics within the general
framework of automata with concurrency relations and connect it to some partial
order approach. Then our main result identifies the expressive power of finite
deterministic shared-memory systems with the notion of regular consistent sets
of labeled partial orders. We characterize also by means of a coherence property
the languages recognized by deadlock-free systems.

Introduction

The concurrent executions of Petri nets or asynchronous systems, and more generally
Mazurkiewicz traces, can be regarded as labeled partial orders [EI, , ]. Besides other
models of distributed systems such as message-passing systems are provided with a
partial order view of their executions called message sequence charts [@]. In this paper
we investigate a general model for shared-memory systems and we show that such
systems can be given a natural partial order semantics as well. We will observe that
these systems are a generalization of 1-safe Petri nets (191, asynchronous automata
[IZII], and asynchronous cellular automata [B]. To a certain extent this model subsumes
the framework of channel-bounded message-passing systems [IE], too.

Basically the partial order approach of concurrent executions that we adopt respects
the following point of view: Two events must be ordered if they occur on the same
process or if one event reads the value or writes a new value in a register that is also
modified by the other. In other words we consider Concurrent-Read-Exclusive-Write
systems. This point of view is actually a simple generalization of the way events are
ordered in the restricted case of Mazurkiewicz traces and asynchronous automata. The
variant of asynchronous cellular automata models a kind of shared-memory systems
where each process communicates with a fixed subset of neighbors. In this paper we
study a more general model where the communication connectivity evolves dynam-
ically along executions. As a result the labeled partial orders associated with these
shared-memory systems are no longer Mazurkiewicz traces. Still our approach differs
from the setting of (1] and [9] which adopt a more relaxed notion of dependency.

The analysis of a distributed protocol is often easier to understand with the visual
description of the interactions between processes and the causality between events by
means of a partial order. For instance Peterson’s mutual exclusion protocol for two
processes can be formalized by the automaton from Figure [[land a typical execution
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of this system is depicted in the top-down usual way by the labeled partial order from
Fig. 12l In Section 1 we introduce a partial order semantics of shared-memory systems
based on the formalization of the May-Occur-Concurrently relation between transitions
rules and the Must-Happen-Before relation between occurrences of actions.

Mazurkiewicz traces are labeled partial orders that arise in a natural manner from
partial commutations of actions [, l6]. In that way the intuitive interleaving of actions
along an execution corresponds exactly to a particular labeled partial order. A similar
duality appears with message sequence charts which can be regarded as labeled partial
orders or equivalence classes of words with respect to some configuration-dependent
independence relation [12]. We show in Section 2 that our partial order view of the
executions of a shared-memory system corresponds to a natural interleaving approach
based on the notion of automata with concurrency relations [E].

The concurrent executions of some finite deterministic asynchronous automaton form
aregular set of Mazurkiewicz traces. Zielonka’s celebrated theorem asserts the converse
property 5, 24): Any regular set of Mazurkiewicz traces is accepted by some finite de-
terministic asynchronous automaton. A similar relationship holds between regular sets
of message sequence charts and finite deterministic message-passing systems E]. Both
connections admit also a variant that characterizes which regular languages can be ac-
cepted by some deadlock-free systems [@, , ]. We establish here similar relation-
ships in Corollaries F.1] and between finite deterministic shared-memory systems
and regular consistent sets of pomsets, a notion borrowed from 121.

Preliminaries. A labeled partial order or pomset (for partially ordered multiset) over
an alphabet X is a triple ¢t = (F, <, ) where (F, <) is a finite partial order and £ is a
mapping from E to X' without autoconcurrency: £(x) = £(y) implies x < yory < x
for all z,y € E. We denote by P(X) the class of all pomsets over Y. A pomset can
be seen as an abstraction of an execution of a concurrent system [Ia, , , ]. In this
view, the elements x of E are events and their label £(x) describes the action performed
when event x occurs. Moreover the ordering x < y means that x must happen before y.

Lett = (F,<,€) be a pomset and z, y € E. Then y covers = (denoted x—y) if
x <yand z < z < yimplies y = 2. An order extension of a pomset t = (F, <, &) is
apomset t’ = (F, x’, &) such that xC<’. A linear extension of t is an order extension
that is linearly ordered. It corresponds to a sequential view of the concurrent execution
t. Linear extensions of a pomset ¢ over X' can naturally be regarded as words over .
By LE(t) C X*, we denote the set of linear extensions of a pomset ¢ over X. For any
subset of pomsets £ C P(X), we put LE(L) = [, LE(?).

Two isomorphic pomsets admit the same set of linear extensions. Noteworthy the
converse property holds [23]: If LE(t) = LE(t') then ¢ and ¢’ are two isomorphic
pomsets. In the sequel of this paper we do not distinguish between isomorphic pom-
sets any longer because they are used as representative of sets of words. In particular,
LE(t) = LE(') implies t = ¢'.

An ideal of a pomset t = (F,<,{) isasubset H C Esuchthatz € Handy < x
imply y € H. The restriction t|H = (H,< N(H x H),{N (H x X)) is called a prefix
of t and we write ' < . For all 2 € F, we denote by | z the ideal of events below z, i.e.
lz ={y € E |y < z}. For any set of pomsets £, Pref(L) denotes the set of prefixes
of pomsets from £. We say that L is prefix-closed if Pref(L) = L.
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Process 1 Process 2
—

fli] « false fli] « true S = true JI2]  true
T —1
T2
T=2
CS.(4) T—3—i CS.(2)
f[2] « false
f[2] = false
f[3 — 4] = false CS.(1)
Fig. 1. Process 7 of Peterson’s protocol Fig. 2. A sample scenario

1 A General Model for Communicating Systems

Throughout the paper we fix some (possibly infinite) alphabet 2. The notion of a
shared-memory system we consider is based on a set Z of processes together with a
distribution Loc : & — 27 which assigns to each a € X a fixed subset of processes
Loc(a) C Z. Intuitively each occurrence of action a induces a synchronized step of
all processes from Loc(a). For that reason we assume that Loc(a) is non-empty for all
a € 2. In many examples, such as safe Petri nets [IE] and asynchronous cellular au-
tomata [3, ], each action turns out to occur on a single process so that processes never
synchronize and the process alphabets Loc ™! ({i}) C X are disjoint. Still in this paper
we allow processes to share actions in order to take the classical models of asynchro-
nous automata [@] and mixed product of automata [IE] into account.

1.1 Shared-Memory Systems

Processes of a shared-memory system can communicate by means of a set R of shared
variables (or registers) taking values from a common set of data D; in particular the
initial contents of this shared memory is formalized by a memory-state Xinit : R — D
that associates to each register € R a value i (r) € D. Intuitively each action
corresponds to the reading of the values of a subset of registers (a guard) and the writing
of new values in some other registers. For convenience, we shall allow a concurrent
reading of the value of a register by distinct processes; but we forbid the writing of a
new value in the same register by two different processes simultaneously, that is, we
shall consider Concurrent-Read Exclusive-Write systems, only. A valuation is a partial
function v : 'R — D; it will correspond to the reading or the writing of some values in
a subset of registers. The domain dom(v) of a valuation v is the set of registers 7 such
that v(r) is defined. We denote by V the set of all valuations.

Now each process ¢ € Z is provided with a set of local states .S; together with an
initial local state 2; € S;. A global state s = (s;);., consists of one local state s; for
each process i € Z and a configuration ¢ = (x, s) is a pair made of a memory-state
X : R — D and a global state s. We let the Cartesian product @ = D® x []..7 S;
denote the set of all configurations. The initial configuration « = (init, §) corresponds
to the initial memory-state xini and the initial global state s = (¢;), <7~ Given a memory-
state x : R — D and a subset of registers R C R, we let x| R denote the valuation with
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domain R such that y|R(r) = x(r) for all » € R. Given some action a, some process
j and some global state s = (s;);c7, we denote by s|a the partial state (s;);cy0c(,) and
by s|j the local state s;. For each a € X' we denote by S, the set of partial states S, =
[Licroc(a) Si- A transition rule is a quintuple (v, s,a,v’,s") where a € X, v,/ € V
are two valuations and s, s’ € S, are two partial states.

Definition 1.1. A shared-memory system (for short, an SMS) over some distributed al-

phabet (X, Loc), some initial memory-state X, : R — D, and local states (S;,1;)
consists of a set of transition rules A.

i€l

Intuitively action a can occur synchronously on all processes from Loc(a) in some
configuration ¢° = (x°, s°) if there exists a transition rule (v, s,a,v’,s") € A such
that v = x°|dom(v) and s = s°|a. In that case processes from Loc(a) may perform a
joint move to the new partial state s’ and write the new values v/ (r) in registers from
the domain of /. The step consisting of all these moves and all these changes is atomic.
For convenience we put p = (v, 8, a,,V),s,), R, = dom(v,) and W, = dom(v},)
for each transition rule p.

Example 1.2. Recall that a 1-safe Petri net is a structure N = (B, E, F, m) where B
is a set of conditions, E is a set of events with ENB =0, F C (B x E)U (E x B)
is the flow relation, and m C B is an initial marking. Such a structure can be seen
as an SMS where we have R = B, D = {0,1}, ¥ = 7 = E, Loc(a) = {a},
and S, = {u,} is a singleton. Then each subset of conditions (called a marking) is
identified with a memory-state x : B — {0, 1}. For each event e, the flow relation
defines a preset of conditions *e = {b € B | (b,e) € F} and a postset of conditions
e®* = {b e B (e,b) € F}. Then the transition rule (v, ., e,/,1.) belongs to A if the
two next requirements are fulfilled:

— v has domain ®e Ue®, v(b) = 1 forallb € *eand v(b) = O forall b € e® \ ®e;
— v/ has domain *e U e®, v/ (b) = 1 forall b € e® and /(b) = 0 forall b € ®¢e\ e°.

1.2 Pomset Semantics of Shared-Memory Systems

Following a classical trend in concurrency theory [IEI, , ] we want to describe the
concurrent executions of a shared-memory system S by means of labeled partial orders
in such a way that the ordering of events represents the must-happen-before relation be-
tween occurrences of actions. Since each process works sequentially, events occurring
on the same process must be comparable. Furthermore any two events that change the
value of some register should be comparable, that is, we consider Exclusive-Write sys-
tems. Now if one event writes a new value in some register read by another event then
these two events should be comparable as well; otherwise it would be unclear which
value is actually read by the second event. In that way we have characterized which pairs
of transition rules may occur concurrently. We formalize this May-Occur-Concurrently
relation by means of a binary relation | € A x A. Let p,p’ € A be two transitions
rules. We put p||p’, and we say that p and p’ are independent, if Loc(a,)NLoc(a, ) = 0,
W,N R,y UW, ) =0,and W, N (R, UW,) = (). Thus two transition rules are inde-
pendent if they correspond to actions occurring on disjoint sets of processes and if each
transition rule does not modify the registers read or written by the other.
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In order to reason about which registers are read by each event and how events
change the local states of processes and the values of registers, we make use of the
notion of run. Let t = (E, %, &) be a pomset over X. A run of ¢ over § is a mapping
p : E — A which maps each event e from E to some transition rule p(e) € A such
that a,(.y = £(e). In order to reflect the May-Occur-Concurrently relation, two events
are incomparable in ¢ only if their transition rules are independent. This is formalized
by Axiom V; below. The partial order of events in ¢ results from the transitive closure
of the covering relation — and can be represented by its Hasse diagram. Since we
want the partial order to reflect the Must-Happen-Before relation, any edge from the
covering relation must represent some dependence between the corresponding transi-
tion rules. This is formalized by Axiom V5 below. As a consequence the run p is called
valid if V1 and V5 are satisfied:

Vy: For all events ey, ea € E with p(eq) fp(ez), we have e1 < eg ores < €13
Vy: For all events eq, ea € E with e;—ea, we have p(e1) fp(e2).

In particular if e and €’ are two events that change the value of some register 7 then e
and ¢’ are comparable w.r.t. <. Similarly if e and ¢’ are two events that occur on some
process ¢ € 7 then e and e’ are comparable w.r.t. <.

We assume now that p is a valid run for ¢. Let H C E be an ideal of ¢. The configu-
ration g, p at H corresponds intuitively to a snapshot of the system after all events of
H have occurred along the execution of ¢ w.r.t. p: The value of each register is the value
written by the last event that has modified this value and the local state of each process
is the local state reached after the last joint move performed by that process. Formally
qp, = 18 the configuration g, g = (Xp,H, Sp,r) defined by the next two conditions:

— For all registers » € R, we put x, g (r) = u;)(e)

such that r € W (), and X, (1) = Xinit(r) if there is no such event.
— Forall i € Z, we put s, gli = s;(e)|z’ if e is the greatest event in H such that

(r) if e is the greatest event in H

i € Loc(&(e)), and s, g |i = 1; if there is no such event.

Due to V; events satisfying r € W, are totally ordered so there exists at most one
maximal event satisfying this condition. A similar observation holds for events satis-
fying i € Loc({(e)). Therefore g, i is well-defined. Note here that g, y corresponds
to the initial configuration 2. Now we say that a valid run p is compatible with § if the
configuration reached after all events below e enables the execution of the rule p(e).
Formally a valid run p of ¢ is compatible with § if for all events e € E the configuration
(x,s) at le \ {e} satisfies X|R ) = v,(e) and s|¢(€) = s,(c). A pomset that admits a
compatible run corresponds to a potential execution of S.

Definition 1.3. A pomset over X' is accepted by S if it admits a compatible run. The
language L(8) C P(X) recognized by 8 collects all pomsets accepted by 8.

Note that if ¢ admits a compatible run then any prefix of ¢ admits a compatible run, too.
Therefore the pomset language £(8) is prefix-closed. We say that a configuration ¢ is
reachable in § if there exists a pomset ¢ € £(8) and a compatible run p of ¢ such that
q = q,,E, that is, q describes the memory-state and the global state of the system after
all events have occurred with respect to p.
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1.3 Restriction to Deterministic Shared-Memory Systems

In the sequel of this paper we consider only deterministic shared-memory systems. In-
tuitively determinism means that from any reachable configuration there exists at most
one transition rule that allows an occurrence of a given action.

Definition 1.4. A shared-memory system is deterministic if for all actions a € X and
all reachable configurations ¢ = (x, s) there is at most one transition rule p € A such
that a, = a, v, = x|R,, and s, = sa.

Most models of communicating systems fit into the formalism of deterministic shared-
memory systems. In particular any specification in the form of a system of automata
such as Peterson’s protocol in Figure [Tl can be formalized in this setting by considering
each transition as a particular action.

1.4 Relationships with Asynchronous Automata

A second example of SMS from the literature is provided by asynchronous automata
[24]. The latter correspond formally to shared-memory systems such that R = () = D.
Then V = {0} and the transition rules associated with some action a form a binary
relation 6, C S, X S,. For deterministic systems (Def.[[.4)), the latter can be regarded
as a partial function 6, : S, — S, if we remove from ¢, all transition rules that apply
only from unreachable configurations.

On the other hand the alternative definition of asynchronous automata investigated
in [7, chap. 7] can be identified with the class of deterministic shared-memory systems
such that ¥ = 7 and Loc(a) = {a} for all a« € X, i.e. each action corresponds to a
process, and for each a € X, S, = {1,} is a singleton — so there is a single global
state. In this approach each action is assigned aread domain R, C R and a write domain
W, C R such that W, C R,. It is required that (v, 24,a,v,1,) € A holds only if v
has domain R, and v’ has domain W,. Due to determinism, the set of transition rules
associated with a can be regarded as a partial function &, : DRe — DWa_In that way
the notion of deterministic shared-memory systems we consider appears as a formal
generalization of both notions of asynchronous automata. The notion of asynchronous
cellular automata from [B, ] also fits into our framework. These systems correspond
actually to the asynchronous automata from [7] such that R = Z, W, = {a} and
b € R, implies a € Ry forall a,b € X.

Interestingly another definition of asynchronous cellular automata was investigated
in [@]. This model can be identified with a shared-memory system such that R = Z,
S; = {#;} for each process i € Z, (that is, each process owns a register whose value
describes its current state), Loc(a) is a singleton for each action a, (so processes do
not synchronize) and moreover (v, |a, a, ', 1la) € A holds only if the domain of v/ is
{Loc(a)} which means that each process writes only in its own register. Such a gener-
alized asynchronous cellular automaton is called deterministic if for all actions a € X
and all valuations v € V there exists at most one transition rule (v, |a, a,v’,1]a) € A.
Noteworthy these deterministic generalized asynchronous cellular automata do not for-
bid the situation where several different (and possibly conflicting) transition rules to
perform a can be applied at some configuration. For that reason this approach does not
fit completely into the present setting.



42 R. Morin

2 Interleaving Semantics of Shared-Memory Systems

In this section we fix a shared-memory system & over Y. We present an interleaving
semantics by means of a configuration dependent independence relation and relate it to
the partial order approach from Definition [[.3]

2.1 Configuration System

The configuration system of 8 is the transition system C(8) = (Q,, X', —) defined
as follows: @ is the set of configurations, 2 = (Xinit, (2i);c7) is the initial configuration,
and —C @ x X x @ is the set of transitions such that for any two configurations
q=(x,s), ¢ = (x',') and any action a, we have ¢ — ¢’ if there are two subsets of
registers R, W such that (x|R, s|a, a, X'|W, s'|a) € A, §'|i = s|i forall i € 7\ Loc(a),
and x'(r) = x(r) for all r € R\ W. In other words the system can evolve from ¢ to
¢’ by performing an action a provided that some transition rule p enables all processes
from Loc(a) to proceed a joint move from s|a to s’|a as soon as the registers from R,
hold the specific values x|R ,- Furthermore the new values X' |W , are written into the
registers from W, in order to lead to the new configuration ¢'.

Example 2.1. We continue Example[[.2 Since there is a single global state, configu-
rations can be identified with memory-states — or equivalently markings. According to
the above definition, there exists a transition Y — ' in the configuration system C(8)
if the following requirements are fulfilled: x(b) = 1 for all b € ®¢; x(b) = 0 for all
bee*\%; X (b)=1forallb e e® x'(b) = 0forallb € ®e\ e*; and x'(b) = x(b)
forall b ¢ ®e U e®. As a consequence the configuration system of a 1-safe Petri net
corresponds precisely to its usual marking graph.

The language L(8) of sequential computations of § consists of all words u = a;...a,, €
X7* for which there are some states qq, ...,q, € @ such that : = ¢¢ and for each
i€ [l,n], ¢i—1 %, ¢;. For short, these conditions will be denoted by gy — ¢,,. We
can check that a configuration g is reachable if and only if 1 — ¢ for some v € X*. In
the sequel of this section we consider implicitly only reachable configurations.

2.2 Modeling Concurrency with Independence Relations

Let us first recall some basic notions of Mazurkiewicz trace theory (7. Let CIrxTI
be a binary, symmetric and irreflexive relation over some alphabet I". The associated
trace equivalence is the least congruence ~ over I'* such that for all a,b € I, al[b
implies ab ~ ba. A trace [u] is the equivalence class of a word u € I'*. We denote by
M(F,[}g the set of all traces w.r.t. (I, ||).

In [I8] Droste introduced a generalization of Mazurkiewicz traces by providing each
configuration with its own independence relation. We follow this approach verbatim in
order to identify equivalent sequential computations.

Let ¢ = (x,s) be a configuration and a € X be an action such that ¢ —— ¢’ for
some ¢'. By Def. [[4] there exists a single transition rule p € A such that a, = a,
v, = x|R pand s, = s|a. This particular transition rule is denoted by p, .. Note here



Semantics of Deterministic Shared-Memory Systems 43

that the configuration system C(8) is deterministic: If ¢ —— ¢’ and ¢ — ¢ then
q/ — q//.

Definition 2.2. Let ¢ € Q) be some configuration and a,b € X be two actions. We put
al|4b if there are ¢, q" € Q such that ¢ — ¢/, q N q" and pg.q || pq.b-

Thus two distinct actions are independent from each other in some configuration if they
correspond to transition rules that may occur concurrently.

Now the independence relations ||, yield a natural equivalence relation over the set
of sequential computations L(8) as follows. The frace equivalence ~g is the least
equivalence over L(8) such that for all words u,v € X* and all actions a,b € X if

1 % p b, q — 7 and a||,b then u.ab.v ~g w.ba.v. If w and w’ are two trace
equivalent words then they lead from the initial configuration to the same configura-
tion. For any word u € L(S), the frace [u] consists of all words v € L(8) that are
trace equivalent to u: Formally we put [u] = {v € X* | v ~g u}. The trace language
L+(8) = L(8)/ ~s consists of all traces.

2.3 From Traces to Pomsets... and Back

Consider now again the set of all Mazurkiewicz traces M(, ||). Let w € I'*; then the
trace [u] is precisely the set of linear extensions LE(¢) of a unique pomset t = (F, <, £),
that is, [u] = LE(¢). Moreover ¢ satisfies the following additional properties:

M;: For all events e1, e2 € E with £(eq) f€(e2), we have e1 < e or €2 X ey;
M,: For all events e, e2 € E with e; —eq, we have £(eq) Jf€(e2).

Conversely the linear extensions of a pomset satisfying these two axioms form a trace
of M(I]|). Thus one usually identifies M((I", ||) with the class of pomsets satisfying
M; and M.

Recall now that each transition ¢ — ¢’ corresponds to some transition rule Pq.a>
so each computation sequence u € L(8) corresponds to a sequence of transition rules
pu € A*. Moreover two computation sequences v and v are trace equivalent w.r.t. ~g
if and only if the corresponding words p,, and p, are trace equivalent w.r.t. the May-
Occur-Concurrently relation. It follows that the equivalence class [u] is the set of linear
extensions of some pomset ¢ which corresponds to the Mazurkiewicz trace [p,]. The
next result shows that this pomset is accepted by 8. Moreover any pomset from £(8)
corresponds to some trace of L£(8).

Theorem 2.3. For each u € L(8) we have [u] = LE(t) for some t € L(8). Conversely
foreacht € L(8) we have [u] = LE(t) for some u € L(8).

The following result presents an efficient way to compute the pomset associated to some
sequential computation inductively over the length of that computation.

Corollary 2.4. Let 1 = qy — q1 — ... = q,, be a finite sequence of transitions in
C(8). Lett = (E, %,§) be a pomset such that E = {e1, ...,en}, (e;) = a; for each
i€[l.n], e1 <ea < ... < ey isalinear extension of t, and p : e; — Pqi_1,a; 15 avalid
run of t. Then LE(t) = [a1...a,), p is a compatible run of t and q, g = ¢p.
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3 Expressive Power of Deterministic Shared-Memory Systems

In this section we aim at characterizing the class of pomset languages that arise from
shared-memory systems. We introduce first the notions of consistency and coherence in
order to identify the expressive power of shared-memory systems (Theorem[3.7). Next
we recall the definition of a regular set of pomsets from [[11/] and then we characterize
the languages recognized by finite shared-memory systems (Theorem [3.14).

3.1 Consistency and Coherence
We borrow first the notion of a consistent set of pomsets from [B].

Definition 3.1. A set of pomsets L is called consistent if
Vit € Pref([,) : LE(tl) n LE(tQ) # 0= t; = to.

In [E] this notion of consistency is restricted to prefix-closed sets of pomsets but we
adopt here this relaxed definition in order to be able to extend this study to shared-
memory systems provided with a set of final configurations in Section[dl Observe here
that if £ is a consistent set of pomsets and £ C £ then £’ is consistent, too. Moreover
L is consistent if and only if Pref(£) is consistent, too. Note also that Theorem 23]
shows that the pomset language of any shared-memory system is consistent.

Example 3.2. Consider the two pomsets t; and ¢5 from Fig. Bl The language £ =
Pref{t1,t2} is not the pomset language of any SMS. Intuitively after the occurrence of
events a and b some event ¢ may occur in two different ways.

Let (D, <) be a partial order. Two elements d,d’ € D are compatible if they admit
an upper bound. A subset C' C D is pairwise-compatible if any pair of elements of
C' admits an upper bound. The partial order (D, <) is called coherent if any finite
pairwise-compatible subset C' admits an upper-bound. Recall now that pomsets are par-
tially ordered by the prefix relation <.

Definition 3.3. A set of pomsets L over X is coherent if (L, <) is coherent.

Consider now a consistent set of pomsets L. The pomset equivalence ~ over LE(L)
is such that w ~, w' iff {w,w'} C LE(t) for some ¢t € L. Note that ~, is an
equivalence relation over LE(L) because L is consistent. The next proposition asserts
that Definition [3.3] coincides with the notion of coherence from [IE].

a e) ae b
t

t1 2

Fig. 3. A non-consistent set of pomsets
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Proposition 3.4. A prefix-closed and consistent set of pomsets L over X is coherent if
and only if for all words w € X*, all distinct actions a,b,c € X:

u.ab ~, u.ba A u.bc ~p u.cb A u.ca ~p u.acimplies u.abc ~p u.ach ~p u.cab.

For any SMS 8, Theorem 23] shows that £(8) is consistent, L(8) = LE(L(8)) and
moreover ~g coincides with ~,(s). This enables us to check easily that the pomset
language £(8) is coherent. Thus the pomset language of any shared-memory system is
consistent, prefix-closed and coherent. Theorem 3.7] characterizes the expressive power
of shared-memory systems by establishing the converse property.

3.2 Characterization of SMS Languages

Let ) and Y be two alphabets and 7 : X — X5 a mapping from Xy to X5. This
mapping extends into a map from XJ to X3. It extends also into a function that maps
each pomset t = (F, <, £) over X to the structure 7(t) = (F, <, 7 o £). The latter
might not be a pomset over X' in case some autoconcurrency appears in it. This situ-
ation can occur if w(a) = 7(b) for two distinct actions a,b € X while there are two
events e and f in ¢ that are labelled by a and b and that are not comparable. Refinements
allow to relate two sets of pomsets £; and Lo that are identical up to some relabeling.

Definition 3.5. Let £ and Lo be two prefix-closed sets of pomsets over X1 and Yo
respectively. A mapping w : X1 — 3o from X1 to Yo is a refinement from Lo onto L4
if m(t) is a pomset for each t € L1 and 7 : L1 — Lo is a bijection.

The main technical contribution of this section lies in the next lemma. A shared-memory
system is called singular if the set of local states of each process 7 € T is a singleton
S; = {v;}. Furthermore a singular SMS is called cellular if ¥ = T and Loc(a) = {a}
for each a € 2. Asynchronous automata from [ﬂ], asynchronous cellular automata
from [B], and 1-safe Petri nets are cellular shared-memory systems whereas generalized
asynchronous cellular automata from [@] are singular shared-memory systems.

Lemma 3.6. Let £ and L' be two prefix-closed and consistent sets of pomsets over X
and X' respectively such that there exists a refinement 7 : X' — X from L to L. If L’
is recognized by a cellular SMS 8' then L is recognized by a singular SMS 8 such that
8 and 8' share the same configurations.

We have explained above that the pomset language of any SMS is consistent, prefix-
closed and coherent. The first result of this section establishes the converse property.

Theorem 3.7. A set of pomsets is the language of some shared-memory system if and
only if it is consistent, prefix-closed and coherent.

Proof (sketch). The partial order of pomsets accepted by some SMS is isomorphic
to the partial order traces of an asynchronous transition systems [EI]. Therefore it corre-
sponds to the configuration domain of a prime event structure with binary conflict. Thus
it corresponds also to the marking graph of some occurrence net (19]. The Mazurkiewicz
trace language of such an occurrence net is a refinement of £(8). By Lemma[3.6l £(8)
is recognized by some singular SMS.
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3.3 Regular Sets of Pomsets

In the rest of this section we assume that the alphabet ' is finite. We focus now on fi-
nite shared-memory systems, that is, we assume that any SMS consists of finitely many
processes, local states, registers, and data. Thus a finite SMS admits finitely many con-
figurations. Theorem [3.14] characterizes the class of pomset languages that arise from
finite shared-memory systems by means of a notion of regularity borrowed from ].

Lett; = (E1,=<1,&1) be apomset over Y. The residual £\ t1 consists of all pomsets
to = (F2, =2, &2) such that there exists some pomset t = (F, <, &) in L satisfying the
following conditions:

1. E=FE{UEFEy, E1NEy = @, and F is an ideal of ¢,
2. ty is the restriction of ¢ to events in £y, and
3. to is the restriction of ¢ to events in Fs.

Definition 3.8. Ler L be a set of pomsets. Given two pomsets t and t', we putt =" ' if
L\t =L\t Then L is regular if the equivalence relation =" is of finite index.

Observe here that if £ is a regular set of pomsets then Pref (L) is regular, too. Moreover
Corollary 24 enables us to show that the pomset language of any finite SMS is regular.

Proposition 3.9. For any finite SMS 8, the pomset language L(8) is regular.

Consider now a consistent set of pomsets L. For any two words w,w’ € X*, we put
w =, w' if for all words u,v € X* itholds: w.u ~, w.v < w'.u ~z w'.v. Itis easy
to see that = is a right-congruence over X*. The next lemma shows that Definition[3.8]
corresponds to Arnold’s notion of regularity [@] which was adopted in [IE].

Lemma 3.10. A consistent set of pomsets L is regular iff = is of finite index.

3.4 Two Powerful Ingredients

The characterization of the pomset languages that correspond to some finite SMS relies
on two powerful ingredients, namely Zielonka’s theorem [@] and some powerful but
somewhat unrecognized result due to Arnold [ﬁ].

Definition 3.11. A prefix-closed set of Mazurkiewicz traces L C M(TI, ||) is forward-
stable w.r.t. (I,]|) if for all words w,v € I'* and all actions a,b € I':

[u.a] € LA [u.b] € LA allbimplies [u.ab] € L.

This condition is well-known. A forward-stable Mazurkiewicz trace language is called
safe-branching in [@], forward independence closed in [@], ideal in [4], and proper
in [IE]. Let us now recall a particular version of Zielonka’s theorem [IE, , ]: Any
forward-stable and prefix-closed regular set of Mazurkiewicz traces is accepted by a
finite asynchronous automaton. This result can be formulated in terms of refinement
and 1-safe Petri nets as follows.

Theorem 3.12. Let £L C M(I'||) be a forward-stable and prefix-closed regular set of
Mazurkiewicz traces. There exists a refinement from L to the language accepted by a
finite 1-safe Petri net.
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Now the main contribution of [E] asserts that for any prefix-closed regular consistent set
of pomsets £ over X' there exist a finite independence alphabet (I, ||) and a refinement
from L to a prefix-closed and regular set of Mazurkiewicz traces £ C M(I ||). By
means of this strong result and Zielonka’s theorem we proved in [16] the following
statement.

Theorem 3.13. [IE Cor. 4.6] Let L be a regular coherent prefix-closed consistent set of
pomsets. There exists a refinement from L to a forward-closed and prefix-closed regular
set of Mazurkiewicz traces L'

By Theorem [3.7] and Proposition the set of pomsets accepted by a finite SMS is
regular, consistent, prefix-closed and coherent. Our main result depends again on the
technical Lemma[3.6 and shows the converse property.

Theorem 3.14. A set of pomsets is the language of a finite shared-memory system if
and only if it is regular, consistent, prefix-closed, and coherent.

Proof. Let £ be a prefix-closed, consistent, regular and coherent set of pomsets. By
Theorem[3.13] there exists a refinement 7 from L to a forward-closed and prefix-closed
regular set of Mazurkiewicz traces £1. By Theorem[3.12] there exists a refinement 7o
from £ to the language L, of a finite 1-safe Petri net. Then 73 0oy : L3 — Lis a
refinement from £ to L. By Lemma[3.6] £ is the language of a finite singular SMS.

4 Comparisons with Related Works

In this section we provide shared-memory systems with a subset of final configurations.
We derive from Theorem 3,14l two corollaries that are analoguous to some results from
the theories of asynchronous automata and message-passing systems. Although we have
considered Concurrent-Read-Exclusive-Write systems only, we explain also why our
results apply to the setting of Exclusive-Read-Exclusive-Write systems, too.

4.1 Acceptance Condition and Deadlocks

We consider now finite shared-memory systems provided with an acceptance condition
formalized by a subset of final configurations F' C Q. So to say we have studied so far
shared-memory systems for which all configurations are final. A pomset ¢t = (E, %, §)
is accepted by an SMS 8 with acceptance condition F, and we write t € L (8), if there
exists a linear extension u € LE(t) such that LE(¢) = [u] and moreover u leads from
the initial configuration ¢ to some final configuration ¢ within the configuration system
C(8). Equivalently we require that the configuration ¢,  belongs to F' for some run p
compatible with ¢. It is clear that the language Lz (8) of 8 is consistent. It is easy to
check that L (8) is also regular.

Corollary 4.1. A set of pomsets is the language of a finite shared-memory system with
acceptance condition if and only if it is regular and consistent.

Proof. Let £ be a regular and consistent set of pomsets over 2. We consider a new
action x ¢ X and build the set of pomsets £* by adding to any pomset from £ a great-
est event labeled by x. It is easy to see that £” is regular and consistent. Furthermore
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Pref(L£*) is regular and consistent, too. By [@, Th. 6.16], there exists a refinement 7
from Pref(L") onto a prefix-closed regular set of Mazurkiewicz traces £] over some
independence alphabet (I ||) (see also [IE, Th. 3.5]). By [B], L7 is the language of a
finite deterministic asynchronous cellular automaton with acceptance condition. Simi-
larly to Lemma[3.6 we claim that Pref(£?) is the language of a finite singular SMS §*
with acceptance condition. We consider now the SMS 8 obtained from 8 as follows:
First we forbid any occurrence of action = and second we consider any configuration ¢
to be final if z is enabled from ¢ in 8* and leads to a final configuration of 8*. Then &
is a singular SMS that accepts L.

When dealing with a shared-memory system with acceptance condition the question
arises whether it exhibits some deadlock, that is, a reachable configuration from which
no final configuration is reachable. An SMS is deadlock-free if it admits no deadlock.
Considering again the statement of Cor. [£.1] another interesting issue is to characterize
which regular and consistent sets of pomsets are the language of some finite deadlock-
free SMS. Let 8 be a finite shared-memory system with acceptance condition F' C Q).
Let 8’ be the SMS obtained from 8 by considering that all configurations are final. If
§ is deadlock-free then £(8') = Pref(Lr(8)) hence Pref(Lx(8)) is coherent (Theo-
rem[37). Conversely, the next result shows that a regular and consistent set of pomsets
L is recognized by some finite deadlock-free SMS as soon as Pref(L) is coherent.

Corollary 4.2. A set of pomsets L is the language of some finite deadlock-free shared-
memory system with acceptance condition if and only if L is regular and consistent and
moreover Pref(L£) is coherent.

Proof. Let £ be a regular consistent set of pomsets over X' such that Pref(£) is coher-
ent. We consider again the set of pomsets £* obtained by adding to any pomset from
L a greatest event labeled by a fixed new action 2z ¢ Y. As already observed, £ is
regular and consistent. It follows that Pref(£¥) is regular and consistent, too. It is easy
to check that Pref(L£”) is coherent because Pref(L) is coherent. By Theorem 314
Pref(L£?) is accepted by some finite SMS 8”. We consider now the SMS § with accep-
tance condition obtained from 8% as follows: We forbid any occurrence of action x and
we consider any configuration ¢ to be final if x is enabled from ¢ in 8. Then § accepts
L and moreover 8 is deadlock-free.

These two corollaries can be regarded as an extension of Zielonka’s theorem [B, ,
, ] from the framework of deterministic asynchronous (cellular) automata to the
setting of shared-memory systems. Both results can be extended to possibly infinite
shared-memory systems with acceptance condition by dropping the regular condition.
Note here also that Theorem [3.14] follows directly from Corollary 4.2l

4.2 Relationships with Communicating Finite-State Machines

Although this study does not aim at considering message-passing systems, this model
fits somehow into the formalism of shared-memory systems provided that we con-
sider only message-passing systems with bounded channels. The concurrent executions
of message-passing systems are described by partial orders called message-sequence



Semantics of Deterministic Shared-Memory Systems 49

charts (MSCs) [IE]. When the system is regular then the number of messages in tran-
sit within channels is bounded and one can count messages within a channel modulo
that bound. As observed formally by Kuske ], these counters allow us to consider
that messages are sent in different channels so that each channel contains at most one
message at any stage of any execution. In that way it is possible to simulate any regular
deterministic message-passing system by a finite shared-memory system.

At some more abstract level, any set of MSCs is a consistent set of pomsets. More-
over the usual notion of regularity for MSC languages [IE] corresponds to the notion
of regularity of sets of pomsets (Def. 3.8). Consequently Corollary .1l shows that any
regular set of MSCs can be regarded as the language accepted by some finite SMS with
acceptance condition.

Note that CorollariesE.Tland[£.2]are analogous to some results from the theory of reg-
ular MSC languages. Namely, any regular set of MSCs is accepted by some finite-state
deterministic message-passing system with bounded channels [[12] whereas a characteri-
zation of the regular sets of MSCs that are accepted by some deadlock-free deterministic
message-passing system is presented in 3] by means of a notion of coherence.

4.3 Exclusive-Read-Exclusive-Write Shared-Memory Systems

In this paper we have considered Concurrent-Read-Exclusive-Write shared-memory
systems only. An alternative approach would be to consider Exclusive-Read-Exclusive-
Write systems. In that case two distinct actions cannot read the value of the same register
concurrently. This requires to add the next requirement in the definition of the May-
Occur-Concurrently relation p||p": R, "R, = (). With no surprise the behaviours of
an EREW SMS can be represented by a regular, consistent, prefix-closed and coherent
set of pomsets, too. Similarly to [ﬁ] we observe that any CREW SMS can be translated
into some EREW SMS with the same number of reachable configurations and which
accepts the same pomset language. Consequently all results from Sections 3 and 4 hold
also in the setting of EREW shared-memory systems.

5 Conclusion

In this paper we have studied a partial-order semantics of shared-memory systems. This
study has led to a concrete interpretation of consistent sets of pomsets (Theorem 3.7).
Moreover we have identified the expressive power of finite shared-memory systems
with the notion of regular consistent sets of pomsets (Theorem 3.14). Noteworthy our
proofs rely on two major results by Arnold and Zielonka. Moreover this work depends
heavily on our restriction to deterministic shared-memory systems.

In [[17] we investigate the particular case of unambiguous shared-memory systems.
An SMS is unambiguous if each pomset admits at most one compatible run. It is
clear any deterministic SMS is unambiguous. However the pomset language recog-
nized by some unambiguous SMS need not to be consistent. For instance the language
Pref{t,t2} from Example 3.2]is recognized by some unambiguous SMS. In [ﬁ] we
establish a generalization of Arnold’s result for non-consistent sets of pomsets. This
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allows us to prove that a set of pomset is recognized by some unambiguous SMS if and
only if it is definable in monadic second-order logic and satisfies a new property called
media-boundedness.

At present we are investigating non-deterministic shared-memory systems and aim-

ing at results analoguous to Corollaries &.1land [£2]in that setting. Yet it is not clear so
far whether any regular set of pomsets is recognized by some non-deterministic SMS.
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Abstract. This paper presents SOAR: the first oblivious atomicity as-
sertion with polynomial complexity. SOAR enables to check atomicity of
a single-writer multi-reader register implementation. The basic idea un-
derlying the low overhead induced by SOAR lies in greedily checking, in
a backward manner, specific points of an execution where register oper-
ations could be linearized, rather than exploring all possible precedence
relations among these.

We illustrate the use of SOAR by implementing it in +CAL. The per-
formance of the resulting automatic verification outperforms comparable
approaches by more than an order of magnitude already in executions
with only 6 read/write operations. This difference increases to 3-4 orders
of magnitude in the “negative” scenario, i.e., when checking some non-
atomic execution, with only 5 operations. For example, checking atom-
icity of every possible execution of a single-writer single-reader (SWSR)
register with at most 2 write and 3 read operations with the state of the
art oblivious assertion takes more than 58 hours to complete, whereas
SOAR takes just 9 seconds.

1 Introduction

With multi-core architectures becoming mainstream, concurrent programming
is expected to become the norm, even among average developers who might
not always have the right skills and experience. Concurrent programming is
however notoriously difficult. In particular, it is hard to control the interference
between concurrent threads without compromising correctness on the one hand,
or restricting parallelism on the other hand.

Among consistency criteria for concurrent programming, atomicity (also known
as linearizability [15]) is one of the most popular. This is because atomicity reduces
the difficult problem of reasoning about a concurrent program into the simpler
problem of reasoning about its sequential counterpart. Roughly speaking, atom-
icity guarantees that concurrently-executing requests on shared objects appear
sequential: namely, each request appears to be executed at some point (known as
the linearization point [L5]) between its invocation and response time (real-time
ordering). An example of an atomic execution of a read/write register is depicted
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Riischlikon, Switzerland.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 52|66 2008.
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in Figure[ll along with its linearization points (assuming the register is initialized
to 0). In contrast, the execution in FigurePlis not atomic. This is because we can-
not place linearization points such that the sequential specification of a register is
satisfied, i.e., every read returns the last value written.

Precisely because it simplifies the job of the programmers by encapsulating the
difficulty underlying synchronizing shared atomic objects, atomicity is hard to im-
plement. As pointed out in ﬂ}, an evidence of this difficulty is that several pub-
lished implementations of atomic shared memory objects have later shown to be
incorrect. Not surprisingly, tools for checking atomicity are of crucial importance,
in particular automatic ones that are suitable for machine verification ﬂ_‘l__l|]

write(1) | write(0) |
, ] ® wil ] ]. wi2 ]
writer ‘ ‘
read()—>1 reaﬁ()—>0 read()—>0 !
1 e el |es |
reader 1 w T
| |
read)—>0 |
® I | |
reader 2 ‘ ‘
tl 2

Fig. 1. Example of an atomic execution
write(1) | write(0) |
) ’ wll ! ’ wl2 !
writer ‘ ‘
read()—>1 reaFl()—>0 read()—>1 !
w2 [ o
reader 1 T T
| |
read)—>0 |
21 l |
reader 2 ‘ ;
tl 2

Fig. 2. Example of a non-atomic execution

So far, tools for checking atomicity have mainly been designed for specific
programming languages (e.g., Concurrent Java m]) Some exceptions have been
proposed in the form of language-oblivious execution assertions, which enable to
check the atomicity of implementation histories. Some of these (e.g., HE, ]) are
still non-algorithm-oblivious in the sense that a fair amount of knowledge about
the checked algorithm is needed in order to check correctness.

Genuinely oblivious assertions were proposed in M] (Lemma 13.16) and HE]
These assertions do not require any knowledge, neither about the language nor



54 R. Guerraoui and M. Vukolié

about the checked algorithm. One specific such assertion is of particular interest:
the one of Chockler et al. (Property 1 of ﬂﬂ]) for it was especially devised for
automatic verification. This assertion, which we refer to as CLMT, can be written
as a simple logical predicate and is very appealing for automatic verification
especially when paired with a model checker such as the TLC for the +CAL
algorithm language ﬂﬁ7 @]

Unfortunately, the CLMT assertion does not scale well as we discuss below.
Consider the (non-atomic) execution on a single-writer multi-reader (SWMR)
read/write register depicted in Figure When implemented in +CAL, the
CLMT assertion takes more than one minute on our 4 dual-core Opteron ma-
chine to verify that this execution is not-atomic. This is even without taking
into the account the operations invoked by reader2. When considering a single
operation of reader2, the verification takes hours.

On the other hand, it is very simple for a human to verify manually that
the execution of Figure [ is not-atomic. For the execution to be atomic, the
linearization point of the write operation wl must come before that of read r11,
since 711 does not return the initial value 0. Similarly, w2 must be linearized
before r12. This leaves r13 which violates the sequential specification of the
read/write register, meaning that the execution is not atomic.

What makes CLMT slow is the very fact that it reasons about atomicity by
identifying the adequate properties of a precedence relation among read/write
operations. Namely, CLMT checks atomicity by establishing the existence of a
precedence relation among operations that: a) is a non-reflexive partial order,
and b) satisfies certain (five different) properties. Without diving into the details
of these properties, it is easy to see that this verification scheme cannot scale for
it does imposes an exponential computational complexity on a model checker.
Namely, with 2lorl” different possible relations over the set of |op| different op-
erations, there is simply too many relations to check, even for modest values of
|op|, regardless of the nature of the properties that are to be checked. This is
especially true when the “good” precedence relation does not exist, i.e., when
the execution is not atomic. The motivation of this paper is to ask whether it is
possible to devise an oblivious, yet scalable atomicity assertion.

We present SOAR (Scalable and Oblivious Atomicity asseRtion), the first
oblivious atomicity assertion with polynomial complexity. SOAR is devised for
single-writer multi-reader concurrent objects, of which the single-writer multi-
reader register is a very popular representative ﬂa, @] Indeed, many applica-
tions of the register abstraction make use mainly of its single-writer variant.
Such applications include for example consensus ﬂa, B, E} as well as snapshot
implementations [3].

Like CLMT, SOAR gives a sufficient condition for atomicity; in fact, SOAR
is equivalent to CLMT in our single-writer setting Interestingly, we could also
use SOAR in +CAL to verify that some seemingly natural simplifications of
the celebrated Tromp’s algorithm [@] (implementing an atomic bit out of three
safe bits) lead to incorrect solutions. By doing this, we show that our SOAR

! For lack of space, we omit the equivalence proof; it can be found in Iﬂ}



A Scalable and Oblivious Atomicity Assertion 55

implementation in +CAL can be used successfully in identifying non-atomic
executions and algorithm debugging.

SOAR has a low-degree polynomial complexity (O(|op|®) in the worst case).
It outperforms CLMT ﬂ] by more than an order of magnitude already in ver-
ifying atomicity of executions with only 6 read/write operationsE This differ-
ence increases to 3-4 orders of magnitude in the “negative” scenario, i.e., when
checking some non-atomic execution. For example, checking atomicity of every
possible execution of a single-writer single-reader (SWSR) register with at most
2 write and 3 read operations with CLMT takes more than 58 hours to com-
plete, whereas SOAR takes just 9 seconds. As we pointed out however, SOAR
is designed specifically for verifying atomicity of single writer objects, whereas
CLMT is a general assertion suitable also for multi-writer applications.

Underlying SOAR lies the idea of greedy linearization. Basically, SOAR looks
for linearization points in an execution ex rather than checks for precedence
relations. SOAR performs its search in a backward manner starting from the
end of the execution, linearizing the last write operation in ex (say w) and
then trying to linearize as many read operations as possible after w. Then, the
linearized operations are removed from ex and the linearization reiterates. It is
important to emphasize that the greedy linearization is without loss of generality.

While SOAR is specified with an atomic read /write data structure in mind, we
believe that it is not difficult to extend it to cover other atomic objects in which
only one process can change the state of the object (single-writer). Extending
SOAR and the underlying greedy linearization idea to optimize model checking
of multi-writer objects is very interesting open problem. This is left as future
work.

The rest of the paper is organized as follows. After giving some preliminary
definitions in Section [l we describe our assertion in details in Section Bl In
Section @ we illustrate how SOAR can be used for model checking Tromp’s
algorithm and its variations in +CAL/TLC. We also report on some perfor-
mance measurements. We conclude the paper with the related work overview in
Section

2 Preliminaries

2.1 Processes and Objects

We model processes and shared objects using the non-deterministic I/O Au-
tomata model @] We simply give here the elements that are needed to recall
atomicity, state our assertion and prove its correctness. In short, an I/O automa-
ton is a state machine whose state can change by discrete atomic transitions
called actions. We consider two sets of processes: a singleton writer and a set of
processes called readers (we refer to a process belonging to the union of these
sets as client).

2 We always compare SOAR to a version of CLMT that is optimized for the single-
writer case as we discuss in Section



56 R. Guerraoui and M. Vukolié

A read/write register is a shared object consisting of the following:

. set of values D, with a special value vy (called the initial value),

. set of operations write(v), v € D and read()

. set of responses D U {ack},

. sequential specification of the register is any sequence of read/write opera-
tions such that the responses of operations comply with the following:
(a) write(v) £ x:=wv;return ack (where x is initialized to vp)
(b) read() £  return z

=W N~

To access the register, a client issues an operation descriptor that consists
of the identifier of the operation id € {‘write’, ‘read’} and the identifier of the
client; in case of a write, a value v is added to the descriptor. To simplify the
presentation, we sometimes refer to an operation descriptor op simply as an op-
eration op. A single-writer multi-reader (SWMR) register is a read/write object
in which only the process writer may issue write operations. We denote by wrs
(resp., rds) the set of write (resp., read) operations.

Clients use the actions of the form invoke(op) and response(op,v), where
op € wrs Urds and v € D U {ack}, to invoke operations and to receive re-
sponses. A sequence  of invoke and response actions is called an ezecution. An
invoked operation op is said to be complete (in some execution [3) if 5 contains
response(op, v), for some v € D U {ack} (we say response(op,v) matches in-
voke(op)). An operation op is said to be pending in 3 if 3 contains the invoke(op)
action but not its matching response.

The execution ez is sequential if (a) the first action is an invocation, (b) each
invocation, except possibly the last, is immediately followed by its matching
response, and (c) every response is immediately followed by an invocation.

We say that an execution (3 is well-formed if (1) for every response(op,v)
action in 8 there is a unique invoke(op) action in 3 that precedes response(op, v),
(2) for every client ¢ there is at most one pending operation issued by ¢ in f.

Moreover, we assume that each well-formed execution ( contains the invo-
cation and the response action of the special operation wy = write(vy) called
the initial write, such that the response action for wg precedes invocations of
any other operation. All executions considered in this paper are assumed to be
well-formed. A well-formed, sequential execution 3 is called legal, if § is in the
sequential specification of the register.

Finally, we say that a complete operation op precedes an operation op’ (or,
alternatively, that op’ follows op) in a well formed execution (3 if the response
action of op precedes the invocation action of op’ in 5 (we denote this by op <g
op’). Let op and op’ be two invoked operations in 3; if neither op <z op’), nor
op’ <g op), we say that op and op’ are concurrent (in (3).

2.2 Atomicity

We define atomicity (or linearizability) in the following way [6]: a (well-formed)
execution [ is atomic if there is a permutation 7(3) of all operations in ex such
that: (1) w(ex) is legal, and (2) if op <g op’ then op < (s) op'.
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In this paper we rely on the Partial Order (PO) property ﬂ] for proving
atomicity. As shown in Lemma 2 of ﬂ], PO is sufficient for atomicity, i.e., if 3
satisfies PO then [ is atomic.

Definition 1 (PO Property). Let op be the set of all operations invoked in
the execution 3 that contains no pending operations and wrs (resp., rds) subset
of all writes (resp., reads) in op. An execution (B satisfies a Partial Order (PO)
property if there is an irreflezive partial ordering < on all elements of op, such
that, in (:

Y, ¢ € op, if T <g ¢, then =(¢ < 7%.
Vr, ¢ € wrs, either m < ¢ or ¢ <

vV € wrs, Vo € rds, if T <g ¢, then ™ < ¢.

vV, ¢ € rds, if m <g ¢ then for each w € LastPrecWrites(m, <), w < ¢.
Let m € rds and let v be the value returned by . Then, v is written by some
write w € LastPrecWrites(m, <).

G to te

Above, LastPrecWrites(m,<) == {w € wrs : (w < 7) A =(Fw € wrs : (w <
w) A (w <m)}.

The PO property can be simply written as a logical predicate (assertion), to
which we refer as CLMT.

3 A Scalable and Oblivious Atomicity asseRtion (SOAR)

3.1 Intuition: Greedy Linearization

Our SOAR assertion is motivated by the observation that it is easy to linearize (in
the single-writer case) the fragments of the execution between every two writes.
Consider for example the fragment of the execution of Figure[2in between initial
time to and time ¢1, the time of completion of write w1, that contains only those
read operations that are invoked before t1 (i.e., 711, T2 and 721). It is clear
that only read operations that return the value written by wq (say vg) can be
linearized between wy and w;. Moreover, such reads cannot be preceded by reads
that return values other than vg. In other words, in the execution of Figure 2]
only ro; can be linearized between wy and w; while the other reads must be
linearized after wyi. We can repeat this partitioning of the execution between
two writes and apply the above reasoning iteratively, until we exhaust all write
operations. When a single write operation wyy is left, the remaining (still non-
linearized) read operations must return the value written by wy in order for
the execution to be atomic. In the example of Figure ] the operations would
be linearized in the following order: wq, 721, w1, 711, W2, T12, leaving r13 which
actually violates the sequential specification of the atomic read/write register.
The greedy linearization idea described above is based on checking the frag-
ments of the execution that are between every two writes, starting from the

3 In our case, with the single writer, this property becomes (having in mind Property
1) becomes: ¥V, ¢ € wrs, if 1 <g ¢ then m < ¢.
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beginning of the execution. While this is the natural way for a human to lin-
earize executions, this approach leads to reasoning about execution suffixes (that
remain after removing linearized operations). In our case, we found it more con-
venient to reason formally about execution prefixes; hence, we choose to apply
greedy linearization starting from the end of the execution, using the similar
idea. Consider, again the execution of Figure 2l Tt is trivial to see that the last
write to be linearized is ws. Now we can try to linearize as many reads as possible
after wq; however, this cannot be done with any of the reads. We can remove all
linearized operations from the execution (i.e., in our case, only ws) and apply the
same reasoning to the remaining execution prefix. However, before reiterating,
we must make sure that removing linearized operations indeed leaves us with
the execution prefix; more concretely, we must check that none of the reads that
will remain in the execution was invoked after the completion of the linearized
write. In the case of ws, this condition is satisfied (no operations are invoked
after wo completes). In the next iteration, we would linearize w; and r13. Finally,
in the last iteration we could see that the atomicity is violated since not all of
the remaining read operations return the value written by the initial write (11
returns 1).

3.2 Description

We formalize our greedy linearization approach to obtain a generic assertion for
atomicity in the following way. We denote:

— by W the total number of writes (not counting the initial write) in some
execution ex that contains no incomplete operations,
— by w; the i*" write in ex,
— by rdsy the set of all read operations in ex, and
— by ez (i = 0...W) the prefix of the execution ex that contains only write
operations from wg to w;, and only read operations from set rds;.
Notice that eacwsw = ex.

We assert the atomicity of every partial execution emfdsi (i =0...W) as
follows:

1. If i = 0 (ie., if ex’ = ex{™° contains only one write) then ez’ is atomic if
and only if all (read) operations from rdsy return the initial value,
2. else (i.e., if ¢ > 0), we:
(a) remove from rds; every read r that satisfies the following properties (we
denote the set of such reads linRds(i):
i. r returns the value written by the write w;,
ii. 7 does not precede w;, and
iii. if some v’ € R; follows r, then 1’ returns the value written by w;.
Basically, the reads from the set linRds(7) are immediately linearizable
and SOAR greedily linearizes such reads.
(b) If there is a read in rds; \ linRds(i) that follows w;, then ez’ is not
atomic.
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(c) ext™ is atomic if and only if exfsf‘l is atomic, where rds; 1 = rds; \
linRds(1).

Given the recursive nature of SOAR, the assertion can be written more com-
pactly (and more precisely) as a logical predicate (Figure B]). We write it as
follows, using the TLA+ [22].

linRds(wrs,rds, Inv, Resp, Ret) == {r € rds :
N\ Ret[r] = Ret[lastW R(wrs)]
N Resp(r] > Inv[lastW R(wrs)]
A V7' € rds : Resplr] < Inv[r'] = Ret[r'] = Ret[lastW R(wrs)]}

SOAR(wrs,rds, Inv, Resp, Ret) ==
IF wrs = {lastW R(wrs)}
THEN Vr € rds : Ret[r] = Ret[lastW R(wrs)]
ELSE
A\ Vr € rds \ linRds(wrs, rds, Inv, Resp, Ret) : =(Inv[r] > Resp[lastW R(wrs)])
N SOAR(wrs\{lastW R(wrs) },rds\linRds(wrs,rds,Inv, Resp, Ret),Inv, Resp, Ret)

Fig. 3. SOAR as a TLA+ predicate

In Figure Bl SOAR() takes five arguments: (i) the sets wrs and rds con-
taining the identifiers of all write and read operations in the execution ez, re-
spectively, (ii) the functions (arrays) Inv, Resp : wrs Urds — Nat (where Nat
is the set of natural numbers), containing the global logical time E] of invo-
cations and responses of operations, respectively, and (iii) the function (array)
Ret : wrs Urds — D (where D is the domain of values that an implemented
read/write register can assume), which maps the operations to values which are
written/read. Moreover, SOAR makes use of the function lastW R(wrs) which
returns the write in wrs that follows all other writes in ex

It is not difficult to see that the very approach that underlies SOAR yields
a low degree polynomial complexity (O(|op|?) in the worst case, where op is
the number of operations in the execution), which is to be contrasted with the
exponential one of the CLMT assertion.

To establish the correctness of SOAR we rely on the CLMT assertion, defined
by the PO property, Def. [Il Section We prove the correctness of SOAR by
showing its equivalence with CLMT (in our single writer multi-reader model),
using the following Lemmas:

Lemma 1. If the assertion SOAR of Figure [4 applied on the sequence of
read/write operations 3 returns TRUE, then (3 satisfies the PO property.

4 For simplicity, we assume that the identifiers of write operations are monotonically
increasing with the time of operation invocation. If this is not the case the lastW R()
function should also take the function Inv() as the argument.



60 R. Guerraoui and M. Vukolié

Lemma 2. If the sequence of read/write operations 3 satisfies the PO property,
then the assertion SOAR of Figurel3 applied on 3 returns TRUE.

Due to lack of space, the proofs of Lemmas [Tl and 2] are omitted; these can be
found in [14].

4 Application to Tromp’s Algorithm

We applied SOAR and CLMT to the celebrated algorithm of Tromp ﬂﬂ] which
we implemented in the +CAL algorithm language. We compared SOAR and
CLMT performance, and evaluated SOAR’s applicability to detection of non-
atomic executions and, hence, to debugging.

Our +CAL implementation of Tromp’s algorithm with SOAR is given in
Figureﬂlﬁ It consists of three parts: (1) The code used for testing (given in lines
109-120), (2) the SOAR part (comprised of lines 006-011, 037-043, 058-060, 064-
068 and 102-106), and (3) the +CAL implementation of the Tromp’s algorithm
(comprised of the remaining lines of Figured]). We explain both parts of the code,
starting with Part 2 (Tromp’s algorithm). In the following we refer to Figure ]

In short, Tromp’s algorithm gives an implementation of a single-writer single-
reader (SWSR) atomic bit, using 3 saf eﬁp [19] (SWSR) bits: V,W and R, all
initialized to 0. Bits V and W are owned ( ertten) by the writer, whereas R
is owned by the reader of the atomic bit. To simulate safe registers in +CAL,
we use the variables busy and value (lines 012-014), as well as macros in lines
020-034. The main code of the Tromp’s algorithm is given in lines 044-057 (the
write code) and 069-101 (the read code). Comments in these portions of code
(e.g., in lines 046, 050, or 070, 076, etc.) give the lines of the pseudocode as
stated in the original paper ﬂﬁ] Below each such comment, there is a +CAL
translation of the corresponding pseudocode.

The SOAR part of the code in Figure @ consists of operations on certain his-
tory variables necessary for the implementation of SOAR (as well as CLMT).
History variables ﬂ] play no role in the algorithm and serve only for the as-
sertions. These lines are written as a wrapper around the code of the original
algorithm in an oblivious manner; namely, no lines are inserted in the main
code of Tromp’s algorithm. For example, lines 037-043 and 058-060 are wrapped
around the original write code, whereas lines 064-068 and 102-106 are wrapped
around the original read code. Below, we explain in details the history variables
required by SOAR.

First, SOAR requires history variables wrs and rds (sets of write and read
operations), as well as history arrays (functions) Inv[], Resp[] and Ret[]. Initially,
wrs = {0}, i.e., wrs contains the identifier of the initial write wg, while Inv[0] =

5 In Figure[] ‘043’ denotes a line number added for simplicity of presentation, whereas
‘117:” denotes a +CAL label.

5 Basically, a safe register ensures that a read rd returns the last value written only
if rd is not concurrent with any write. In case of concurrency, a read may return an
arbitrary value.
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001:

002
003

004

005:

: EXTENDS Naturals, TLC, Sequences
: CONSTANT MAXWRITE, MAXREAD, V, W, R, WRITER, READER, SOAR(_,-,-,_,-)

: (* —algorithm Tromp

006:
007:
008:
009:
010:
011:

012:
013:
014:

015:
016:
017:
018:
019:

020:
021:

(*

022:
023:
024:
025:

026:

027:

m

028:
029:
030:

031:

032:

033:

034:

035:
036:

(*

037:
038:
039:
040:
041:
042:
043:

044:
045:
046:

047:
048:

12:
13:

049:
050:

051:
052:

053:

054:
055:

16:
17:

056:
057:

109:
110:

(*

111:
112:
113:

114:

115:

116:
117:
118:

119:

variables

(* 1. History variables used by SOAR and CLMT. *)
globalClock = 0, writeCount =
readCount = MAXW RITE,wrs = {0},rds = {},

Ret=[i €0... MAXWRITE + MAXREAD — 0],
Inv=1[i €0... MAXWRITE + MAXREAD + 0],
Resp=[i€0... MAXWRITE + MAXREAD > 0]

(* 2. Variables used to simulate safe registers. *)
busy = [i € {V, W, R} — FALSE],
value = [i € {V, W, R} — 0],

(* 3. Tromp’s algorithm variables. *)

oldValue = 0, (* Used by the writer®)

R_writer = 0, (* Used by the writer to read R*)
W_reader = 0, (* Used by the reader to read W*)

v =0, =0, returnValue = 0 (* Used by the reader*)

4. Safe register simulation. *)

macro RW_INIT(reg) begin

if V((reg € V, W) A (self = WRITER))
V((reg = R) A (self = READER))

then busylreg] := TRUE;

end if;

end macro

acro READ(reg, result) begin

if busy[reg] = FALSE then result := value[reg];
else either result := 0 or result := 1 end either;
end if;

end macro

macro WRITE(reg, val) begin

value[reg] := val; busy[reg] := FALSE;

end macro

5. Tromp’s Algorithm w. SOAR. *)

procedure write(val) begin 11:

(* Update of history variables*)
writeCount := writeCount + 1;
globalClock := globalClock + 1;
Inv[writeCount] := globalClock;

ResplwriteCount] := INF;
Ret[writeCount] := val;
wrs i= wrs U {writeCount};

(* Tromp’s algorithm write() code*)
if oldValue # val then
(* change V *)
RW_INIT(V);
WRITE(V, val);
oldValue := val;
(* if W=R then change W *)
RW_INIT(R);
READ(R, R_writer);
if value[W] = R_writer then
RW_INIT(W);
WRITE(W, 1 — value[W]);
end if;
end if;

6. Code for testing. *)

process Writer = WRITER begin wrloop:

MODULE TrompSOAR2

058: 18:  (* Update of history variables and return*)
059: globalClock := globalClock + 1;
060: ResplwriteCount] := globalClock;
061: return;

062: end procedure

063: procedure read() begin 19:

064: (* Update of history variables *)
065: globalClock globalClock + 1;
066: readCount := readCount + 1;
067: rds := rds U {readCount};

068: Inv[readCount] := globalClock;
069: (* Tromp’s algorithm read() code*)
070: (* If W=R return v - line 1 *)
071: 110:  RW_INIT(W);

072: 111: READ(W,W _reader);

073: if W_reader = value[R] then
074: returnValue := v;

075: else

076: (* x : = Read(V) - line 2 *)
077: 112: RW_INIT(V);

078: 113: READ(V, z);

079: (* If W=R change R - line 3 *)
080: 114: RW_INIT(W);

081: 115: READ(W, W_reader);

082: if W_reader =/value[R] then
083: 116: RW_INIT(R);

084: 117: READ(R, 1 — value[R]);
085: end if

086: (* v : = Read(V) - line 4 *)
087: 118: RW_INIT(V);

088: 119: READ(V, v);

089: (* If W=R return v - line 5 *)
090: 120: RW_INIT(W);

091: 121: READ(W, W_Reader);

092: if W_reader = value[R] then
093: returnValue := v;

094: else

095 (* v : = Read(V) - line 6 *)
096: 122: RW_INIT(V);

097: 123: READ(V, v);

098: (* return x - line 7 *)

099: returnValue := w;

100: end if;

101: end if;

102: 124: (* Update of history variables and return*)
103: Ret[readCount] := returnValue;
104: globalClock := globalClock + 1;
105: Resp[readCount] := globalClock;
106: assert (SOAR(wrs, rds, Inv, Resp, Ret));
107: return;

108: end procedure

while (writeCount < MAXW RITE) A (readCount < MAXWRITE + MAXREAD) do

cither call write(0) or call write(1) end either;
end while;

end process;

process Reader = READER begin rdloop:

while (writeCount < MAXWRITE) A (readCount < MAXWRITE + MAXREAD) do

call read();
end while;

end process;

120: end algorithm

)

Fig. 4. SOAR application to Tromp’s

algorithm
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Resp[0] = 0 and Ret[0] = vg = 0 (lines 008-011). Besides, the following three
history variables are also needed (line 007): (i) globalClock to act as a global
clock and, hence, facilitate the implementation of functions Inv[] and Resp]],
and (ii) writeCount and readCount the counters for write and read operation
identifiers, respectively, which take values from non-overlapping domains. All
these variables/arrays are accessed only at the beginning (invocation) and the
end (completion) of read/write operations. We believe that the operations on
history variables are very intuitive and simple to follow. We clarify, however,
two lines: (a) in line 041, the response time of the newly invoked write is set to
INF, where INF (infinity) represents a constant that such that the globalClock
cannot get greater than INF, and (b) in line 103, the returned value of the read
is taken from the returnV alue variable in which the main read code of Tromp’s
algorithm (lines 069-101) stores the read value.

Finally, constants M AXW RITE (resp., MAX READ) denote the maximum
number of write (resp., read) operations invoked in the checked execution.

4.1 Asserting Non-atomic Executions

We used our implementation of Figure @ to verify that certain, seemingly plau-
sible, “optimizations” of Tromp’s algorithm lead to the incorrect solution.

For example, it is not straightforward to see why the condition ‘if W # R’ in
line 3 of the Tromp’s read pseudocode is necessary (see line 079, Fig. H]) knowing
that this line is executed only if indeed W # R in line 1 of the original read
pseudocode (line 070, Fig. ). However, removing this condition (i.e., lines 080-
082 and 085 of Fig. H]) leads to a violation of atomicity, which can be detected by
SOAR. Using the error output of the TLC model checker, we were able to extract

write(l) write(0)
change V. K W=R  change W change V
[ |[r= ] |
writer r I
V=0 V=1 W=R W=1
W=0 read()=1 read()=0 read()=1
line 1 line 2 line 4 line 6 line 2 line 4
W=0| [ x=0 w1 [v=1]] | =] [ =l
reader T T ‘ ‘ /_T\\ T T
R=0 R=1 R=0 W#R ~ WaR I W=R
e & . X
Would not have been changed in line $ line 1 1_1=1 line 5
case there was a condition in line 3 line 3

Fig.5. Violation of atomicity after removing the condition in line 3 of Tromp’s
algorithm
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the execution that leads to the atomicity violation (see Figure [). Interestingly,
such “simplified” Tromp’s algorithm remains regular @], but it is not atomic.
In a similar way, we were also able to show that the instruction in line 6 of the
original pseudocode (line 095, Fig. M) is also necessary. This demonstrates the
usability of SOAR in debugging and asserting non-atomicity in practice.

4.2 Performance

All our performance results are obtained running TLC model checker (using
4 processors) on a 4 dual-core Opteron 8216 with 8 GB of RAM. TLC model
checker is ran on an implementation of the Tromp’s algorithm in +CAL, varying
the number of invoked read/write operations.

Model checking was done to verify the atomicity of the Tromp’s algorithm us-
ing both the CLMT and SOAR. Obtained graphs are given in Figure[ll Results
are given for a specific variation of the CLMT, optimized for a single writer
scenario. Notably the optimization modifies the condition 2 of Definition [,
Section[2.2]to impose that for any precedence relation < and everyi € 1... W —1
w; < wit1 (where W is the total number of writes, represented by the variable
writeCount in our +CAL implementation, Figure d). Moreover, the initial write
wp was always pre-linearized before running the CLMT assertion, which signifi-
cantly improves its performance.

From Figure [l it can be seen that already in model checks of Tromp’s algo-
rithm with as few as 6 read/write operations (e.g., with 3 reads and 3 writes) a
model check with SOAR takes more than an order of magnitude less time than
with CLMT. The difference is even more glaring if a non-atomic execution is
checked. For example, it takes only 15 milliseconds for SOAR to state that an

SOAR vs. CLMT comparison

100000 ‘ ‘.
“ SOAR 2 writes —+—
CLMT 2 writes ----> —
, SOAR 3 writes -
10000 | CLMT 3 writes = ]
: ] = |
0] *
£
= 00 7
T — ] |
1 | | ‘

Number of reads

Fig.6. SOAR vs. CLMT comparison. The entire time required for model checking
Tromp’s algorithm is represented.
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execution of [ (without the read ro1) is not atomic, whereas CLMT takes more
than 70 seconds. This represents a difference of 3-4 orders of magnitude already
for an execution with only 5 operations, and, by its design, the complexity of
CLMT grows exponentially with the number of operations in the execution.

In practice, when checking executions with a fairly small number of opera-
tions, SOAR is as fast as any assertion maintaining the global clock can be. By
maintaining the global clock, we mean maintaining the execution history in the
form of: 1) set of all operations invoked in the execution, 2) arrays of operations’
invocation and response times, and 3) the array of values written/read by oper-
ations. Indeed, our results show that, for all the points represented in Figure [G]
SOAR introduces no visible overhead with respect to a dummy assertion that
maintains the global clock.

5 Concluding Remarks

The concept of an atomic object was first introduced by Lamport m, ﬂ] in the
context of read /write registers. This concept was later extended to objects other
than registers by Herlihy and Wing ﬂﬁ], under the notion of linearizability. In
this paper, we use notions of atomicity and linearizability interchangeably.

Atomicity assertions were proposed by Hesselink ﬂﬁ, ] These assertions
are not oblivious since they are based on the history variables that are inserted
in specific places of the checked algorithm. A fair amount of knowledge of the
checked algorithm is thus required.

As we discussed in the introduction, Chockler et al., ﬂﬂ] proposed a genuinely
oblivious atomicity assertion (quoted CLMT) that does not require any knowl-
edge, neither on the language nor on the algorithm. In ﬂﬂ], CLMT has been used
as the basis for the Partial Order machine automaton, that was in turn used
in forward simulations to prove the correctness of various atomic object imple-
mentations (another simulation based atomicity proof (of a lock-free queue) can
be found in the paper by Doherty et al. B}) However, as we show in this pa-
per, CLMT imposes exponential complexity on the model checker. This is not
surprising given the result of Alur et al. [4], showing that model checking lin-
earizability is in EXPSPACE. SOAR circumvents this result by focusing on the
single-writer implementations.

In ﬂﬁ], Tromp proposed an atomicity automaton suitable for designing and
verifying atomic variable constructions. The automaton nodes represent the state
of a run on the atomic variable, whereas transitions represent read and write
operations. This automaton addresses only the single-writer single-reader atomic
constructions.

Some work was also devoted to checking the atomicity of transactional blocks
of code, e.g., ﬂ@, , ]

The simple greedy linearization idea that we employ in this paper is not new.
A similar idea was exploited by Wang and Stoller @] as one of the steps in the
context of atomicity inference for programs with non-blocking synchronization.
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Abstract. We introduce R-automata — finite state machines which oper-
ate on a finite number of unbounded counters. The values of the counters
can be incremented, reset to zero, or left unchanged along the transitions.
R-automata can be, for example, used to model systems with resources
(modeled by the counters) which are consumed in small parts but which
can be replenished at once. We define the language accepted by an R-
automaton relative to a natural number D as the set of words allowing a
run along which no counter value exceeds D. As the main result, we show
decidability of the universality problem, i.e., the problem whether there
is a number D such that the corresponding language is universal. We
present a proof based on finite monoids and the factorization forest the-
orem. This theorem was applied for distance automata in [12] — a special
case of R-automata with one counter which is never reset. As a second
technical contribution, we extend the decidability result to R-automata
with Biichi acceptance conditions.

1 Introduction

We consider systems operating on resources which are consumed in small parts
and which can be (or have to be) replenished completely at once. To model such
systems, we introduce R-automata — finite state machines extended by a finite
number of unbounded counters corresponding to the resources. The counters
can be incremented, reset to zero, or left unchanged along the transitions. When
the value of a counter is equal to zero then the stock of this resource is full.
Incrementing a counter means using one unit of the resource and resetting a
counter means the full replenishment of the stock.

We define the language accepted by an R-automaton relative to a natural
number D as the set of words allowing an accepting run of the automaton such
that no counter value exceeds D in any state along the run. We study the problem
of whether there is a number D such that the corresponding language is universal.
This problem corresponds to the fact that with stock size D, the system can
exhibit all the behaviors without running out of resources. We show that this
problem is decidable in 2-EXPSPACE. As a second technical contribution, we
extend the decidability result to R-automata with Biichi acceptance conditions.

* This work has been partially supported by the EU CREDO project.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 67[81] 2008.
© Springer-Verlag Berlin Heidelberg 2008



68 P.A. Abdulla, P. Krcal, and W. Yi

To prove decidability of the universality problem, we adopt the technique
from [I2] and extend it to our setting. We reformulate the problem in the lan-
guage of finite monoids and solve it using the factorization forest theorem [I1].
In [T2], this theorem is used for solving the limitedness problem for distance au-
tomata. Distance automata are a subclass of R-automata with only one counter
which is never reset. In contrast to this model, we handle several counters and
resets. This extension cannot be encoded into the distance automata.

The decision algorithm deals with abstractions of collections of runs in order
to find and analyze the loops created by these collections. The main step in
the correctness proof is to show that each collection of runs along the same
word can be split (factorized) into short repeated loops, possibly nested. Having
such a factorization, one can analyze all the loops to check that none of the
counters is only increased without being reset along them. If none of the counters
is increased without being reset then we can bound the counter values by a
constant derived from the length of the loops. Since the length of the loops is
bounded by a constant derived from the automaton, all words can be accepted
by a run with bounded counters. Otherwise, we show that there is a +-free
regular expression such that for any bound there is a word obtained by pumping
this regular expression which does not belong to the language. Therefore, the
language cannot be universal for any D.

Related work. The concept of distance automata and the limitedness problem
were introduced by Hashiguchi [6]. The limitedness problem is to decide whether
there is a natural number D such that all the accepted words can also be accepted
with the counter value smaller than D. Different proofs of the decidability of
the limitedness problem are reported in [ZJI0/T2]. The last of these results [12] is
based on the factorization forest theorem [I14]. The model of R-automata, which
we consider in this paper, extends that of distance automata by introducing
resets and by allowing several counters. Furthermore, all the works mentioned
above only consider the limitedness problem on finite words, while we here extend
the decidability result of the universality problem to the case of infinite words.
Distance automata were extended in [§] with additional counters which can be
reset following a hierarchical discipline resembling parity acceptance conditions.
R-automata relax this discipline and allow the counters to be reset arbitrarily.
Universality of a similar type of automata for tree languages is studied in [5].
A model with counters which can be incremented and reset in the same way
as in R-automata, called B-automata, is presented in [3]. B-automata accept
infinite words such that the counters are bounded along an infinite accepting
computation. Decidability of our problems can be obtained using the results
from [3]. However, this would require complementation of a B-automaton which
results in a non-elementary blowup of the automaton state space.

The fact that R-automata can have several counters which can be reset al-
lows, for instance, to capture the abstractions of the sampled semantics of timed
automata [91]. A sampled semantics given by a sampling rate e = 1/ f for some
positive integer f allows time to pass only in steps equal to multiples of €. The
number of different clock valuations within one clock region (a bounded set of
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valuations) corresponds to a resource. It is finite for any ¢ while infinite in the
standard (dense time) semantics of timed automata. Timed automata can gen-
erate runs along which clocks are forced to take different values from the same
clock region (an increment of a counter), take exactly the same value (a counter
is left unchanged), or forget about the previously taken values (a counter reset).

2 Preliminaries

First, we introduce the model of R-automata and its unparameterized semantics.
Then, we introduce the parameterized semantics, the languages accepted by the
automaton, and the universality problem.

R-automata. R-automata are finite state machines extended with counters.
A transition may increase the value of a counter, leave it unchanged, or reset
it back to zero. The automaton on its own does not have the capability of
testing the values of the counters. However, the semantics of these automata is
parameterized by a natural number D which defines an upper bound on counter
values which may appear along the computations of the automaton. Let N denote
the set of non-negative integers.
An R-automaton with n counters is a 5-tuple A = (S, X A, s, F') where

— S is a finite set of states,

— X is a finite alphabet,

- ACSxXx{0,1,r}" x S is a transition relation,
— sp € S is an initial state, and

— ' C Sis a set of final states.

Transitions are labeled (together with a letter) by an effect on the counters.
The symbol 0 corresponds to leaving the counter value unchanged, the symbol
1 represents an increment, and the symbol r represents a reset. We use ¢, t1, ...
to denote elements of {0,1,r}"™ which we call effects. A path is a sequences of
transitions (s1,a1,t1,82),(s2,a2,t2,83), -, (Sm, @m, tm, Smt1), such that V1 <
i <m.(si,a;,ti, $i+1) € A. An example of an R-automaton is given in Figure [l

Fig.1. An R-automaton with two counters
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Unparameterized semantics. We define an operation & on the counter val-
ues as follows: for any k € N, k0 =k, k®d1 =k+1,and kdr = 0.
We extend this operation to n-tuples by applying it componentwise. The oper-
ational semantics of an R-automaton A = (S, X, A, sg, F') is given by a labeled
transition system (LTS) [A] = (S, ¥, T, so), where the set of states S contains
pairs (s, (c1,...,¢n)), s € S,¢; € N for all 1 < 4 < n, with the initial state
$o = (80, (0,...,0)). The transition relation is defined by ((s, (c1,...,cn)),a, (s,
(ch,...,c))) € Tif and only if (s,a,t,s’) € Aand (¢},...,c,) = (c1,...,¢cn) Dt.
We shall call the states of the LTS configurations.

We write (s, (c1,...,¢n)) —= (s, (ch, ..., )V if ((s,(c1,...,cn))a, (s, (c], ...,
c))) € T. We extend this notation also for words, (s,(c,...,¢n)) —
(s,(c},...,ch)), where w € X,

Paths in an LTS are called runs to distinguish them from paths in the under-
lying R-automaton. Observe that the LTS contains infinitely many states, but
the counter values do not influence the computations, since they are not tested
anywhere. In fact, for any R-automaton A, [A] is bisimilar to A considered
as a finite automaton (without counters and effects). The LTS induced by the
R-automaton from Figure[lis in Figure

(.90,(0,0))—(1)(51,(1,0)} i (sl,(l,l)) b (51,(1,2))_17)(51,(1,3)) .......

Fig. 2. The unparameterized semantics of the R-automaton in Figure [I]

Parameterized Semantics. Now we define the D-semantics of R-automata.
We assume that the resources associated to the counters are not infinite and we
can use them only for a bounded number of times before they are replenished
again. If a machine tries to use a resource which is already completely used up,
it is blocked and cannot continue its computation.

For a given D € N, let Sp be the set of configurations restricted to the configu-
rations which do not contain a counter exceeding D, i.e., Sp = {(s,(c1,..-,cn))]
(s,(c1,...,¢,)) € S and (c1,...,¢,) < (D,...,D)} (< is applied component-
wise). For an R-automaton A, the D-semantics of A, denoted by [A]p, is [A]
restricted to Sp. We write (s, (c1,...,¢n)) ——=p (5,(c},...,c,)) to denote the
transition relation of [A]p. We extend this notation for words, (s, (¢1,...,¢n))
p (s, (ch, ..., cl)) where w € X, The 2-semantics of the R-automaton from
Figure [ is in Figure

We abuse the notation to avoid stating the counter values explicitly when it
is not necessary. We define the reachability relations — and —p over pairs
of states and words as follows. For 5,8 € S and w € ¥+, s % s’ if and only
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Fig. 3. The 2-semantics of the R-automaton in Figure [I]

if there is a path (s, a1,t1,51), (51,a2,%2,52), - .., (8jw|=1, @jw| L], s") such that
w = ay - az---aj,. For each D € N, s p s if also for all 1 < i < |wl,
L ®to®---®t; < (D,...,D). It also holds that s ——p s if and only if there
is a run (s, (0,...,0)) —p (s, (c1,...,cn)).

Language. The (unparameterized or D-) language of an R-automaton is the
set of words which can be read along the runs in the corresponding LTS ending
in an accepting state (in a configuration whose first component is an accepting
state). The unparameterized language accepted by an R-automaton A is L(A) =
{w|sy == sy,s; € F}. For a given D € N, the D-language accepted by an
R-automaton A is Lp(A) = {w|sy —=p s, sy € F}. The unparameterized
language of the R-automaton from Figure [l is ab*a*. The 2-language of this
automaton is a(e + b + bb + bbb)a*.

Problem Definition. Now we can ask a question about language universality
of an R-automaton A parameterized by D, i.e., is there a natural number D such
that Lp(A) = X*. Figure @l shows an R-automaton A such that Ly(A) = X*.

Fig.4. A 2-universal R-automaton

The language definitions and the universality question can also be formu-
lated for infinite words with Biichi acceptance conditions. The unparameterized
w-language of the automaton from Figure[lis ab® + ab*a®”. The 2-w-language of
this automaton is a(e + b + bb + bbb)a®.
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3 Universality

The main result of the paper is the decidability of the universality problem for
R-automata formulated in the following theorem.

Theorem 1. For a given R-automaton A, the question whether there is D € N
such that Lp(A) = X* is decidable in 2-EXPSPACE.

First, we introduce and also formally define the necessary concepts (patterns, fac-
torization, and reduction) together with an overview of the whole proof. Then we
show the construction of the reduced factorization trees and state the correctness
of this construction. Finally, we present an algorithm for deciding universality.
All proofs can be found in the full version of this paper [2].

3.1 Concepts and Proof Overview

When an R-automaton A is not universal for all D € N then there is an infinite
set X of words such that for each D € N there is wp € X and wp ¢ Lp(A4). We
say then that X is a counterexample. The main step of the proof is to show that
there is an X which can be characterized by a +-free regular expression. In fact,
we show that X also satisfies a number of additional properties which enable
us to decide for every such a +-free regular expression, whether it corresponds
to a counterexample or not. Another step of the proof is to show that we need
to check only finitely many such +-free regular expressions in order to decide
whether there is a counterexample at all.

Patterns. The standard procedure for checking universality in the case of finite
automata is subset construction. Whenever there are non-deterministic transi-
tions s — s; and s —— s, then we build a “summary” transition {s} —*
{51, s2}. This summary transition says that from the set of states {s} we get to
the set of states {s1,s2} after reading the letter a. In the case of R-automata,
subset construction is in general not guaranteed to terminate since the values
of the counters might grow unboundedly. To deal with this problem, we exploit
the fact that the values of the counters do not influence the computations of the
automaton. Therefore, we perform an abstraction which hides the actual values
of the counters and considers only the effects along the transitions instead. The
abstraction leads to a more complicated variant of summary transitions namely
so called patterns.

We define a commutative, associative, and idempotent operation o on the set
{0,1,7}:000=0,001=1,00r=7r,101l=1,10or =7, and ror = r. In fact,
if we define an order 0 < 1 < 7 then o is the operation of taking the maximum.
We extend this operation to effects, i.e., n-tuples, by applying it componentwise
(this preserves all the properties of o). An effect obtained by adding several other
effects through the application of the operator o summarizes the manner in which
the counters are changed. More precisely, it describes whether a counter is reset
or whether it is increased but not reset or whether it is only left untouched.
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A pattern o : (S x §) — 2{017}" i5 a function from pairs of automaton states
to sets of effects. Let us denote patterns by o, 01,0, . ... As an example, consider a
pattern o involving states s and s’ and two counters. Let o (s, s) = {(0,0), (1,1)},
o(s',s") ={(1,1),(1,0)}, o(s,8") = {(1,1)} and o(s’, s) = {(1,1)}. This pattern
is depicted in Figure[Bh.

Clearly, for a given R-automaton there are only finitely many patterns; let us
denote this finite set of all patterns by P. We define an operation e on PP as follows.
Let (o1 002)(s,8") = {t|3s", t1,t2. t1 € 01(s,8"),t2 € 02(s",s"),t = t10t2}. Note,
that e is associative and it has a unit o., where o.(s,s’) = {(0,...,0)} if s =5’
and o.(s, s’) = () otherwise. Therefore, (P, o) is a finite monoid.

For each word we obtain a pattern by running the R-automaton along this
word. Formally, let Run : T — P be a homomorphism defined by Run(a) = o,
where t € o(s,s’) if and only if (s,a,t,s") € A.

Loops. In the case of finite automata, a set of states L and a word w constitute
a loop in the subset construction if I —% L, i.e., starting from L and reading
w, we end up in L again. The intuition behind the concept of a loop is that
several iterations of the loop have the same effect as a single iteration. In our
abstraction using patterns, loops are words w such that w yields the same pattern
as w?,w?,.... We can skip the starting set of states, because the function Run
starts implicitly from the whole set of states S (if there are no runs between some
states then the corresponding set of effects is empty). More precisely, a word w is
a loop if Run(w) is an idempotent element of the pattern monoid. Two loops are
identical if they produce the same pattern. Observe that the pattern in Figure bk
is idempotent.

Factorization. We show that each word can be split into short identical loops
repeated many times. The loops can possibly be nested, so that this split (fac-
torization) defines a factorization tree. The idea is that since we have such a
factorization for each word, it is sufficient to analyze only the (short) loops and
either find a run with bounded maximal value of the counters or use the loop
structure to construct a counterexample regular expression.

On a higher level we can see a factorization of words as a function which for
every word w = ajas - --a; returns its factorization tree, i.e., a finite tree with
branching degree at least 2 (except for the leaves) and with nodes labeled by
subwords of w such that the labeling function satisfies the following conditions:

— if a node labeled by v has children labeled by wi,ws, ..., w,, then v =
Wy Wa - W,

— if m > 3 then ¢ = Run(v) = Run(w;) for all 1 <4 < m and o is idempotent,

— the leaves are labeled by a1, as, ..., a; from left to right.

An example of such a tree is in Figure Bb. It follows from the factorization
forest theorem [I14] that there is such a (total) function which returns trees
whose height is bounded by 3 - |P| where |P| is the size of the monoid.

We define the length of a loop as the length of the word (or a pattern sequence)
provided that only the two longest iterations of the nested loops are counted.
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(0,0), (1,1) acabbac

8(171 ’ / \abbac
XN

(1,1 a ac

s’ s’ “ ¢ a/ \b a/ \c

(a) (b)

Fig.5. A pattern involving two states and two counters (a) and a factorization tree
(b). Run(abbac) = Run(ab) = Run(b) = Run(ac) and it is idempotent.

This concept is defined formally in Subsection B3l We say that the loops are
short if there is a bound given by the automaton so that the length of all the loops
is shorter than this bound. A consequence of the factorization forest theorem is
that there is a factorization such that all loops are short.

Reduction. We have defined the loops so that the iterations of a loop have the
same effect as the loop itself. Therefore, it is enough to analyze a single iteration
to tell how the computations look when the loop is iterated an arbitrary number
of times. By a part in an idempotent pattern o, we mean an element (an effect)
in the set o(s,s’) for some states s and s’. We will distinguish between two
types of parts, namely bad and good parts. A bad part corresponds only to runs
along which the increase of some counter is at least as big as the number of the
iterations of the loop. A part is good if there is a run with this effect along which
the increase is bounded by the maximal increase induced by two iterations of
the loop. Formally, we define a function reduce which for each pattern returns a
pattern containing all good parts of the original pattern, but no bad part. Then
we illustrate it on a number of examples.
For a pattern o, core(o) is defined as follows:

O’S,S/m 077"n if s=3s
core(o)(s, s') = {@( Jnior otherwise

Let reduce(o) = o e core(o) e 0.

For an automaton with one state s, one counter, and a loop w with pattern o,
if o(s,s) = {(1)} then the whole pattern is bad, i.e., reduce(o)(s, s) = (). Notice
that any run over w* increases the counter by k. On the other hand, if o(s, s) =
{(0)} or o(s,s) = {(r)} then the whole pattern is good, i.e., reduce(c) = o.

With more complicated patterns we need a more careful analysis. Let us con-
sider a loop w with pattern o where o(s,s) = {(0)}, o(s',s") = {(1)}, o(s,s') =
{(1)}, and o(s',s) = {(1)}. We will motivate why the part (1) € o(s’, s’) is good.
For any k, we can take the run over w* which starts from s’, moves to s after the
first iteration, stays in s for k — 2 iterations, and finally moves back to s’ after
the k' iteration. Then, the effect of the run is (1). Furthermore, the counter
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increase along the run is bounded by twice the maximal counter increase while
reading w. In fact, using a similar reasoning, we can show that all parts of o are
good (which is consistent with the fact that reduce(o) = o).

As the last example, let us consider the pattern from Figure[Bh. First, we show
that the part (1,0) € o(s’, s') is bad. The only run over w”* with effect (1,0) is the
one which comes back to s’ after each iteration. However, this run increases the
first counter by k. On the other hand, the part (1,1) € o(s’, s’) is good by a similar
reasoning to the previous example. In fact, we can show that all other parts of the
pattern are good (which is consistent with the value of reduce(o) in Figure[d]).

(0,0), (1,1) (0,0) (0,0), (1,1) (0,0), (1,1)
S S S S
(1,1) (1,1) (1,1)
(1,1) (1,1) (1,1)
N - S / ’
Lo, wy S S T 1o, an S S (1,1) S

Fig. 6. o e core(c) @ o = reduce(c) where o is the pattern from Figure Bh

Reduced Factorization Trees. For a factorization of a word w, we need to
check whether there is a run which goes through a good part in every loop. In
order to do that, we enrich the tree structure, so that each node will now be
labeled, in addition to a word, also by a pattern. The patterns are added by the
following function: given an input sequence of patterns, the leaves are labeled
by the elements of the sequence, nodes with branching degree 2 are labeled by
the composition of the children labels, and we label each node with branching
degree at least 3 by o, where o is the idempotent label of all its children. Now,
based on this labeling, we build a reduced factorization tree for w in several steps
(formally described in Subsection B2).

We start with the sequence of patterns obtained by Run from the letters of
the word. In each step, we take the resulting sequence from the previous step,
build a factorization tree from it, and label it by patterns as described above.
Then we take the lowest nodes such that they have at least 3 children and they
are labeled by a pattern o such that reduce(o) # o. We change the labels of
these nodes to reduce(c). We pack the subtrees of these nodes into elements
of the new sequence and we leave other elements of the sequence unmodified.
This procedure eventually terminates and returns one tree with the following
properties (the important invariant is shown in Lemma [I):

— if a node labeled by ¢ has two children labeled by o1, 09 then o = o1 e 03,
— if a node labeled by o has m children labeled by o1, ...,0,,, m > 3, then
o; =o0j forall 1 <i,j <m, oy is idempotent, and o = reduce(o1).

An example of a reduced factorization tree is in Figure[ll We show that there
is a factorization function such that the height of all reduced factorization trees
produced by it is bounded by 3 - [P|* (Lemma [) using the factorization forest



76 P.A. Abdulla, P. Krcal, and W. Yi

o1, abedecc
/ \
o2, ab reduce(os), cdece
/ N\ AN
03,0 o4,b 0s,C o5, de 05,C 0s5,C
/ N\
o6, d a7, €

Fig. 7. An example reduced factorization tree. o1 = o2 @ reduce(os), 02 = 03 ® 04, and
05 = 06 ® 07. For all leaves labeled by &,a, 6 = Run(a).

theorem and a property of the reduction function that if reduce(c) # o then
reduce(c) <7 o, where <7 is the usual ordering of the J-classes on P, J is
a standard Green’s relation; o <7 o’ if and only if there are 01,02 such that
og=o0100 80y, 0 <y o ifand only if 0 <7 ¢’ and ¢’ £ o (Lemma 2 in [2]).

Correctness. Let o be the label of the root of a reduced factorization tree for
a word w and let pump(r, k) for a +-free regular expression r and for a k € N
be the word obtained by repeating each r, where r} is a subexpression of r,
k-times. Then

— if o(so, s¢) # 0 for some sy € F then there is a run from sy to s over w in
8“1]’|2—semantics7

— otherwise, there is a +-free regular expression r such that for all D there is
a k such that there is a counter which exceeds D along all runs from sy to
sy, sy € F, over pump(r, k).

The previous items are formulated in Subsection B3] Lemma [ and Lemma [Bl

Relation to Simon’s Approach. There are several important differences be-
tween the method presented in this paper and that of Simon [I2]. Our notion of
pattern is a function to a set of effects, while in Simon’s case it is a function to the
set {0,1,w}. Because of the resets and the fact that there are several counters,
it is not possible to linearly order the effects. Thus, a collection of automaton
runs can be abstracted into several incomparable effects. The sets are necessary
in order to remember all of them. Furthermore, the different notion of pattern
requires a new notion of reduction which does not remove loops labeled also by
resets. We need to show then that application of this notion of reduction during
the construction of the reduced factorization trees preserves the correctness.

3.2 Construction of the Reduced Factorization Tree

We define labeled finite trees to capture the looping structure of pattern se-
quences. Let I" be a set of finite trees with two labeling functions Pat and Word,
which for each node return a pattern and a word, respectively. We will abuse
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the notation and, for a tree T, we use Pat(T") or Word(T') to denote Pat(N) or
Word(N), respectively, where N is the root of T'. We also identify nodes with the
subtrees in which they are roots. We can then say that a node 7" has children
T1,...,T,, and then use T;’s as trees. For a tree T, we define its height h(T)
as h(T) =1if T is a leaf, h(T) = 1 + max{h(Ty),...,h(T)} if T,...,T,, are
children of the root of T'.

By I'™ we mean the set of nonempty sequences of elements of I". By (I'")™ we
mean the set of nonempty sequences of elements of I'*. Let us denote elements
of I't by v,71,7,.... For v € I'", let || denote the length of .

Let f : I'" — P be a homomorphism with respect to e defined by f(T) =
Pat(T). We call a function d : I't — (I'") " a factorization function if it satisfies
the following conditions. If d(v) = (v1,72,.--,7¥m) then v = 1 - y2 -y, if
m =1 then |y| =1, and if m > 3 then f(vy) = f(v;) for all 1 <i < m and f(7)
is an idempotent element.

For a factorization function d we define two functions tree : I'™ — I' and
cons : I't — I't inductively as follows. Let (o, w) denote a tree which consists
of only the root labeled by o and w.

¥ if [y] =1,

(o1 @ 09, wy - wy) with children tree(y,), tree(y2), if d(y) = (11,72),
o; = Pat(tree(v;)), w; = Word(tree(y;)) for i € {1,2},

(reduce(o), wy - wa - - - Wy,) with children tree(y),. .., tree(v,,), if
m > 3,d(v) = (71,72, - - -, Ym), 0 = Pat(tree(v1)),
and w; = Word(tree(y;)) for all 1 < i < m.

tree(y) =

The function tree builds a tree (resembling a factorization tree) from the
sequence of trees according to the function d. The only difference from straight-
forwardly following the function d is that the labeling function Pat might be
changed by the function reduce. Let us color the trees in the function cons either
green or red during the inductive construction of a new sequence.

~ if |[y] = 1. Mark v green.

cons(y1) - cons(yz2) - - - cons(Var, )
if d(v) = (71,72, -.,7m) and either m = 2 or
there is 1 < ¢ < m such that cons(v;) contains
a red tree or reduce(f(v1)) = f(71)-

tree(7y) it d(y) = (m,72, -+ yYm), m > 3, no cons(y;)
contains a red tree and reduce(f(y1)) # f(71).
Mark the tree red.

cons(y) =

The function cons updates the sequence of trees trying to leave as much as
possible untouched, but whenever Pat would be changed by the reduce function
for the first time (on the lowest level), it packs the whole sequence into a single
tree with changed Pat label of the root using the function tree.

The important property of the construction is that for each tree in the new
sequence it holds that whenever a node has more than two children, they are all
labeled by identical idempotent patterns. Let us call a tree balanced if whenever
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Tr
T

Ty Ty T3 Ty T5 Tg Ty Tg Tg9 Tio Ti1 Ti2 T13 Tia Tis

Fig. 8. Application of cons to 71 - - - T15. The black nodes represent the nodes for which
reduce(o) # o. The resulting sequence is T1 121314 TaTsToTBT5.

a node T has children Ty, T, ..., Ty, where m > 3, then Pat(Ty) = Pat(Tz) =
-+« = Pat(T},), it is an idempotent element in P, and Pat(T") = reduce(Pat(T})).

Lemma 1. For a~y € 'Y, if all trees in v are balanced then all trees in cons(y)
are balanced.

Now we show how to get a sequence of trees from runs of the automaton. Let
treeRun : ¥+t — I't be a homomorphism with respect to the word composition
defined by treeRun(a) = (Run(a),a).

Assume that there is a factorization function d fixed. Let for a word w €
X*, 4w be defined as cons™(treeRun(w)), where n € N is the least such that
cons™(treeRun(w)) = cons™*!(treeRun(w)). Note that ~,, is always defined, be-
cause for all v € I't, |cons(y)| < |y| and if |cons(y)| = |y| then cons(v) = 7. Let
T = tree(vyy, ). We call Ty, the reduced factorization tree of w constructed by d.
From LemmalIlit follows that T, is balanced (note that if cons™(y) = cons™*1 ()
then cons™(y) contains only green trees).

Remark. Notice that we do not explicitly mention the factorization function d
in the definition of a reduced factorization tree Ty, constructed by d from a word
w. It is always clear from the context which factorization function we mean.

We show that for each R-automaton there is a factorization function such that
for any w the height of the tree T, is bounded by a constant computed from the
parameters of the automaton.

Lemma 2. Given an R-automaton A, there is a factorization function d such
that for all words w € X, h(T,) < 3-|P|%.

3.3 Correctness

To formulate the first correctness lemma, we define the following concept of a
length function [ : I' — N inductively by

1 if T is a leaf
UT) = q UT) + U(T2) if T has two children T4, T»
2 -max{l(T1),...,l(Ty)} if T has children T4,..., Ty, m >3
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By induction on h(Ty,) and using the bound derived in Lemma [2] one can
show the following claim.

Lemma 3. Given an R-automaton A,zthere is a factorization function d such
that for all words w € X+, 1(T,,) < 8IFI".

We say that s — s’ or s —p s realizes t if there is a witnessing path
(s,a1,t1,51), (51,a2,t2,52), ..., (8)w|—1, |w], tjuw|, §') such that t = tyoty0- - -0t .

Let us define Runp(w) to be the pattern obtained by running the automaton
over w in the D-semantics. Formally, Runp(w)(s,s’) contains ¢ if and only if
s —p s’ realizes t. Note that the function Runp is not a homomorphism with
respect to the word composition. We also define a relation T on patterns by
o C o' if and only if for all s, ', o(s,s") C o’(s,s').

From Lemma [ we show that there is a factorization function such that for
every w, Pat(T,) corresponds to the runs of the R-automaton which can be
performed in the D-semantics for any big enough D. This is formulated in the
following lemma.

Lemma 4. Given an R-automaton, there 22'5 a factorization function such that
for all w € X* and for all D € N, D > 8" Pat(T,) C Runp(w).

Of particular interest are runs starting in the initial state.

Corollary 1. Given an R-automaton A, there is a factorization function such
that for all words w, if Pat(Ty)(so,s) # 0 then there is a run (so, (0,...,0))

5p (s, (c1,...,cn)) where D = 1(Ty).

It remains to show that if the relation between the patterns in the previous
lemma is strict then there is a word for each D which is a witness for the
strictness, i.e., the runs over this word in the D-semantics generate a smaller
pattern than over the original word. These witness words are generated from a
+-free regular expression r by pumping r; for all subexpressions r] of r. Let
us define a function re which for a reduced factorization tree returns a +-free
regular expression inductively by

Word(T") if T is a leaf
re(T) = < re(Ty) - re(Ty) if T has two children T4, T
(re(Th))* if T has children 7,75, ..., T, m > 3

For a +-free regular expression r and a natural number k£ > 0, let the function
pump(r, k) be defined inductively as follows: pump(a, k) = a, pump(ry - 72, k) =
pump(r, k) - pump(r2, k), and pump(r*, k) = pump(r, k)"

For example, pump(a(bc*d)*aa*,2) = abeedbeedaaa.

Lemma 5. Given an R-automaton and a factorization function, for allw € X+
and all D € N there is a k € N such that Runp(pump(re(Ty), k)) C Pat(Ty,).

A special case are runs starting from the initial state.

Corollary 2. Given an R-automaton, for any w € X, if Pat(Ty,)(so,s) = 0
then YD3k such that there is no run (sq, (0,...,0)) —=p (s, (c1,...,cn)) where
v = pump(re(Ty), k).
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3.4 Algorithm

To check the universality of an R-automaton A, we have to check all patterns o
such that o = Pat(7),) for some w € Xt and some factorization function. If there
is a o such that for all sy € F, 0(so,s¢) = 0 then for all D € N, Lp(A) # X*.
This gives us the following algorithm. Recall that o, denotes the unit of (P, e).

The algorithm uses a set of patterns P as the data structure. Given an
R-automaton A = (S, X, A, sg, F') on the input, it answers YES’ or ‘NO’. The
set P is initialized by P = {o]oc = Run(a),a € X} U {o.}.

While |P| increases the algorithm performs the following operations:

— pick 01,09 € P and add o1 e 05 back to P.
— pick a o € P such that o is idempotent and add reduce(o) back to P.

If there is ¢ € P such that for all sy € F, o(sg,sr) = 0, answer ‘NO’,
otherwise, answer ‘YES’.
The correctness is stated in the following theorem. See [2] for the full proof.

Theorem 2. The algorithm is correct and runs in 2-EXPSPACE.

Proof. The algorithm terminates because P is finite. Its correctness follows from
the previous two corollaries. The algorithm needs space |P| (the number of dif-
ferent patterns). The size of P is 2™)I15* (|S|2 different pairs of states, 2™ dif-
ferent sets of effects). Therefore, the algorithm needs double exponential space.

4 Biichi Universality

The universality problem is also decidable for R-automata with Biichi acceptance
conditions.

Theorem 3. For a given R-automaton A, the question whether there is D € N
such that LY, (A) = X% is decidable in 2-EXPSPACE.

To show this result, we need to extend patterns by accepting state information. A
pattern is now a function o : S x § — 2{01A0LT} "where for s, 5" and (a,t) €
o(s,s’), the value of a encodes whether there is a path from s to s’ realizing ¢
which meets an accepting state. For instance, o(s,s") = {(0, (0,7)),(1,(1,1))}
means that there are two different types of paths between s and s’: they either
realize (0,7) but do not visit an accepting state, or realize (1,1) and visit an
accepting state. We define the composition e by defining the composition on the
accepting state: 000 = 0,001 = 100 = 1ol = 1. The set of patterns (denote again
P) with e is a finite monoid. We define the function reduce in the same way as
before, i.e., the accepting state information does not play any role there. Clearly,
either reduce(o) = o or reduce(c) <7 o, so the reduced factorization trees have
bounded height. Lemma [ and Lemma [ also hold, because (non)visiting an
accepting state does not influence the runs in the D-semantics.

This allows us to use the same algorithm as for the finite word universality
problem, except for the condition for concluding non-universality. The condition
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is whether there are 01,02 € P such that oy is idempotent and for all s such
that o1(so,s) # 0 the following holds. If {a,t) € o2(s,s) then either a = 0 or
t ¢ {0,r}™. For a full proof of Theorem Bl see [2].

5 Conclusions

We have defined R-automata — finite automata extended with unbounded coun-
ters which can be left unchanged, incremented, or reset along the transitions.
As the main result, we have shown that the following problem is decidable in
2-EXPSPACE. Given an R-automaton, is there a bound such that all words are
accepted by runs along which the counters do not exceed this bound? We have
also extended this result to R-automata with Biichi acceptance conditions.

As a future work, one can consider the (bounded) universality or limitedness
question to vector addition systems (VASS) or reset vector addition systems
(R-VASS), where the latter form a superclass of R-automata. The limitedness
problem can be shown undecidable for R-VASS for both finite word and w-word
case, while it is an open question for VASS. The universality problem can be
shown to be undecidable for R-VASS for w-word case, in other cases it is open.
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Abstract. We propose a model of distributed timed systems where each com-
ponent is a timed automaton with a set of local clocks that evolve at a rate in-
dependent of the clocks of the other components. A clock can be read by any
component in the system, but it can only be reset by the automaton it belongs to.

There are two natural semantics for such systems. The universal semantics
captures behaviors that hold under any choice of clock rates for the individual
components. This is a natural choice when checking that a system always sat-
isfies a positive specification. However, to check if a system avoids a negative
specification, it is better to use the existential semantics—the set of behaviors
that the system can possibly exhibit under some choice of clock rates.

We show that the existential semantics always describes a regular set of behav-
iors. However, in the case of universal semantics, checking emptiness turns out
to be undecidable. As an alternative to the universal semantics, we propose a re-
active semantics that allows us to check positive specifications and yet describes
a regular set of behaviors.

1 Introduction

In today’s world, it is becoming increasingly important to look at networks of timed
systems, which allow real-time systems to operate in a distributed manner. Many real-
life systems, such as mobile phones, computer servers, and railway crossings, depend
crucially on timing while usually consisting of many interacting systems. In general,
there is no reason to assume that different timed systems in the networks refer to the
same time or evolve at the same rate.

Timed automata [@] are a well-studied formalism to describe systems that require
timing. However, networks of timed automata, under the assumption of knowledge of a
global time, as done in [B, @], do not really reflect the distributed model. In this paper,
we provide a framework to look at distributed systems with independently evolving
local clocks. Each constituent system is modeled by a timed automaton. All clocks
belonging to this timed automaton evolve at the same rate. However clocks belonging
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COVER/RNP Timed-DISCOVERI.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 82 2008.
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to different processes are allowed to evolve at rates that are independent of each other.
We allow clocks belonging to one process to be read/checked by another but we require
that a clock can only be reset by the automaton it belongs to. In addition, since we have
differing time values on different processes, we are interested in the underlying untimed
behaviors of these distributed timed automata rather than their timed behaviors. Thus,
the clocks (and time itself) are implementation or synchronization tools rather than
being a part of the observation. To ensure that we focus on this problem of varying
local time rates, we move to a more general setting with shared memory, which allows
us to describe more general systems such as networks of timed asynchronous automata.

It is now natural to look at different semantics depending on the specifications that
we want our system to satisfy. When we want to guarantee that our system exhibits
a positive specification, we look at the universal semantics. This semantics describes
the behaviors exhibited by the system no matter how time evolves in the constituent
processes. However, if we want to check that our system avoids a negative specifica-
tion, then we prefer to look at the existential semantics. This is the set of behaviors that
the system might exhibit under some (bad) choice of local time rates in the constituent
processes. We perform a region construction on our distributed timed automata to show
that the existential semantics always gives a regular set of untimed behaviors. Thus the
model checking problem of distributed timed automata against regular negative speci-
fications is decidable as well. On the other hand, we show that checking emptiness for
the universal semantics is undecidable. This is done by a reduction from Post’s corre-
spondence problem (PCP) by encoding a PCP instance in terms of the local time rates
and ensuring that there is a solution to the PCP instance if and only if there is a valid
behavior under all local time rates. This result is further strengthened to a bounded case,
where we have restrictions on the relative time rates. Finally, to be able to synthesize
and check for positive specifications, we introduce a more intuitive reactive semantics,
which has the additional advantage of ensuring decidability. This model corresponds to
being able to make sure, step by step, that a positive specification is exhibited by our
system. This is formally done by defining an equivalent alternating automaton, gener-
ating a regular behavior.

Related work. In [Ia, ], classical timed automata are equipped with an additional
parameter A, which allows a clock to diverge over a period ¢ from its actual value by
At. This model conforms, in a sense, to our existential semantics, where we restrict
the set of clock rates to those corresponding to A (see Section [3). Syntactically, our
model coincides with that from [ﬂ]: A clock can only be reset by the owner process,
whereas it can be read by any process. However, the above works differ from ours since
they consider timed words rather than untimed languages. This also explains why our
automata differ from hybrid automata [@]. In the model of [@], clocks are not shared and
clocks on different processes drift only as long as the processes do not communicate.
These assumptions make partial-order—reduction techniques applicable. A fundamental
difference between all these approaches and our work is that we do not restrict to system
configurations that can be reached under some local-time behavior. We also tackle the
problem of checking positive specifications by providing semantics that can check if a
system exhibits some behavior under all relative clock speeds.
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Structure of the paper. In Section 2, we introduce our distributed automaton model
with independently evolving clocks, and define its existential and universal semantics.
Section [3] extends the regions of a timed automaton to our distributed setting, allow-
ing us to compute a finite automaton recognizing the existential semantics. Section @]
shows that checking emptiness of the universal semantics is undecidable. This result is
sharpened towards bounded clock drifts in Section[3l Section [6] deals with the reactive
semantics, and Section[7]identifies some directions for future work.
A full version of this paper is available ].

2 Distributed Timed Automata

Preliminaries. Foraset X, we let * and X* denote the set of finite and, respectively,
infinite words over 2. The empty word is denoted by €. We set X)>° = X* U X and
X+ = 3*\ {e}. The concatenation of words v € X* and v € X*° is denoted by u - v.
An alphabet is a non-empty finite set. Given an alphabet X', we denote by Y. the set
X U {e}. The set of non-negative real numbers is denoted by R>. Fort € R>, |t] and
fract(t) refer to the integral and, respectively, fractional part of ¢, i.e., t = |¢]+ fract(t).

The set Form(Z) of clock formulas over a set of clocks Z is given by the grammar
@ u=true | false | z > C' | = | o1 A w2 | v1 V 2 where z is a clock from Z,
€ {<,<,>,>,=}, and C ranges over N. A clock valuation over Z is a mapping
v : Z — Rx>o. We say that v satisfies ¢ € Form(Z), written v |= ¢, if ¢ evaluates to
true using the values given by v. For R C Z, v[R] denotes the clock valuation defined
by v[R](x) = 0if x € R and v[R](z) = v(z), otherwise.

The model. Let us recall the fundamental notion of timed automata [@]. These will
constitute the building blocks of our distributed timed automata. A timed automaton is
atuple A = (S, X, Z,4,1,., F) where S is a finite set of states, X' is the alphabet of
actions, Z is a finite set of clocks, § C S x X x Form(Z) x 2% x S is the finite
set of transitions, I : S — Form(Z) associates with each state an invariant, . € S is
the initial state, and F' C S is the set of final states. We let Reset(A) = {x € Z |
there is (s, a, ¢, R,s’) € § such that z € R} be the set of clocks that might be reset in
A. Without loss of generality, we will assume in this paper that (¢) is satisfied by the
clock valuation over Z that maps each clock to 0.

We will now extend the above definition to a distributed setting. First, we fix a non-
empty finite set Proc of processes (unless otherwise stated). For a tuple ¢ that is indexed
by Proc, t,, refers to the projection of ¢ onto p € Proc.

Definition 1. A distributed timed automaton (DTA) over the set of processes Proc is a
structure D = ((Ap)pe Proc, ™) where the A, = (Sp, Xp, Zp, 0p, Ip, tp, F}p) are timed
automata and w is a mapping from | Z, to Proc such that, for each p € Proc,
we have Reset(A,) C 7~ 1(p) C Z,.

pe Proc

Note that Z,, is the set of clocks that might occur in the timed automaton A, either
as clock guard or reset. The same clock may occur in both Z, and Z,, since it may be
read as a guard in both processes. However, any clock evolves according to the time
evolution of some particular process. This clock is then said to belong to that process,
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Ap: Ag y<1

. a,y<1 . a, {z} ' . b,z >1 . b,0<zxz<1 '

Fig. 1. A distributed timed automaton over {p, ¢}

and the owner map, m, formalizes this in the above definition. This will become more
clear when we describe the formal semantics later in this section. Further, we assume
that a clock can only be reset by the process it belongs to.

Example 2. Suppose Proc = {p,q}. Consider the DTA D as given by Figure [ It
consists of two timed automata, .4, and .A,. In both automata, we suppose all states to
be final. Moreover, the owner mapping 7 maps clock x to p and clock y to q. Note that
Reset(A,) = {x} and Reset(A,) = (). Before we define the semantics of D formally
and in a slightly more general setting, let us give some intuitions on the behavior of D.
If both clocks are completely synchronized, i.e., they follow the same local clock rate,
then our model corresponds to a standard network of timed automata [B]. For example,
we might execute a within one time unit, and, after one time unit, execute b, ending up
in the global state (s1,71) and a clock valuation v(z) = v(y) = 1. If we now wanted
to perform a further b, this should happen instantaneously. But this also requires a reset
of z in the automaton 4, and, in particular, a time elapse greater than zero, violating
the invariant at the local state 1. Thus, the word abab will not be in the semantics that
we associate with D wrt. synchronized local-time evolution. Now suppose clock y runs
slower than clock z. Then, having executed ab, we might safely execute a further a
while resetting x and, then, let some time elapse without violating the invariant. Thus,
abab will be contained in the existential semantics, as there are local time evolutions
that allow for the execution of this word. Observe that a and aa are the only sequences
that can be executed no matter what the relative time speeds are: the guard y < 1 is
always satisfied for a while. But we cannot guarantee that the guard x > 1 and the
invariant y < 1 are satisfied at the same time, which prevents a word containing b from
being in the universal semantics of D.

The semantics. The semantics of a DTA depends on the (possibly dynamically chang-
ing) time rates at the processes. To model this, we assume that these rates depend
on some absolute time, i.e., they are given by a tuple 7 = (7;)pe proc Of functions
Tp : R>o9 — Rx>q. Thus, each local time function maps every point in global time to
some local time instant. Then, we require (justifiably) that these functions are continu-
ous, strictly increasing, and divergent. Further, they satisfy 7,,(0) = 0 for all p € Proc.
The set of all these tuples 7 is denoted by Rates. We might consider 7 as a mapping
RZO — (Rzo)Pmc so that, for t € Rzo, T(t) denotes the tuple (Tp(t))pepmc.

A distributed system can usually be described with an asynchronous product of au-
tomata. Indeed, the semantics of a DTA can be defined with such a product and a
mapping that assigns any clock to its owner process: Let D = ((A})pe Proc, T) With
A, = (Sp, Xpy Zp,0p, Ip, 1, Fpp) be some DTA. We assign to D the asynchronous
product Bp = (S, X, Z,6,1,, F, ) as one might expect: We set S = Hpepmc Sps
Y= UpEProc ZP’ Z = UpGPT‘OC ZP’ L= (LP)PEPTOC’ and [ = HpEProc FP' More-

over, for any s € S, we let I(s) = A ¢ p,o. Ip(sp). Finally, for s,s" € S, a € X,
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¢ € Form(Z), and R C Z, we let (s,a, ¢, R,s") € 0 if there is p € Proc such that
(sp;a,, R, s,) € 0, and s, = s, for each g € Proc \ {p}.

Actually, most variants of a shared-memory model and their semantics can be unified
by considering one single state space. This motivates the following definition:

Definition 3. A timed automaton with independently evolving clocks (icTA) over Proc
is a tuple B = (S, X, 2,6,1,.,F, ) where (S, X, Z,0,1,1,F) is a timed automaton
and 7 : Z — Proc maps each clock to a process.

Thus, the structure Bp that we assigned to a DTA D is an icTA. Most of the following
definitions and results are based on this more general notion of a timed system and
therefore automatically carry over to the special case of DTAs. We will now define a
run of an icTA. Intuitively, this is done in the same spirit as a run of a timed automaton
over a timed word except for one difference. The time evolution, though according to
absolute time, is perceived by each process as its local time evolution. So let B =
(S,X,Z2,0,1,.,F,) be an icTA. Given a clock valuation v over Z and a tuple t €
RFT¢ we let the valuation v+t be given by (v+t)(z) = v(x) 4ty (. forallz € Z. For

Qn,tn

T € Rates, a T-run of B is a sequence (so, Vo) St (s1,v1) - (Sn—1,Vn—1)
(Sn,vn) wheren > 0,s; € S, a; € X¢, and (¢;)1<i<n is a non-decreasing sequence of
values from R>g. Further, v; : Z — R> with vo(z) = 0 for all z € Z. Finally, for
alli € {1,...,n}, there are p; € Form(Z) and R; C Z such that the following hold:
(81'7170,1'7 Di RZ', SZ') S (5, Vi—1 + T(t/) - T(tifl) ): I(Sifl) for each ¢/ S [tifl,ti],
Vi—1 +T(ti) —T(ti_l) ': Yi, Vi = (Vi—l —|—T(ti) —T(ti_l))[Ri}, and v; ': I(Sl) In that
case, we write (B, 7) : so % 5 oralso (B, 7) : s = g S o to
abstract from the time instances. The latter thus denotes that 5 can, reading w, go from
sp via s; to s, while respecting the local-time behavior 7.

Definition 4. Let B = (S, X, Z,0,1,1, F,m) be anicTA and 7 € Rates. The language
of B wrt. 1, denoted by L(B, T), is the set of words w € X* such that (B, 7) : 1 — s
for some s € F. Moreover, we define L3(B) = |, ¢ pases L(B, T) to be the existential

semantics and Ly (B) = (¢ pates L (B, T) to be the universal semantics of B.

If | Proc| = 1, then an icTA B actually reduces to an ordinary timed automaton and we
have Ly(B) = L(B,7) = L3(B) for any 7 € Rates. Moreover, if |Proc| > 1 and
T € Rates exhibits, for all p € Proc, the same local time evolution, then L(B, 7) is the
language of B considered as an ordinary timed automaton.

Example 5. A sample icTA B over set of processes {p, ¢} and X' = {a, b, ¢} is depicted
in Figure 2l Assuming 7~ !(p) = {2} and 7~ !(q) = {y}, we have Ly(B) = {a, ab},
L(B,id) = {a,ab, b}, and L3(B) = {a, ab, b, c} where id, is the identity on R for
all p € Proc (i.e., id models synchronization of any process with the absolute time).

It is worthwhile to observe that L(B, 7) can, in general, have bizarre (non-regular) be-
havior, if 7 is itself a “weird” function. This is one more reason to look at the existential
and universal semantics. Let us quantify this with an example. Consider the simple
icTA B over Proc = {p,q} fom Figure Bl where X’ = {a,b}, 7~!(p) = {z}, and
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Fig.2. An icTA B with independent clocks x and y Fig. 3. A “weird” icTA

7~ 1(q) = {y}. Further, let T = (id,, 7,), where 7, is any continuous, strictly increas-

ing function such that 7,(0) = 0 and 7,(n) = 2" — 0.1 for any n > 1. Then, L(B, 7) is

the set of finite prefixes of the infinite word bab%ab*abBab'®a . . ., which is not regular.
Finally, the semantics of a DTA is formally described in terms of its icTA.

Definition 6. For a DTA D and 7 € Rates, we set L(D,7) = L(Bp,T) to be the
language of D wrt. 7, and we define L3(D) = U, c pares L(D, 7) as well as Ly(D) =
(¢ rates L(D, T) to obtain its existential and universal semantics, respectively.

Example 7. For the DTA D from Figure [l we can formalize what we had described
intuitively: L(D,id) = Pref({aab, aba,baa}), L3(D) = Pref({aab,abab, baab}),
and Ly (D) = Pref({aa}) where, for L C X*, Pref(L) = {u | u,v € Z*,u-v € L}.

3 Region Abstraction and the Existential Semantics

Given an icTA B and a set Bad of undesired behaviors, it is natural to ask if 3 is robust
against the (unknown) relative clock speeds and faithfully avoids executing action se-
quences from Bad. This corresponds to checking if L3(53) N Bad = (). In this section,
we show that this question is indeed decidable, given that Bad is a regular language.
To this aim, we define a partitioning of clock valuations into finitely many equivalence
classes and generalize the well-known region construction for timed automata [Ij].

Let B = (5,X,2,0,1,1,F,m) be an icTA. For a clock z € Z, let C;, € N be the
largest value the clock x is compared with in B (we assume that such a value exists).
We say that two clock valuations v and v’ over Z are equivalent if the following hold:

— foreachx € Z, v(x) > C, iff v/ (x) > Cy,

- foreach z € Z, v(z) < C, implies both |v(x)] = [V/(z)] and (fract(v(z)) =0
iff fract(v/(z)) = 0), and

— for each p € Proc and z,y € 7~ !(p) such that v(z) < C, and v(y) < C,, we
have fract(v(x)) < fract(v(y)) iff fract(v'(z)) < fract(V'(y)).
Note that this constraint only applies to clocks that belong to the same process.

An equivalence class of a clock valuation is called a clock region (of B). For a valuation
v, [v] denotes the clock region that contains v. The set of clock regions of 3 is denoted
by Regions(B3). Let v and 4 be two clock regions, say with representatives v and v/,
respectively. We say that v is a accessible from v, written v < +/, if 4/ = ~ or if
there is ¢ € (Rs)F™¢ such that v/ = v + t. Note that < is a partial-order relation.
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Fig. 4. Accessible and non-accessible regions Fig.5. dir(7) = 010...

The successor relation, written v < 7/, is as usual defined by v < 7’ and 4" = ~ or
~" =+ for all clock regions " with v < 7" < +/.

Example 8. The accessible-regions relation is illustrated in Figure[dl Suppose we deal
with two processes, one owning clocks 1 and z2, the other owning a single clock y.
Suppose furthermore that, in the icTA at hand, all clocks are compared to the constant
2. Consider the prisms 7o, 71, V2, V1, V4, €ach representing a non-border clock region,
which are given by the clock constraints 79 = (0 < z2 < 1 < 1) A (0 <y < 1),
N=0<z2<z1 —1<DHAO<y<l)ymm=>0<z<21<2)AN0<y<1),
Yh=1<z <z <2)A(I<y<2),andye=(I1<zz<z1 <2)A(1<y<2).
We have 9 < 71 < 2. However, o Z 7 and vy A 5.

Let B = (S,X,2,0,1,.,F,m) be an icTA over Proc. We associate with 5 a non-
deterministic finite automaton Rg = (S’, X, ¢’,./, F'), called the region automaton of
B, which is defined as follows: S' = S x Regions(B), ' = (¢, [v]) where v(x) = 0 for
allz € Z, F' = F x Regions(B),and fora € Y., s,s' € S, and 7,7’ € Regions(B),
0’ contains ((s,7), a, (s',7)) if
—a=¢s5=5,7=<7,and v = I(s) for some v/ € ~'
(we then call ((s,7),a, (s',7")) a time-elapse transition), or
- thereare v € yand (s,a,p, R,s’) € d such thatv |= o A I(s), V[R] = I(s'), and
v[R] € +' (we then call ((s,7),a, (s',7')) a discrete transition).

A part of the region automaton for the icTA from Figure 2lis shown in Figure[I0l
Indeed, the language L(R ) of the non-deterministic finite automaton R 5, which is
defined as usual, coincides with the existential semantics of B:

Lemma9. Let B = (S,X,Z,0,1,1,F, ) be anicTA and let C be the largest constant
a clock is compared with in B. Then, the number of states of Rp is bounded by |S)| -
(2C +2)12! | Z|! and we have L(Rg) = L3(B).

Thus, we solved the verification problem stated at the beginning of this section:

Theorem 10. Model checking icTAs wrt. regular negative specifications is decidable.
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4 The Universal Semantics

While the existential semantics allows us to verify negative specifications, the universal
semantics is natural when we want to check if our system has some good behavior.
By good we mean a behavior that is robust against clock variations. Unfortunately, this
problem is undecidable. This is shown for icTAs first and then will be extended to DTAs.
Moreover, it turns out to be undecidable if, for a positive specification Good containing
the behaviors that a system must exhibit and an icTA B, we have Good C Ly(B).

Theorem 11. The following problem is undecidable if | Proc| > 2: Given an icTA B
over Proc, does Ly(B) # 0 hold?

Proof. The proof is by reduction from Post’s correspondence problem (PCP). An in-
stance Inst of the PCP consists of an alphabet A and two morphisms f and g from A™
to {0, 1}*. A solution of Inst is a word w € A™ such that f(w) = g(w).

Suppose Proc = {p, q} and let 7 € Rates. One may associate with 7 two sequences
t-dir(1) = tita... € (R>0)® of time instances and dir(7) = didz ... € {0,1,2}* of
directions as follows: for i > 1, we let first (assuming to = 0) ¢; = min{t > ¢, |
7r(t) — 7 (ti—1) = 2 for some r € Proc}. With this, we set

0 ipr(ti)—Tp(ti,l):2and1 <Tq(ti)—’rq(ti,1) <2
d; =<1 iqu(ti) — Tq(tifl) =2and1 < Tp(ti) — Tp(tifl) <2
2 otherwise

The construction of dir(7) is illustrated in Figure[3l The idea is to allow the shape of the
relative time-rate function (from 7) to encode a word in {0, 1, 2}*. We do this using 2 x
2-square regions, each consisting of 4 sub-squares as shown. If the rate function leaves
this region by the upper boundary or right boundary of the right-upper sub-square, then
we write 1 or 0, respectively. If it leaves by any other boundary or by end-points of any
sub-square, then we write 2. A new square region is started at the point where the rate
function left the old one. Thus, the direction sequences partition the space of time rates.

Roughly speaking, a word is accepted universally by an icTA iff it is accepted for all
directions. Our trick will be to define an icTA such that, the PCP instance has a solution
w iff the word wb is accepted by the icTA for all directions. Thus, if there is no solution
to the PCP, there will be some direction sequence (respectively, local time rates) for
which the icTA does not accept.

Let an instance Inst of the PCP be given by an alphabet A = {aq,...,a;} with
k > 1 and two corresponding morphisms f and g. We will construct an icTA B =
(S, X, Z,0,1,, F, ) over the set of processes Proc = {p,q} and ¥ = {a1,...,a,b}
such that Ly(B) = {wb | w € A" and f(w) = g(w)}. First, let Z = {z,y} with
7(z) =pand 7(y) = q. Ford € {0, 1,2}, we set

r=2AN1<y<?2 ifd=20
guard(d) =< y=2 AN 1<z <2 ifd=1
(x<1lvVva=2)Ay=2)V y<1 Azxz=2)ifd=2

Moreover, let guard(d) =V ye (o123 ay Juard(d’).
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a, guard(dy) e, guard(dz) €, guard(ds) e, guard(dn)

a, guard(dy) e, guard(dz) e, guard(dn)

wyy wyr o (o0}

Fig. 6. Transition macro

Fig. 7. Encoding of PCP

The final encoding of the given PCP instance in terms of the icTA is given by
Figure[7l Hereby, givena € Aando = d; ...d, € {0,1,2}" (with d; € {0, 1,2} for
any j € {1,...,n}), a transition of the form

(a,0 -
(s) o
")

will actually stand for the sequence of transitions that is depicted in Figure[@] say, with
intermediate states S(; q.7,1)s - - - » S(i,a,r,n—1)-

Example 12. Consider the PCP instance Inst given by A = {a1,az}, f(a1) = 101,
g(a1) =1, f(az) =1, g(az) = 01110 with the obvious solution w = ajaga;. One can
check that ajasaib € Ly(B). This is illustrated in Figure [§ In the tree depicted, any
path corresponds to a finite prefix (of length |w| + 1) of some sequence of directions.
The edges are labeled by this sequence, where a left-edge is 0, downward is 2 and right-
edge is 1. Thus, intuitively, a word wb is in the universal language iff all paths of the
tree correspond to accepting runs in B. Now, lets verify that the word wb is accepted
by B. If clock rate 7 is such that dir(7) € f(w)-d-{0,1,2}* with d € {0, 1}, then
the accepting run of B is the path shown in the left figure, which assigns states s; to
nodes of the tree and finishes at s;. If d = 2, then the accepting run of B is the path
in the figure on right, which assigns states sy appropriately, crucially using the fact that
f(w) = g(w), and finally ends at s. If the clock rate 7 has dir(7) different from above
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Fig. 8. The tree generated by w = a1a2a1b with respect to f and g

case, it is easy to see that there is an accepting run in which B reaches state sy by
passing through state ;.

Let us show that our reduction is indeed correct. In the following, let < denote the usual
prefix relation on words.

Claim 13. For 7 € Rates and w € A7, the following hold:

() f(w) < dir() iff (B, 7) : s — 51
) g(w) < dir(r)iff (B, 7) : 5o — so
(3) f(w) £ dir(r)iff (B, 7) : so — 71

With Claim[I3] whose proof can be found in the full version [|I|], we can now show both
directions of the correctness of the construction of B.

Let 7 € Rates and suppose f(w) = g(w). We dlstlngmsh three cases: If dir(1) €
Flw) - {0,1} - {0, 1,2}, then, by (1), (B, 7) : s9 > s1 % sp. If dir(7) € f(w) -2
{0,1,2}, then (B, 7) : 50 — 52 LA sf. This follows from (2), since g(w) = f(w). If
f(w) £ dir(t), then, by (3), (B, 7) : 89 — 71 LN sy. Hence, wb € Ly(B).

Letw € A" and suppose wb € Ly(B). Pick 7 € Rates such that dir(7) € f(w) -
2-{0,1,2}*. As f(w) < dir(r), we have, by (3), (B,7) : 89 £ 1 and (B, 7) : 59 —
51 714 Thus, we must have (B, 7) : 59 — s2 LN 5. Hence, by (2), g(w) - 2 < dZT’(T).
As f(w),g(w) € {0,1}*, we have both f(w) -2 < dir(r) and g(w) - 2 < dir(7),
which implies f(w) = g(w). O

Our result can be strengthened and extended to the distributed setting as follows:

Theorem 14. Suppose |Proc| > 2. For DTAs D over Proc, the emptiness of Ly(D) is
undecidable.

Proof. We fix Proc = {p, q} and the clock distribution Z,, = {z} and Z, = {y}. Each
process will be a copy of the automaton that is depicted in Figure [7, except for one
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L, guard(dy)

€, guard(dz) e, guard(ds) e, guard(dn)

L, guard(dy) e, guard(ds) e, guard(dz)

x < 2SS = <
y<1 y<1 y<1 y<1 y<1

Fig. 9. Transition macro for the distributed setting

difference: for process p, the transition macro from Figure [6lis replaced with that from
Figure [0l where L is the letter a € A and R is the singleton set {x}; for process ¢, we
use the same new macro, but now we have L = ¢ and R = {y}.

To see how this works, we will just point out the difficulties and why the additional
states with invariants and e-transitions fix them. In the transition macro in Figure
clocks x and y belonging to different processes are reset at the same time. So, here
we have two copies of the same automaton doing the same simulation but reset x in
the automaton for process p, and y in the other. But this is not enough, since in the
truly distributed setting, we cannot ensure that the clock resets are in sync. This might
allow one process to wait while the other has reset its clock and thereby enable (wrong)
transitions to state r;, thus allowing the two automata copies to differ in the simulation.
To ensure that the same path is followed, we split each state (except s; and r;) into two.
The invariant on the first part then ensures that, before the next transition is enabled by
the guard (which happens in the second part), both have been reset.

Let us examine this in more detail. Being in two identical copies of a state with
an outgoing e-transition, the e-transitions might indeed be taken asynchronously by
p and g. However, the following transitions will be performed synchronously by both
processes. Assume first that p follows a transition of the form (s, a, guard(d), {z}, s,)
before process ¢ moves. As guard(d), where d € {0, 1}, is satisfied when p goes to s;,
the value of both clocks exceeds 1. But as x is reset at the same time whereas ¥ is not,
the invariant associated with s; is violated, which is a contradiction. Thus, ¢ has to take
the corresponding transition, which is of the form (s, a, guard(d), {y}, s,), simultane-
ously. This explains why we use 2 x 2-squares as in Figure[Qland corresponding guards.
In DTAs, they allow us to check when one clock has been reset and other has not. Now
consider the case where p performs a transition of the form (s, a, guard(d), (), s},).
When p executes its transition, at least one clock has reached the value 2. As this clock
cannot be reset anymore, g is obliged to follow instantaneously the corresponding tran-
sition of the form (s, a, guard(d), (), s;,), to reach a final state. |

Along the lines of the proofs of Theorems[I1land [[4 we can show the following theo-
rem, from which we derive the subsequent negative result (see (1] for details):

Theorem 15. Suppose that |Proc| > 2. For DTAs D over Proc, it is undecidable if
Ly(D) = X* (where X is the set of actions of Bp).
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Theorem 16. Model checking DTAs over at least two processes against regular posi-
tive specifications is undecidable.

5 Playing with Local Time Rates

We have shown that it is undecidable to check if there is some word that is accepted
under all clock rates by a given icTA B. It is natural to ask if it is possible to restrict
the independence of local time rates in some way to get decidability. For instance, we
could insist that the ratio or the difference of local times in different processes must
always be bounded. Unfortunately, this does not help. In fact, it turns out that our proof
in Section @l can be used to show that both these restrictions are already undecidable.
Let us formalize this. We will restrict to two processes, Proc = {p,q}. We note
however that the following definitions can be easily generalized to more processes. For
a rational number k£ > 1, we define Ratesw(k) = {7 = (7p,74) € Rates | ,16 <

74} <k forall t € Reo}. This s the set of all rate-function tuples such that the ratio
of the local times in the two processes are always bounded by fixed rationals. Further,
for a rational number ¢ > 0, Ratesqif({) = {1 = (1, 74) € Rates | |7,(t) — 14(t)| < ¢
forall t € R>(}. These are the rate function tuples for which the difference between
the local times in the two processes are bounded by some constant. Accordingly, for

an icTA or a DTA B, we define Lrvat’k(B) = ﬂTeRateSm(k) L(B,T) and Ldvif’e([)’) =
ﬂTGRatesd,f(Z) L(Ba T)'

Theorem 17. For icTAs or DTAs B over Proc = {p, q},

1. the emptiness of Lf;“’l (B) = Ldvif’O(B) is decidable.
2. the emptiness ofL;at’k(B) is undecidable for every rational k > 1.

3. the emptiness of Ldvif’z([)’) is undecidable for every rational { > 0.

To prove the theorem, we need the following lemma.

Lemma 18. Ler k > 1, £ > 0 be some fixed rationals. For all o € {0,1,2}*, there
exists T € Ratesy (k) N Ratesair(£) such that o is a prefix of dir (7).

Proof. Let 0 = dydy...d, € {0,1,2}* be of length n. We define 7 (in terms of
n + 1 points) as follows: 7, is the piecewise linear function with 7,,(2i) = z; for
i€{0,...,n}and 7,(2n + t) = x,, + ¢ for all t € R>. Similarly, 7, is defined as the
piecewise linear function with 7,(2¢) = y; fori = {0,...,n} and 7,(2n +t) = y,, + ¢
for t € R>(. The points (z;, y;) are defined by xp = yo = 0 and, fori € {1,...,n},
x; = 2i — aldy...d;|y and y; = 2i — a|d; ...d;|o (|o’|q denoting the number of
occurrences of d in o), where « is a rational parameter to be fixed.

With the above definition, we observe that, for all 4, we have |z; — y;| < i«, and, for
i>0,wehavel — § < ¥ < 1_}1/2. Thus, by choosing o = min { £, 2(1 — )}, we
can check that 7 € Ratesy (k) N Ratesqie(€). Also it is easy to see that dir (1) = o-2%,
which proves the lemma. O
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Now, we can prove Theorem [[71 For k¥ = 1 or £ = 0, the sets Rates.(k) and
Ratesqir(£) consist of exactly the tuples in which time evolves at the same rate in both
processes. Thus the sets are identical and correspond to an ordinary timed automaton
so that emptiness is decidable.

Now, let & > 1 and £ > 0. Given a PCP instance as before, we again consider
the icTA (or DTA) B from Section @l We want to show that w € A™ is solution iff
wb € Ly(B) = L;at’k(B) = Ldv'f’e([j’). One direction is trivial. If, for w € AT, we
have f(w) = g(w), then wb € Ly(B), and this implies that wb € L;at’k(B) and wb €
LY (B). On the other hand, if wb € LZ"*(B) or wb € LY (1), then, by Lemma I8l
we pick 7 € Ratesy (k)N Ratesair(¢) such that dir(7) = f(w)-2-2¢, and the remaining
part of the proof follows as before.

6 The Reactive Semantics

The universal semantics described in the previous section is a possible way to imple-
ment positive specifications, i.e, to make sure that our system must satisfy some behav-
ior irrespective of the time/clock evolution. Unfortunately, since emptiness is undecid-
able even for bounded restrictions, it is not of any practical use. We would indeed like
a semantics that describes only regular behaviors.

There is another subtle point for looking for other semantics. When we want to check
if the system satisfies a positive specification, we would like to be able to design a
controller which can actually do this. For this, the semantics has to be “reactive” in
some sense. The universal semantics fails in this, in the sense that, to choose a correct
run in the system, we might need to know the future time rates.

In this section, we introduce a new game-like semantics that solves both the above
mentioned worries. It is regular and it is “reactive”. Formally, we will describe it us-
ing an alternating automaton, which is based on the region automaton introduced in
Section3l Intuitively, time-elapse transitions are controlled by the environment whereas
discrete transitions are controlled by the system that aims at exhibiting some behavior.
This game is not turn-based because the system should be able to execute several dis-
crete transitions while staying in the same region. After moving from some region to a
successor region, the environment hands over the control to the system so that the sys-
tem always has a chance to execute some discrete transition. On the other hand, after
executing some discrete transition, the system may either keep the control or hand it
over to the environment.

As suggested, our reactive semantics will be described by alternating automata. Since
icTAs or DTAs have e-transitions, we define an alternating automaton with e-transitions
(e-AA)asatuple A = (S, X, 0,, F') where S is a finite set of states, ¢ € S is the initial
state, ' C S is the set of final states, and § : S x Y. — BT(S) is the alternat-
ing transition function. Here, B*(.S) denotes positive boolean combinations of states
from S.

As usual, arun of an e-AA will be a (doubly) labeled finite tree. We assume the reader
to be familiar with the notion of trees and only mention that we deal with structures
(V, 0, u) where V is the finite set of nodes with a distinguished root, and both ¢ and
are node-labeling functions. Given a node u € V/, the set of children of u is denoted
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children(u). Let w = ay ...a, € ¥* be a finite word. A run of A on w is a doubly
labeled finite tree p = (V, o, u) where o : V' — S is the state-labeling function and
p:V—{0,...,|w|} is the position-labeling function such that, for each node u € V/,
the following hold:

— if w is the root, then o(u) = ¢ and pu(u) = 0 (we start in the initial state at the
beginning of the word),
— if wis not a leaf (i.e., children(u) # ), then we have
e cither pu(u’) = p(u) for all v’ € children(u) and in this case
{o(u) | v € children(u)} = d(o(u), )
o or u(u') = p(u) + 1 =14 <nforall v € children(u) and in this case
{o(u) | u" € children(u)} = d(o(u), a;).

The run is accepting if all leaves are labeled with F' x {|w|}. The set of words from X*
that come with an accepting run is denoted by L(.A).

Lemma 19 (cf. [E]). Given an e-AA A with n states, one can construct a non-determin-
.. . . 2 .
istic finite automaton with 2°"") states that recognizes L(A).

Let B = (S,X,2,6,1,1,F,m) be an icTA over Proc. We associate with B an e-AA
A = (8',%,8,/, F") as follows: First, let S = S x Regions(B) x {0, 1}. Intuitively,
tag 0 is for system positions while tag 1 is for environment positions (recall that the
environment controls how time elapses whereas the system wants to accept some word).
Then, ¢/ = (1, [v],0) where v(x) = 0 for each x € Z, and F/ = F X Regions(B) x
{0, 1}. Finally, for (s,v) € S x Regions(B) and a € X, we let

8'((s,7,1),a) = False ifa#¢ §'((5,7,1),e) = N(5,7,0) | v <~}
/ VA AL0) | (s,7) Ba (579} if @ # ¢ or -y maximal
1) ((5;770)760 = {(8,’}/, 1) v \/{(3/77/70) ‘ (8,’}/) i’d (5/77/)} otherwise

where id denotes a discrete transition of the region automaton Rz (Section [3)).

Definition 20. For an icTA B, let Lyeqct(B) = L(Ag) be the reactive semantics of B.
Moreover, for a DTA D, Lyeqct(D) = Lyeact(Bp) is the reactive semantics of D.

Example 21. Consider the icTA B from Figure 2l A part of its e-AA A is shown in
Figure[TQl States with tag O are depicted as ovals and are existential (non-deterministic)
states and states with tag 1 are depicted as rectangles and are universal states. We have,
e.g.,0'(r1,e) = r3 Arg Ars. Note, however, that a transition from an oval to a rectangles
should actually be split into two transitions, which is omitted in the picture. For exam-
ple, there is a state 1} between 19 and ry which resembles r but is tagged 0. Similarly,
there is another state 7, between r and o, and we have ¢’ (rg, a) = r} V 7.

The following theorem follows from Lemma IOt

Theorem 22. Let B = (S, X, Z,0,1,.,F,m) be an icTA and let n be the number of
states of R (which is bounded by |S|-(2 C+2)I2.| Z|! where C is the largest constant
a clock is compared with in B). Then, Lyeqct(B) is regular and one can compute a non-
deterministic finite automaton with 20(*) states that recognizes Lyeqet(B).
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Fig. 10. Part of the region/alternating automaton for the icTA from Figure 2]

The following inclusion property, whose proof can be found in (11, allows us to check
an icTA for positive specifications. The subsequent proposition then establishes that
inclusion actually forms a strict hierarchy of our semantics.

Proposition 23. For any icTA B, Lyeqct(B) C Ly(B).

Proposition 24. Suppose that | Proc| > 2. There are some DTA D over Proc and some
T € Rates such that Lyeact(D) G Ly(D) & L(D,7) & L3(D).

Proof. Consider the icTA B from Figure 2 Recall that Lyeqct(B) = {a}, Ly(B) =
{a,ab}, L(B,id) = {a,ab,b}, and L3(B) = {a,ab,b,c}. As B does not employ any
reset, we may view it as a DTA where 5 models a process owning clock x, and where
a second process, owning clock y, does nothing, but is in a local accepting state. a

7 Future Work

We plan to investigate the expressive power of DTAs and, in particular, the synthesis
problem: For which (global) specifications Spec can we generate a DTA D (over some
given system architecture) such that L,eqc:(D) = Spec? A similar synthesis problem
has been studied in [IE] in the framework of untimed distributed channel systems. There,
additional messages are employed to achieve a given global behavior. In this context,
it would be favorable to have partial-order based specification languages and a partial-
order semantics for DTAs (see, for example, ]).

References

1. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed timed
automata with independently evolving clocks. Research Report LSV-08-19, ENS Cachan
(2008)

2. Alur, R, Dill, D.L.: A theory of timed automata. TCS 126(2), 183-235 (1994)

3. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems.
In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485-500.
Springer, Heidelberg (1998)



11.

12.

Distributed Timed Automata with Independently Evolving Clocks 97

Birget, J.-C.: State-complexity of finite-state devices, state compressibility and incompress-
ibility. Mathematical Systems Theory 26(3), 237-269 (1993)

Bouyer, P., Haddad, S., Reynier, P.-A.: Timed unfoldings for networks of timed automata.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218. Springer, Heidelberg (2006)
De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementability of
timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004.
LNCS, vol. 3253, pp. 118-133. Springer, Heidelberg (2004)

Dima, C., Lanotte, R.: Distributed time-asynchronous automata. In: Jones, C.B., Liu, Z.,
Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711. Springer, Heidelberg (2007)

Genest, B.: On implementation of global concurrent systems with local asynchronous con-
trollers. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 443-457.
Springer, Heidelberg (2005)

Henzinger, T.A.: The theory of hybrid automata. In: Proc. of LICS 1996 (1996)

Larsen, K.G., Pettersson, P., Yi, W.: Compositional and symbolic model-checking of real-
time systems. In: Proc. of RTSS 1995, p. 76. IEEE Computer Society, Los Alamitos (1995)
Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion
problem of timed automata. TCS 345(1), 27-59 (2005)

Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Systems 10(1-2),
87-113 (2000)



A Context-Free Process as a Pushdown
Automaton

J.C.M. Baeten, P.J.L. Cuijpers, and P.J.A. van Tilburg

Division of Computer Science, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{j.c.m.baeten,p.j.1l.cuijpers,p.j.a.v.tilburg}@tue.nl

Abstract. A well-known theorem in automata theory states that every
context-free language is accepted by a pushdown automaton. We inves-
tigate this theorem in the setting of processes, using the rooted branch-
ing bisimulation and contrasimulation equivalences instead of language
equivalence. In process theory, different from automata theory, interac-
tion is explicit, so we realize a pushdown automaton as a regular process
communicating with a stack.

1 Introduction

Automata and formal language theory have a place in every undergraduate com-
puter science curriculum, as this provides students with a simple model of compu-
tation, and an understanding of computability. This simple model of computation
does not include the notion of interaction, which is more and more important at
a time when computers are always connected.

Adding interaction to automata theory leads to concurrency theory. The two
models of computation are strongly related, and have much in common. Still,
research into both models has progressed more or less independently. We are
embarked on a program that studies similarities and differences between the
two models, and that shows how concepts, notations, methods and techniques
developed in one of the fields can be beneficial in the other field.

This paper studies, in a concurrency theoretic setting, the relation between
the notion of a context-free process [4II89], and that of a pushdown automaton
(i.e. a regular process that interacts with a stack) [I7]. In order to obtain a full
correspondence with automata theory, we extend the definition of context-free
processes of [9] with deadlock (0, as in [I8]) and termination (1, studied here for
the first time). The goal of this paper, is to show how every context-free process
can be translated into a pushdown automaton. The main difference with the
work of [I7], is that we do this while explicitly modeling the interaction between
the regular process and the stack in this automaton. As it turns out, the addition
of termination leads to additional expressivity of context-free processes, which in
turn leads to a case distinction in the translation. Finally, the results in [I7], show
that the translation in the other direction is not always possible for context-free
processes without termination, but as 1 gives us additional expressivity, it might
hold in the new setting. However, as the translation in one direction is already
not trivial, we leave the other direction as future work.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 98 2008.
© Springer-Verlag Berlin Heidelberg 2008
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This paper is structured as follows. We first introduce our definitions of regu-
lar and context-free processes, and the associated equational theory, in Sects.
and Bl respectively. Then, in Sect. ] we give the general structure of our transla-
tion, and study the different cases mentioned before as instances of this structure.
We conclude the paper in Sect. Bl and give recommendations for future work.

2 Regular Processes

Before we introduce context-free processes, we first consider the notion of a
regular process and its relation to regular languages in automata theory. We start
with a definition of the notion of transition system from process theory. A finite
transition system can be thought of as a non-deterministic finite automaton. In
order to have a complete analogy, the transition systems we study have a subset
of states marked as final states.

Definition 1 (Transition system). A transition system M is a quintuple

(8, A, —,1,1) where:

1. S is a set of states,

2. A is an alphabet,

3. — C S xAxS is the set of transitions or steps,
4. T €S8 is the initial state,

5. | €S is a set of final states.

For (s,a,t) € — we write s 25 t. For s € | we write s|. A finite transition
system or non-deterministic finite automaton is a transition system of which the
sets S and A are finite.

In accordance with automata theory, where a regular language is a language
equivalence class of a non-deterministic finite automaton, we define a regular
process to be a bisimulation equivalence class [I3] of a finite transition system.
Contrary to automata theory, it is well-known that not every regular process has
a deterministic finite transition system (i.e. a transition system for which the
relation — is functional). The set of deterministic regular processes is a proper
subset of the set of regular processes.

Next, consider the automata theoretic characterization of a regular language
by means of a right-linear grammar. In process theory, a grammar is called a
recursive specification: it is a set of recursive equations over a set of variables. A
right-linear grammar then coincides with a recursive specification over a finite
set of variables in the Minimal Algebra MA. (We use standard process algebra
notation as propagated by [215]).

Definition 2. The signature of Minimal Algebra MA is as follows:

1. There is a constant O; this denotes inaction, a deadlock state; other names
are 6 or stop.

2. There is a constant 1; this denotes termination, a final state; other names
are €, skip or the empty process.
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3. For each element of the alphabet A there is a unary operator a. called action
prefix; a term a.x will exzecute the elementary action a and then proceed as x.
4. There is a binary operator + called alternative composition; a term x+y will
either execute x or execute y, a choice will be made between the alternatives.

The constants 0 and 1 are needed to denote transition systems with a single
state and no transitions. The constant 0 denotes a single state that is not a final
state, while 1 denotes a single state that is also a final state.

Definition 3. Let V be a set of variables. A recursive specification over )V with
initial variable S € V is a set of equations of the form X = tx, exactly one
for each X €V, where each right-hand side tx is a term over some signature,
possibly containing elements of V. A recursive specification is called finite, if V
18 finite.

We find that a finite recursive specification over MA can be seen as a right-
linear grammar. Now each finite transition system corresponds directly to a finite
recursive specification over MA, using a variable for every state. To go from a
term over MA to a transition system, we use structural operational semantics [1I,
with rules given in Table [

Table 1. Operational rules for MA and recursion (a € A, X € V)

x % g y — x| yl
zty -2 T+y——y z+yl z+yl
tXLSU X =tx tx] X =tx

3 Context-Free Processes

Considering the automata theoretic notion of a context-free grammar, we find a
correspondence in process theory by taking a recursive specification over a finite
set of variables, and over the Sequential Algebra SA, which is MA extended with
sequential composition - . We extend the operational rules of Table [ with rules
for sequential composition, in Table

Now consider the following specification

S=14+5"a.l.

Our first observation is that, by means of the operational rules, we derive an
infinite transition system, which moreover is infinitely branching. All the states
of this transition system are different in bisimulation semantics, and so this
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Table 2. Operational rules for sequential composition (a € A)

a2 z] y—vy x| yl
Ty -z -y Ty -y x-yl

is in fact an infinitely branching process. Our second observation is that this
recursive specification has infinitely many different (non-bisimilar) solutions in
the transition system model, since adding any non-terminating branch to the
initial node will also give a solution. This is because the equation is unguarded,
the right-hand side contains a variable that is not in the scope of an action-prefix
operator, and also cannot be brought into such a form. So, if there are multiple
solutions to a recursive specification, we have multiple processes that correspond
to this specification. This is an undesired property.

These two observations are the reason to restrict to guarded recursive specifi-
cations only. It is well-known that a guarded recursive specification has a unique
solution in the transition system model (see [7l6]). This restriction leads to the
following definition.

Definition 4. A context-free process is the bisimulation equivalence class of
the transition system generated by a finite guarded recursive specification over
Sequential Algebra SA.

In this paper, we use equational reasoning to manipulate recursive specifications.
The equational theory of SA is given in Table[Bl Note that the axioms x-(y+2) =
z-y+ax-zand z-0 = 0 do not hold in bisimulation semantics (in contrast
to language equivalence). The given theory constitutes a sound and ground-
complete axiomatization of the model of transition systems modulo bisimulation
(see [6l5]). Furthermore, we often use the aforementioned principle, that guarded
recursive specifications have unique solutions [6].

Table 3. Equational theory of SA (a € A)

z+y =y+x z+0 ==z
(z4+y)+z=z+(y+=2) 0-x =0
T+ ==z 1.z ==z
(r+y)-z =x-2+y-2 -1 =z
(x-y)z =z-(y-2) (a.z) -y =a(z-y)

Using the axioms, any guarded recursive specification can be brought into
Greibach normal form [4]:

1€lx
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In this form, every right-hand side of every equation comnsists of a number of
summands, indexed by a finite set Ix (the empty sum is 0), each of which is
1, or of the form «;.§;, where §; is the sequential composition of a number of
variables (the empty sequence is 1). We define 7 as the multiset resulting of the
union of all index sets. For a recursive specification in Greibach normal form,
every state of the transition system is given by a sequence of variables. Note
that we can take the index sets associated with the variables to be disjoint,
so that we can define a function V : Z — V that gives, for any index that
occurs somewhere in the specification, the variable of the equation in which it
occurs.

As an example, we consider the important context-free process stack. Suppose
D is a finite data set, then we define the following actions in A, for each d € D:

— ?d: push d onto the stack;
— Id: pop d from the stack.

Now the recursive specification is as follows:
S=1+) 7d.5-1d.5.
deD

In order to see that the above process indeed defines a stack, define processes
Sy, denoting the stack with contents o € D*, as follows: the first equation for
the empty stack, the second for any nonempty stack, with top d and tail o:

Se =9, Sio =5 -1d.S,.
Then it is straightforward to derive the following equations:

S.=1+ Z ?2d.Sy, Sio = 1d.Sy + Z 2.5 edo-

deD ecD

We obtain the following specification for the stack in Greibach normal form:

S=1+)Y 2Ty, T,;='d1+ ) ?T. Tu
deD ecD

Finally, we define the forgetful stack, which can forget a datum it has received
when popped, as follows:

S=1+) 7.9 (1+d.9).

deD

Due to the presence of 1, a context-free process may have unbounded branch-
ing [8] that we need to mimic with our pushdown automaton. One possible
solution is to use forgetfulness of the stack to get this unbounded branching
in our pushdown automaton, as we will show in the next section. Note that
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when using a more restrictive notion of context-free processes we have bounded
branching, and thus we don’t need the forgetfulness property.

The above presented specifications are still meaningful when D is an infinite
data set (see e.g. [IBI14]), but does not represent a term in SA anymore. In
this paper, we use infinite summation in some intermediate results, but the
end results are finite. Note that the infinite sums also preserve the notion of
congruence we are working with.

Now, consider the notion of a pushdown automaton. A pushdown automaton
is just a finite automaton, but at every step it can push a number of elements
onto a stack, or it can pop the top of the stack, and take this information into
account in determining the next move. Thus, making the interaction explicit, a
pushdown automaton is a regular process communicating with a stack.

In order to model the interaction between the regular process and the stack,
we briefly introduce communication by synchronization. We introduce the Com-
munication Algebra CA, which extends MA and SA with the parallel composition
operator ||. Parallel processes can execute actions independently (called inter-
leaving), or can synchronize by executing matching actions. In this paper, it is
sufficient to use a particular communication function, that will only synchronize
actions !d and ?d (for the same d € D). The result of such a synchronization
is denoted *d. CA also contains the encapsulation operator 0.( ), which blocks
actions !d and 7d, and the abstraction operator 7.( ) which turns all *d actions
into the internal action 7. We show the operational rules in Table @l

Table 4. Operational rules for CA (a € A)

xiyx/ yLy/ le yl
zlly =2y vlly —aly x|yl
2d R o, d
r — X y—Y xr — X y—y
Y, ’ o, ,
lly—a"lly zlly—a'lly
r -2 a#ld? x|
du () 2 8.(2') 0« (z)]
z 28, v a#MW x|
To(2) - Tu(2)) Te(z) -2 7o () ()]

Our finite axiomatization of transition systems of CA modulo rooted branch-
ing bisimulation uses the auxiliary operators | and | [7/I6]. See Table
for the axioms and [5] for an explanation of these axioms.

The given equational theory is sound and ground-complete for the model of
transition systems modulo rooted branching bisimulation [I3]. This is the pre-
ferred model we use, but all our reasoning in the following takes place in the
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Table 5. Equational theory of CA (a € AU{T})

x|y =z|lytyle+tz|y a.(r(x+y)+z)=a(x+y)
0= =0 x|y =yl

1| =0 z| 1 =z

ax|y =a.(z || y) 1lz+1 =1

@ty lz=alz+yllz @Iyl =zl
0|z =0 (ly) =z =z|(yl=2)
(z+y)|z =z |2+yl2 @lylz =zl
11 -1 @lylz =l
ax|l =0 x| Ty =z|y
lda|?dy =M. (x| y) x| Ty =0

ax|by =0 if {a,b} #{!d,?d}

9.(0) =0 7+(0) =0

d:(1) =1 7+(1) =1

d.(d.x) =08.(?2dx)=0 T (Md.x) = 1.7:(7)
O.(a.x) =ad(z) if ag{d?d} T(a.w) = a.m(x) if a#
du(z+y) = 0u(z)+ 0u(y) Te(z +y) = T(2) + 7 (y)

equational theory, so is model-independent provided the models preserve validity
of the axioms and unique solutions for guarded recursive specifications.

4 Pushdown Automata

The main goal of this paper, is to prove that every context-free process is equal
to a regular process communicating with a stack. Thus, if P is any context-free
process, then we want to find a regular process @ such that

P =7.(0.(Q1 S)),

where S, is a state of a stack process. Without loss of generality, we assume in
this section that P is given in Greibach normal form.

The first, intermediate, solution we present uses a potentially infinite data type
D. If D is infinite, then the stack is not a context-free process. Also, we define
Q@ in the syntax of Minimal Algebra, but it may have infinitely many different
variables, so it may not be a regular process. Later, we specialize to cases where
the data type is finite, and these problems do not occur. We do this by reducing
the main solution using several assumptions, that categorize the possibilities for
P into three classes: opaque, bounded branching, and unrestricted specifications.

4.1 Intermediate Solution

The infinite data type D we use for our intermediate solution, consists of pairs.
The first element of the pair is a variable of P. The second element is a multiset
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over 7, i.e. a multiset over V', plus an indication of a termination option. So,
D=V x((ZU{1}—N).

For multisets A, B, we write A(a) = n if the element a occurs n times in A, and
we write AW B to denote union of multisets such that (AW B)(a) = A(a)+ B(a).
We use the subscript ¢ in a process term (p). to denote that p only occurs
in the term if condition ¢ holds. Finally, we call a variable transparent if its
equation has an 1-summand. We denote the set of transparent variables of P
with V+1.

Now, we prove the main theorem by first stating the specification of our
solution and introducing some formalisms, before giving the main proof. The
proof will provide insight in how and why our solution works.

Theorem 1. For every context-free process P there exists a process @ given by
a recursive specification over MA such that P = 7.(0«(Q || S5)) for some state
Se of the (partially) forgetful stack.

Proof. Let E be a finite recursive specification of P in Greibach normal form.
Now, let F' be a recursive specification that contains the following equations for
every variable X € V of the specification F, ¢ € Ix and multiset A over Z:

X(’L, A) = Pus}l(&’h A)7
with Push(, A) recursively defined as

Push(1, A) = Ctrl(A4),

Push(£'Y, A) = {:g 3;

Push(¢’, Iy) ify g v,
Push(¢', Iy wA) if Y e V.

where Y is a variable at the end of the original sequence and ¢’ is the sequence
that is left over when Y has been removed. So, Push(, A) is defined backwards
with respect to sequence &, necessary to preserve the correct structure on the
stack while pushing.

In addition, let F' also contain the following equations of a partially forgetful
stack and a (regular) finite control.

S=1+ Y AVALS-UV,A).S+ Y 2V,A)S-(1+ UV, A).9),

(V.AyeD (vied
vgy+i veyti
Curl(A) = > aiPop(i,]) (+1)aq)>1;,
i€Z 0<I<A(4)
ST UV A)MV (i, A) if V(i) g v,
(V,A)eD
Pop(i,l) = 4 % :
op(i.1) S AVATGA) V) eV
(V,AYeD

iely AA(i)=1—1
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The process Ctrl(A) allows for a choice to be made among the possible enabled
actions a;, referred to by the indices in the multiset A. It can also terminate if
the termination option 1 is present in A. Once an action has been chosen, Ctrl
calls Pop with the index 7 of the action that was executed and the occurrence
[ of the variable belonging to that index, V' (i), on the stack that needs to be
popped. Once that variable, say V(i) = X, has been popped, X(u A) is executed
to mimic the rest of the behavior when a; has been executed, namely pushing
& on the stack. Note that this means that A, the multiset of possible actions,
always has to correspond with the contents of the partially forgetful stack.

Before we show how the above specification mimics the specification of P, we
first study the structure of P itself more closely. In Greibach normal form, every
state in P is labeled with a sequential composition of variables X¢ (or in the
trivial case, 1). Substituting the Greibach normal form of the leading variable
X gives us the following:

Xe= (Y @& (+1) €= Y aiki-€ (+9).

ielx i€lx

Introducing a fresh variable P(&) for each possible sequence &, we obtain the
following equivalent infinite recursive specification.

P@) =1, P(XE&) = ) aiP(&€) (+ P(€).

1€lx

Note that this specification is still guarded, as the unfolding of the unguarded
recursion will always terminate.

In order to link the sequences that make up the states of P to the contents of
the stack in our specification F', we use two functions h and e. The function h
determines, for a given sequence X¢, the multiset that contains for each index
i € T the number of occurrences of the process variable V (i) in a sequence that is
reachable through termination of preceding variables. It also determines whether
a termination is possible through the entire sequence.

h(1) = {1},
JIx if X ¢ Ve,
hXE) = {IX Wh(€) if X e V.

The function e, defined by e(1) = 1 and e(X¢) = (X, h(£))e(€), then represents
the actual contents of the stack.

Lemma 1. Leti € Z. Then h(X&)(1) = h(§)(i) iff i & Ix.

Having characterized the relationship between states of P and the partially for-
getful stack of F, we define Q = Ctrl(h(X)), where X is the initial variable
of E, and we continue to prove P = 7.(9,(Q || Se(x))) = [@Q || Se(x)]* More
precisely, we will prove for any sequence of variables £, that

! From here on, [p], is used as a shorthand notation for 7. (d.(p)).
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P(€) = [Ctrl(h(9)) || See)],

If € = 1, then P(1) = [Ctrl(h(1)) || S.qy], = [1 ] 1, =
If £ = X&', then there are two cases.
(a) Assume that X ¢ V*. First, apply the definition of A(X¢') and then

the definition of Ctrl(Zx).

P(X¢') = [Ctrl((XE)) || Sexen],
[Ctrl(Ix) || Secxeny],

=> " > ai[Pop(i) || Sexen], (+ 11 Seixen])ixaz

i€T 0<I<Ix (i)

Note that Iy is a set, so it follows that Ix (i) = 1 fori € Ix and Ix (i) =0
for all ¢ € T — Ix. Therefore, the first two summations can be written as
> ic1, When we instantiate | = 1. Because it also follows that Ix (1) = 0,
we remove the conditional summand [1 || Se(Xgl)]*.

- Z ai. [Pop(i, 1) || Secxen],

i€l x

Unfold the definition of S¢(x¢) once, then perform the pop by applying
the definitions of Pop(i, 1) and X (i, h(¢')).
= 3 anr [KGRE) |l Suer]
i€lx
= > a7 [Push(&, h(E) || Secen),

i€lx

Finally, perform |¢;| pushes by repeatedly applying the definitions of
Push(¢, A) and Se(g).

=Y anrSH[Ctrl(A(€€) || Seeien].,

ielx

= > ai [Ctal(h(&€") || Seeren],

i€lx

= a:iP(&

icly
(b) Assume that X € V**. First, substitute the definition of Ctrl(h(X¢")).

P(X¢') = [Ctrl(W(XE)) || Sexen],

=> > ai[Pop(i,0) || Secxen],

i€T 0<I<h(XE')()
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Split off the case that will pop the top element of the stack, namely when
i € Ix and | = h(X¢')(4). By the same argument as in the previous case,
we can write the first two summations as >, ;. -

= 3 ai. [Pop(i, h(XE)D) || Sucxen)].

i€lyx

+Y > ai. [Pop(i, 1) || Secxen],
€L 0<I<h(XE')(d)
@Iy VIAR(XE)(3)
(+ [1 1 Sexen] Inxenaz1
Consider the first summation. If i € I'x and ! = h(XE')(i), then h(&') (i) =
I —1by Lemma[land therefore by the definitions of Pop(i, 1) and Se(x¢/):

=Y | Y ARG || Sixnene)
i€lx (V,A"YeD
i€, NA(i)=1—1 %

+3y > ai. [Pop(i, 1) || Secxen],

€T 0<I<h(XE')(4)
iZIx VIAh(XE)(0)

(+ [1 I Sexen] Inixen@=1

The stack may contain a series of transparent variables with multisets
in which the occurrence of index i is strictly smaller than at the top. So,
only the top element can be popped.

=" [ROE) | Secen]

ielx

+3 > ai. [Pop(i, 1) || Secxen],

i€T  0<I<h(XE)(i)
i1 x VIAR(XE) (1)

(+ 11 Seexen] Inexenaz1
Now, consider the second summation and optional summand. Given
that 0 < | < h(X¢&')(7), it follows from the combination of Lemma [I]
(in case i ¢ Ix) or I # h(X&)(i) (in case ¢ € Ix), that 0 < [ <
h(£')(i). Because we have forgetfulness of the stack S, xe¢s, it holds that
[Pop(i, 1) || Se(Xgl)]* = [Pop(i,1) || Se(gl)]* and that if A(X&)(1) > 1,
then h(£')(1) > 1.

=3 ar [XGEN Il Sucen]

i€lx

+> > ai [Pop(iy1) || Seen],

1€Z 0<I<h(£’)(d)

(+ [1 1 Seeny] Dnena=1
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Apply the definition of X (i, h(¢')) on the first summation. Substitute
the second summation and the optional summand with the definition of

Ctrl(¢’).
= Z a;.T Push &L REN | Se(g)]* + [Ctrl(ﬁl) | Se(g/)]*

i€l x

Perform |¢;| pushes by repeatedly applying the definitions of Push(&, A)

and S, (¢,
_ ; ar. TSI [Crl(A(€i€)) || Seqeren], + [CErl(€) || Seen],
= 2 o0 (O | Seicen]. + [ | Sen
- ZI ai.P(&€) + P(&).
ieTx

This concludes our proof that there exists a, possibly infinite, recursive spec-
ification over MA that, in parallel with a partially forgetful stack, is equivalent
to a context-free process P. O

In the following subsections, we will study under which conditions this specifi-
cation reduces to a finite recursive specification over MA.

4.2 Opacity

In [I8], context-free processes with 0 but without 1 were presented. Related
to the absence of 1, we find that the intermediate solution reduces to a finite
recursive specification, if none of the variables are transparent (V' = (), i.e
the specification is opaque.

From the specification of Push(, A) we observe that now only sets are pushed
on the stack (i.e. multisets in which each element occurs at most once). Hence,
we can use a data set D’ =V x P(ZU{1}) that no longer is infinite. We obtain
a new, finite recursive specification, by replacing the equations for S, Ctrl(A),
Pop(i, 1) and Push(&, A) by the following ones:

S=1+4+ Y 2V,A).S-UV,A).S,

(V,Aye D’
Ctrl(A) = > aiPop(i) (+1)1ea,
€A
Pop(i) = Y 2V,A)V(,A),
(V,AyeD’
i€ly

Push(1, A) = Ctrl(A),
Push(£Y, A) = (Y, A).Push(¢, Iy ).

Corollary 1. For any contextl-free process P with recursive specification E that
is opaque, there ezists a reqular process Q) such that P = [Q I Se(X)]*.
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4.3 Bounded Branching
Consider the following example, in which the variable Y is transparent.
X=aX Y +0b1, Y=1+c¢cl.

By executing a n times followed by b, the system gets to state Y. Here we have
unbounded branching, since Y — Y* for every k < n. This means state Y™ has
n different outgoing c-steps, since none of the states Y* are bisimilar. Thus, we
cannot put a bound on the number of summands in the entire specification. The
observation that the presence of 1-summands can cause unbounded branching
is due to [§].

In case we have unbounded branching, it can be shown that there is no finite
solution modulo rooted branching bisimulation. The reason for this, is that a
regular process is certainly boundedly branching, so that the introduction of
unbounded branching must take place through communication with the stack
(in any solution, not only ours). This will result in internal 7 transitions to states
that are not rooted branching bisimilar, which makes that the 7 transitions
cannot be eliminated.

Assume now, that we have a specification for P that results in boundedly
branching behavior, then the intermediate solution (see Sect. E1]) does reduce to
a finite recursive specification. In that case, the number of variables in a sequence
& that can perform a certain action is bounded by some natural number N. The
stack itself is an example of such a process. Hence, h(£)(i) < N for any i € Z, so
the multisets in the data type D will never contain more than N occurrences for
each index. We can reduce our specification by replacing Ctrl(A) by the following
equation:

Cul(A)=%" > aiPop(i,I) (+1)ay>1-

i€T 0<I<A(I)<N

Corollary 2. For any contextl-free process P with recursive specification E that
has bounded branching, there exists a reqular process @ such that P = [Q | Se( X)] .

4.4 Unrestricted

In the previous subsection, we showed that there is no suitable pushdown au-
tomaton for the context-free process P, if P has unbounded branching. However,
this observation relies on the fact that certain 7 transitions cannot be elimi-
nated. In this subsection, we show that the intermediate solution reduces to a
finite recursive specification, for any P, if we accept the axiom of contrasimula-
tion [12I19]:

a.(tx+1y) =ax+ay (a € A).

By this we weaken the equivalence on our transition systems. We do not know
whether there is a stronger equivalence in the linear-time — branching-time spec-
trum II [T2] for which a solution exists.

Starting from the intermediate solution (see Sect. [L1]), we can derive the
following using the axiom of contrasimulation. In the first step, we use the
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observation that, given some i € Z and 0 < I < h(§)(i), there exists a &,
such that (V(i),h(&1))e(&) is a suffix of the stack contents e(€), reachable
through the forgetfulness of the stack. In the last step, we use the claim that

D 0<i<h(€)(3) [Pop(i, 1) | Se(&)] [Pop(i) || S. 5)]
[Corl(h(©)) || See), =D > ai-[Pop(i0) || Secg], (+---)

i€T 0<I<h(€)(i)

=3 > an [V AED) I Suen] . (+-0)

1€T 0<I<h(£)(3)

= > a( Y o [VIOGAED) | Seen] ) ()

nnz  EMOO
-y a( > o- [V(z‘)(z‘,h(gi,l)) ||5e<si,n]*)(+---)
nnz  SEMOO
= Y a( X Porli0)Se],) (+ o)
h(gl)%zr)>1 0<I<h(&)(4)
= Y ai[Pop(i) || See)], (+.-.).
1€
h(€)(i)>1

We can reduce our specification by replacing Ctrl(A4) and introducing Pop(i):

Ctrl(A) = Z ai.POp(i) (+ 1)A(1)217
i€
A >1
Pop(i) = Y AV,A).V(,A).
(V,A)eD
iely
Finally, because we never inspect the multiplicity of an index in a multiset
nor remove an element, we can replace multisets by sets and use i € A instead
of A(i) > 1 and U instead of W.

Corollary 3. For any context-free process P with recursive specification E,
there exists a reqular process Q) such that P = [Q I Se(X)] ,» assuming the aziom
of contrasimulation.

5 Concluding Remarks

Every context-free process can be realized as a pushdown automaton. A push-
down automaton in concurrency theory is a regular process communicating with
a stack.

We define a context-free process as the bisimulation equivalence class of a
transition system given by a finite guarded recursive specification over Sequential
Algebra. This algebra is needed for a full correspondence with automata theory,
and includes constants 0, 1 not included in previous definitions of a context-free
process.
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The most difficult case is when the given context-free process has unbounded
branching. This can only happen when a state of the system is given by a se-
quence of variables that have 1-summands. In this case, there is no solution in
rooted branching bisimulation semantics. We have found a solution in contrasim-
ulation semantics, but do not know whether there are stronger equivalences in
the spectrum of [12] for which a solution exists.

Concerning the reverse direction, not every regular process communicating
with a stack is a context-free process. First of all, one must allow 7 steps in
the definition of context-free processes, because not all 7-steps of a pushdown
automaton can be removed modulo rooted branching bisimulation or contrasim-
ulation. Moreover, even if we allow 7 steps, the theory of [I7] shows that push-
down automata are more expressive than context-free processes without 1. It is
not trivial whether this result is still true when the expressivity of context-free
processes is enlarged by adding termination. Research in this direction is left as
future work.

The other famous result concerning context-free processes is the fact that
bisimulation equivalence is decidable on this class, see [I1]. Again, this result
has been established for processes not including 0,1. We expect that addition
of 0 will not cause any difficulties, but addition of 1 will. We leave as an open
problem whether bisimulation is decidable on the class of context-free processes
as we have defined it.

Most questions concerning regular processes are settled, as we discussed in
Sect. 2l A very important class of processes to be considered next are the com-
putable processes. In [3], it was demonstrated that a Turing machine in con-
currency theory can be presented as a regular process communicating with two
stacks. By this means, it was established that every computable process can be
realized as the abstraction of a solution of a finite guarded recursive specifica-
tion over communication algebra. This result also holds in the presence of the
constant 1.

There are more classes of processes to be considered. The class of so-called
basic parallel processes is given by finite guarded recursive specifications over
Minimal Algebra extended with parallel composition (without communication).
A prime example of such a process is the bag. Does the result of [10], that
bisimulation is decidable on this class, still hold in the presence of 1?7 Can we
write every basic parallel process as a regular process communicating with a
bag?
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Abstract. For many cryptographic protocols, security relies on the as-
sumption that adversarial entities have limited computational power.
This type of security degrades progressively over the lifetime of a pro-
tocol. However, some cryptographic services, such as timestamping ser-
vices or digital archives, are long-lived in nature; they are expected to
be secure and operational for a very long time (i.e., super-polynomial).
In such cases, security cannot be guaranteed in the traditional sense: a
computationally secure protocol may become insecure if the attacker has
a super-polynomial number of interactions with the protocol.

This paper proposes a new paradigm for the analysis of long-lived
security protocols. We allow entities to be active for a potentially un-
bounded amount of real time, provided they perform only a polynomial
amount of work per unit of real time. Moreover, the space used by these
entities is allocated dynamically and must be polynomially bounded. We
propose a new notion of long-term implementation, which is an adapta-
tion of computational indistinguishability to the long-lived setting. We
show that long-term implementation is preserved under polynomial par-
allel composition and exponential sequential composition. We illustrate
the use of this new paradigm by analyzing some security properties of
the long-lived timestamping protocol of Haber and Kamat.

1 Introduction

Computational security in long-lived systems: Security properties of cryptogra-
phic protocols typically hold only against resource-bounded adversaries. Con-
sequently, mathematical models for representing and analyzing security of such
protocols usually represent all participants as resource-bounded computational
entities. The predominant way of formalizing such bounds is by representing
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all entities as time-bounded machines, specifically, polynomial-time machines (a
partial list of works representative of this direction includes [TI2I3145]).

This modeling approach has been successful in capturing the security of pro-
tocols for many cryptographic tasks. However, it has a fundamental limitation:
it assumes that the analyzed system runs for only a relatively “short” time. In
particular, since all entities are polynomially-bounded (in the security parame-
ter), the system’s execution must end after a polynomial amount of time. This
type of modeling is inadequate for analyzing security properties of protocols that
are supposed to run for a “long” time, that is, an amount of time that is not
bounded by a polynomial.

There are a number of natural tasks for which one would indeed be interested
in the behavior of systems that run for a long time. Furthermore, a number of
protocols have been developed for such tasks. Examples of such tasks include
proactive security [0], forward secure signatures [7Ig], forward secure encryp-
tion [79], and timestamping [TOJTTIT2]. None of the existing models for analyzing
security against computationally bounded adversaries is adequate for asserting
and proving security properties of protocols for such “long-lived” tasks.

Related work: A first suggestion for an approach might be to use existing models,
such as the PPT calculus [13], the Reactive Simulatability [14], or the Univer-
sally Composable security frameworks [3], with a sufficiently large value of the
security parameter. However, this would be too limited for our purpose in that
it would force protocols to protect against an overly powerful adversary even
in the short run, while not providing any useful information in the long run.
Similarly, turning to information theoretic security notions is not appropriate in
our case because unbounded adversaries would be able to break computationally
secure schemes instantaneously. We are interested in a notion of security that
can protect protocols against an adversary that runs for a long time, but is only
“reasonably powerful” at any point in time.

Recently, Miiller-Quade and Unruh proposed a notion of long-term security
for cryptographic protocols [15]. However, they consider adversaries that try
to derive information from the protocol transcript after protocol conclusion.
This work does not consider long-lived protocol execution and, in particular,
the adversary of [I5] has polynomially bounded interactions with the protocol
parties, which is not suitable for the analysis of long-lived tasks such as those
we described above.

Our approach: In this paper, we propose a new mathematical model for ana-
lyzing the security of such long-lived systems. To the best of our knowledge our
work is the first one to tackle the issue of modeling computational security in
long-lived systems. Our understanding of a long-lived system is that some pro-
tocol parties, including adversaries, may be active for an unbounded amount of
real time, subject to the condition that only a polynomial amount of work can
be done per unit of real time. Other parties may be active for only a short time,
as in traditional settings. Thus, the adversary’s interaction with the system is
unbounded, and the adversary may perform an unbounded number of computa-
tion steps during the entire protocol execution. This renders traditional security
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notions insufficient: computationally and even statistically secure protocols may
fail if the adversary has unbounded interactions with the protocol.

Modeling long-lived systems requires significant departures from standard
cryptographic modeling. First and foremost, unbounded entities cannot be mod-
eled as probabilistic polynomial time (PPT) Turing machines. In search of a suit-
able alternative, we see the need to distinguish between two types of unbounded
computation: steps performed steadily over a long period of time, versus those
performed very rapidly in a short amount of time. The former conforms with
our understanding of boundedness, while the latter does not. Guided by this
intuition, we introduce real time explicitly into a basic probabilistic automata
model, the Task-PIOA model [5], and impose computational restrictions in terms
of rates, i.e., number of computation steps per unit of real time.

Another interesting challenge is the restriction on space, which traditionally
is not an issue because PPT Turing machines can, by their nature, access only a
polynomially bounded amount of space. In the long-lived setting, space restric-
tion warrants explicit consideration. During the lifetime of a long-lived security
protocol, we expect some components to die and other new ones to become ac-
tive, for example, due to the use of cryptographic primitives that have a shorter
life time than the protocol itself. Therefore, we find it important to be able to
model dynamic allocation of space. We achieve this by restricting the use of state
variables. In particular, all state variables of a dormant entity (either not yet in-
voked or already dead) are set to a special null value L. A system is regarded as
bounded only if, at any point in its execution, only a bounded amount of space
is needed to maintain all variables with non-L values. For example, a sequen-
tial composition (in the temporal sense) of an unbounded number of entities is
bounded if each entity uses a bounded amount of space.

Having appropriate restrictions on space and computation rates, we then de-
fine a new long-term implementation relation, <negpt, for long-lived systems.
This is intended to extend the familiar notion of computational indistinguisha-
bility, where two systems (real and ideal) are deemed equivalent if their behaviors
are indistinguishable from the point of view of a computationally bounded en-
vironment. However, notice that, in the long-lived setting, an environment with
super-polynomial run time can typically distinguish the two systems trivially,
e.g., by launching brute force attacks. This is true even if the environment has
bounded computation rate. Therefore, our definition cannot rule out significant
degradation of security in the overall lifetime of a system. Instead, we require
that the rate of degradation is small at any point in time; in other words, the
probability of a new successful attack during any polynomial-bounded window
of time remains bounded during the lifetime of the system.

To capture this intuition, we extend the ideal systems traditionally used in
cryptography by allowing them to take some designated failure steps, which
allow an ideal system to take actions that could only occur in the real world, e.g.,
accepting forgeries as valid signatures, or producing ciphertexts that could allow
recovering the corresponding plaintext. However, if failure steps do not occur



Modeling Computational Security in Long-Lived Systems 117

starting from some time t, then the ideal system starts following the specified
ideal behavior.

Our long-term implementation relation <pegpt requires that the real system
approximates the ideal’s system’s handling of failures. More precisely, we quan-
tify over all real time points ¢t and require that the real and ideal systems are
computationally indistinguishable up to time ¢+ ¢ (where ¢ is polynomial in the
security parameter), even if no failures steps are taken by the ideal system in
the interval [t,t + ¢]. Notice that we do allow failure steps before time t. This
expresses the idea that, despite any security breaches that may have occurred
before time t, the success probability of a fresh attack in the interval [t,t + ¢] is
small. Our formal definition of <peg pt includes one more generalization: it con-
siders failure steps in the real system as well as the ideal system, in both cases
before the same real time ¢. This natural extension is intended to allow repeated
use of <,eg pt, in verifying protocols using several levels of abstraction.

We show that <negpt is transitive, and is preserved under the operations of
polynomial parallel composition and exponential sequential composition. The
sequential composition result highlights the power of our model to formulate
and prove properties of an exponential number of entities in a meaningful way.

Example: Digital timestamping: As a proof of concept, we analyze some security
properties of the digital timestamping protocol of Haber et al. [TO[TTI12], which
was designed to address the problem of content integrity in long-term digital
archives. In a nutshell, a digital timestamping scheme takes as input a document
d at a specific time tg, and produces a certificate ¢ that can be used later to
verify the existence of d at time to. The security requirement is that timestamp
certificates are difficult to forge. Haber et al. note that it is inadvisable to use
a single digital signature scheme to generate all timestamp certificates, even if
signing keys are refreshed periodically. This is because, over time, any single
signature scheme may be weakened due to advances in algorithmic research
and/or discovery of vulnerabilities. Haber et al. propose a solution in which
timestamps must be renewed periodically by generating a new certificate for the
pair (d, ¢) using a new signature scheme. Thus, even if the signature scheme used
to generate c is broken in the future, the new certificate ¢’ still provides evidence
that d existed at the time ¢y stated in the original certificate c.

We model the protocol of Haber et al. as the composition of a dispatcher
component and a sequence of signature services. Each signature service “wakes
up” at a certain time and is active for a specified amount of time before be-
coming dormant again. This can be viewed as a regular update of the signature
service, which may entail a simple refresh of the signing key, or the adoption of
a new signing algorithm. The dispatcher component accepts various timestamp
requests and forwards them to the appropriate signature service. We show that
the composition of the dispatcher and the signature services is indistinguishable
from an ideal system, consisting of the same dispatcher composed with ideal
signature functionalities. Specifically, this guarantees that the probability of a
new forgery is small at any given point in time, regardless of any forgeries that
may have happened in the past.
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2 Task-PIOAs

We build our new framework using task-PIOAs [5], which are a version of Proba-
bilistic Automata [16], augmented with an oblivious scheduling mechanism based
on tasks. A task is a set of related actions (e.g., actions representing the same ac-
tivity but with different parameters). We view tasks as basic groupings of events,
both for real time scheduling and for imposing computational bounds (cf.
SectionsBlandM). In this section, we review basic notations related to task-PIOAs.

Notation: Given a set S, let Disc(S) denote the set of discrete probability mea-
sures on S. For s € S, let d(s) denote the Dirac measure on s, i.e., §(s)(s) = 1.
Let V be a set of variables. Each v € V' is associated with a (static) type type(v),
which is the set of all possible values of v. We assume that type(v) is countable
and contains the special symbol L. A wvaluation s for V is a function mapping
every v € V to a value in type(v). The set of all valuations for V' is denoted
val(V). Given V' C V, a valuation s’ for V' is sometimes referred to as a par-
tial valuation for V. Observe that s’ induces a (full) valuation vy (s') for V,
by assigning L to every v ¢ V’. Finally, for any set S with L & S, we write
S, =5U {J_}

PIOA: We define a probabilistic input/output automaton (PIOA) to be a tuple
A=(V,5,s" I, O,H,A), where:

(i) V is a set of state variables and S C val(V') is a set of states;
(ii) st € S is the initial state;
(iii) I, O and H are countable and pairwise disjoint sets of actions, referred to
as input, output and hidden actions, respectively;
(iv) ACSx (IUOUH) x Disc(S) is a transition relation.

The set Act :== I UO U H is the action alphabet of A. If I = (), then A is said
to be closed. The set of external actions of A is I U O and the set of locally
controlled actions is O U H. An execution is a sequence o = qgaiqias ... of
alternating states and actions where ¢y = s™* and, for each (Giy @it1,qit1), there
is a transition (g;,a;11,p) € A with ¢;41 € Support(u). A sequence obtained
by restricting an execution of A to external actions is called a trace. We write
s.v for the value of variable v in state s. An action a is enabled in a state s if
(s,a,pn) € A for some pu. We require that A satisfy the following conditions.

— Input Enabling: For every s € S and a € I, a is enabled in s.
— Transition Determinism: For every s € S and a € Act, there is at most
one p € Disc(S) with (s, a, u) € A. We write A(s, a) for such p, if it exists.

Parallel composition for PIOAs is based on synchronization of shared actions.
PIOAs A; and A are said to be compatible if V;NV; = Act; NH; = 0;N0; =
whenever i # j. In that case, we define their composition A;||As to be (V3 U
‘/2751 X SQ, <Si1nit,8i2nit>, (Il U 12) \ (01 U 02)701 U OQ,Hl U 112,A>7 where A is
the set of triples ((s1,s2),a, u1 X pe2) satisfying: (i) a is enabled in some s;, and
(ii) for every 14, if a € Act;, then (s;, a, i) € A;, otherwise y; = 6(s;). It is easy
to check that input enabling and transition determinism are preserved under
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composition. Moreover, the definition of composition can be generalized to any
finite number of components.

Task-PIOA: To resolve nondeterminism, we make use of the notion of tasks
introduced in [I75]. Formally, a task-PIOA is a pair (A, R) where A is a PIOA
and R is a partition of the locally-controlled actions of A. The equivalence classes
in R are called tasks. For notational simplicity, we often omit R and refer to the
task-PIOA A. The following additional axiom is assumed.

— Action Determinism: For every state s and every task T, at most one
action a € T' is enabled in s.

Unless otherwise stated, terminologies are inherited from the PIOA setting. For
instance, if some a € T is enabled in a state s, then T is said to be enabled in s.

Ezample 1 (Clock automaton). Figure[lldescribes a simple task-PIOA Clock(T),
which has a tick(t) output action for every ¢ in some discrete time domain T.
For concreteness, we assume that T = N, and write simply Clock. Clock has a
single task tick, consisting of all tick(¢) actions. These clock ticks are produced in
order, for t = 1,2,.... In Section 3] we will define a mechanism that will ensure
that each tick(t) occurs exactly at real time t.

Clock(T)

Signature Tasks: tick = {tick(*)}
Output: tick(¢: T), ¢t >0 States: count € T, initially 0
Transitions

tick(t)

Precondition: count =t — 1 Effect: count :=t

Fig. 1. Task-PIOA Code for Clock(T)

Operations: Given compatible task-PIOAs A; and As, we define their composi-
tion to be (A || A2, R1UR2). Note that RqUR> is an equivalence relation because
compatibility requires disjoint sets of locally controlled actions. Moreover, it is
easy to check that action determinism is preserved under composition.

We also define a hiding operator: given A = (V, S, st I, O, H, A) and S C O,
hide(A, S) is the task-PIOA given by (V, S, st I, O H', A), where O' = O\
S and H' = H U S. This prevents other PIOAs from synchronizing with A
via actions in S: any PIOA with an action in S in its signature is no longer
compatible with A.

Ezxecutions and traces: A task schedule for a closed task-PIOA (A, R) is a finite
or infinite sequence p = T, T, ... of tasks in R. This induces a well-defined run
of A as follows.

(i) From the start state s™, we apply the first task 7): due to action- and
transition-determinism, 77 specifies at most one transition from s"t; if
such a transition exists, it is taken, otherwise nothing happens.

(ii) Repeat with remaining T;’s.
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Such a run gives rise to a unique probabilistic execution, which is a probability
distribution over executions in A. For finite p, let Istate(A, p) denote the state
distribution of A after executing according to p. A state s is said to be reachable
under p if Istate(A, p)(s) > 0. Moreover, the probabilistic execution induces
a unique trace distribution tdist(A, p), which is a probability distribution over
the set of traces of A. We refer the reader to [5] for more details on these
constructions.

3 Real Time Scheduling Constraints

In this section, we describe how to model entities with unbounded lifetime but
bounded processing rates. A natural approach is to introduce real time, so that
computational restrictions can be stated in terms of the number of steps per-
formed per unit real time. Thus, we define a timed task schedule 7 for a closed
task-PIOA (A4, R) to be a finite or infinite sequence (T7y,t1), (Ts,t2),... such
that: T; € R and t; € R>¢ for every ¢, and 1,12, ... is non-decreasing. Given a
timed task schedule 7 = (171, t1), (T2, t2),... and t € Rxq, let trunc>;(7) denote
the result of removing all pairs (75, ¢;) with ¢; > t.

Following [18], we associate lower and upper real time bounds to each task.
If [ and u are, respectively, the lower bound and upper bound for a task 7', then
the amount of time between consecutive occurrences of T' is at least [ and at
most u. To limit computational power, we impose a rate bound on the number
of occurrences of T within an interval I, based on the length of I. A burst bound
is also included for modeling flexibility.

Formally, a bound map for a task-PIOA (A, R) is a tuple (rate, burst, Ib, ub) such
that: (i) rate, burst,Ib : R — R, (ii) ub : R — R, and (iii) for all T € R,
Ib(T") < ub(T"). To ensure that rate and ub can be satisfied simultaneously, we re-
quire rate(7") > 1/ ub(T') whenever rate(T") # 0 and ub(T") # oco. From this point
on, we assume that every task-PIOA is associated with a particular bound map.

In the long version of this paper [I9, Section 3], we formally define what it
means for a timed task schedule 7 to be valid for an interval under a given
bound map. This definition states the technical conditions that simultaneously
ensure that: (i) Consecutive appearances of a task T' must be at least |b(T") apart,
(ii) Consecutive appearances of a task 7' must be at most ub(7) apart, (iii) For
any d € R>¢ and any interval I’ of length d, 7 contains at most rate(T) - d +
burst(7T') elements with (T, t) with ¢ € I'.

Note that every timed schedule 7 projects to an untimed schedule p by
removing all real time information ¢;, thereby inducing a trace distribution
tdist(A, 7) := tdist(A, p).

In a parallel composition A;||.Az2, the composite bound map is the union of
component bound maps: (rate; U rateg, burst; U bursty, Iby U lba, uby U ubs).

Ezample 2 (Bound map for Clock). We use upper and lower bounds to ensure
that Clock’s internal counter evolves at the same rate as real time. Namely, we
set Ib(tick) = ub(tick) = 1. The rate and burst bounds are also set to 1. It is
not hard to see that, regardless of the system of automata with which Clock is
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composed, we always obtain the unique sequence (tick, 1), (tick, 2), ... when we
project a valid schedule to the task tick.

Note that we use real time solely to express constraints on task schedules. We
do not allow computationally-bounded system components to maintain real-time
information in their states, nor to communicate real-time information to each
other. System components that require knowledge of time will maintain discrete
approximations to time in their states, based on inputs from Clock.

4 Complexity Bounds

We are interested in modeling systems that run for an unbounded amount of real
time. During this long life, we expect that a very large number of components
will be active at various points in time, while only a small proportion of them
will be active simultaneously. Defining complexity bounds in terms of the total
number of components would then introduce unrealistic security constraints.
Therefore, we find it more reasonable to define complexity bounds in terms of
the characteristics of the components that are simultaneously active at any point
in time.

To capture these intuitions, we define a notion of step bound, which limits the
amount of computation a task-PIOA can perform, and the amount of space it
can use, in executing a single step. By combining the step bound with the rate
and burst bounds of Section Bl we obtain an overall bound, encompassing both
bounded memory and bounded computation rates.

Note that we do not model situations where the rates of computation, or the
computational power of machines, increases over time. This is an interesting
direction in which the current research could be extended.

Step Bound: We assume some standard bit string encoding for Turing machines
and for the names of variables, actions, and tasks. We also assume that variable
valuations are encoded in the obvious way, as a list of name/value pairs. Let A be
a task-PIOA with variable set V. Given state s, let § denote the partial valuation
obtained from s by removing all pairs of the form (v, L). We have 1y (§) = s,
therefore no information is lost by reducing s to §. This key observation allows
us to represent a “large” valuation s with a “condensed” partial valuation s.

Let p € N be given. We say that a state s is p-bounded if the encoding of § is
at most p bits long. The task-PIOA A is said to have step bound p if (a) the value
of every variable is representable by at most p bits, (b) the name of every action
name has length at most p bits, (c) the initial state s"'* is p-bounded, (d) there
are probabilistic Turing machines able to (i) determine which tasks are enabled
in a given state of A, (ii) determine which action a of a given task is enabled in
a given state s of A, and output a new state of A according to the distribution
of A(s,a), (iii) determine if a candidate action « is an input action of A and,
given a state s of A, output a new state of A according to the distribution of
A(s, a). Furthermore, those Turing Machines terminate after at most p steps on
every input and they can be encoded using at most p bits.
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Given a closed (i.e., no input actions) task-PIOA A with step bound p, one
can easily define a Turing machine M 4 with a combination of nondeterministic
and probabilistic branching that simulates the execution of A. It can be showed
that the amount of work tape needed by M 4 is polynomial in p.

It can also be shown that, when we compose task-PIOAs in parallel, the
complexity of the composite is proportional to the sum of the component com-
plexities. The proof is similar to that of the full version of [5, Lemma 4.2]. We
also note that the hiding operator introduced in Section[2 preserves step bounds.

Owerall Bound: We now combine real time bounds and step bounds. To do so,
we represent global time using the clock automaton Clock (Figure[). Let p € N
be given and let A be a task-PIOA compatible with Clock. We say that A is
p-bounded if the following hold:

(i) A has step bound p.
(ii) For every task T of A, rate(T') and burst(T") are both at most p.
(iii) For every t € N, let Sy denote the set of states s of AJ|Clock such that s is
reachable under some valid schedule 7 and s.count = t. There are at most
p tasks T such that T' is enabled in some s € S;. (Here, s.count is the value
of variable count of Clock in state s).

We say that A is quasi-p-bounded if A is of the form A’||Clock where A’ is
p-bounded.

Conditions () and () are self-explanatory. Condition () is a technical condi-
tion that ensures that the enabling of tasks does not change too rapidly. Without
such a restriction, A could cycle through a large number of tasks between two
clock ticks, without violating the rate bound of any individual task.

Task-PIOA Families: We now extend our definitions to task-PIOA families, in-
dexed by a security parameter k. More precisely, a task-PIOA family A is an
indexed set { Ay} xen of task-PIOAs. Given p : N — N, we say that A is p-bounded
just in case: for all k, Ay is p(k)-bounded. If p is a polynomial, then we say that
A is polynomially bounded. The notions of compatibility and parallel composi-
tion for task-PIOA families are defined pointwise. We now present an example
of a polynomially bounded family of task-PIOAs—a signature service that we
use in our digital timestamping example. The complete formal specification for
these task-PIOAs can be found in the long version of this paper [19].

Ezample 3 (Signature Service). A signature scheme Sig consists of three algo-
rithms: KeyGen, Sign and Verify. KeyGen is a probabilistic algorithm that out-
puts a signing-verification key pair (sk, vk). Sign is a probabilistic algorithm that
produces a signature o from a message m and the key sk. Finally, Verify is a
deterministic algorithm that maps (m, o, vk) to a boolean. The signature o is
said to be valid for m and vk if Verify(m, o, vk) = 1.

Let SID be a domain of service identifiers. For each j € SID, we build a signa-
ture service as a family of task-PIOAs indexed by security parameter k. Specif-
ically, we define three task-PIOAs, KeyGen(k, j), Signer(k, j), and Verifier(k, 5)
for every pair (k, j), representing the key generator, signer, and verifier, respec-
tively. The composition of these three task-PIOAs gives a signature service. We
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assume a function alive : T — 25 such that, for every t, alive(t) is the set
of services alive at discrete time ¢. The lifetime of each service j is then given
by aliveTimes(j) := {¢t € T|j € alive(t)}; we assume this to be a finite set of
consecutive numbers.

Assuming the algorithms KeyGen;, Sign; and Verify; are polynomial time, it
not hard to check that the composite KeyGen(k, j)||Signer(k, j)| Verifier(k, j) has
step bound p(k) for some polynomial p. If rate(T') and burst(T) are at most p(k)
for every T, then the composite is p(k)-bounded. The family {KeyGen(k,j)||
Signer(k, j)||Verifier(k, j) }ren is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistin-
guishability. For instance, an encryption algorithm is (chosen-plaintext) secure
if the ciphertexts of two distinct but equal-length messages are indistinguishable
from each other, even if the plaintexts are generated by the distinguisher itself.
The key assumption is that the distinguisher is computationally bounded, so
that it cannot launch a brute force attack. In this section, we adapt this notion
of indistinguishability to the long-lived setting.

We define an implementation relation based on closing environments and ac-
ceptance probabilities. Let A be a closed task-PIOA with output action acc and
task acc = {acc}. Let 7 be a timed task schedule for A. The acceptance probability
of A under 7 is: Pacc (A, 7) := Pr[f contains acc : § «—r tdist(A, 7)]; that is, the
probability that a trace drawn from the distribution tdist(A4, 7) contains the action
acc. If A is not necessarily closed, we include a closing environment. A task-PIOA
Env is an environment for A if it is compatible with A and A||Env is closed. From
here on, we assume that every environment has output action acc.

In the short-lived setting, we say that a system .4; implements another system
As if every run of A; can be “matched” by a run of As such that no polynomial
time environment can distinguish the two runs. As we discussed in the introduc-
tion, this type of definition is too strong for the long-lived setting, because we
must allow environments with unbounded total run time (as long as they have
bounded rate and space).

For example, consider the timestamping protocol of [TT12] described in
Section [ After running for a long period of real time, a distinguisher envi-
ronment may be able to forge a signature with non-negligible probability. As a
result, it can distinguish the real system from an ideal timestamping system, in
the traditional sense. However, the essence of the protocol is that such failures
can in fact be tolerated, because they do not help the environment to forge new
signatures, after a new, uncompromised signature service becomes active.

This timestamping example suggests that we need a new notion of long-term
implementation that makes meaningful security guarantees in any polynomial-
bounded window of time, in spite of past security failures. Our new implemen-
tation relation aims to capture this intuition.
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First we define a comparability condition for task-PIOAs: A! and A? are said
to be comparable if they have the same external interface, that is, I' = I? and
O' = O?. In this case, every environment F for A! is also an environment for
A2, provided E is compatible with A2.

Let A' and A2 be comparable task-PIOAs. To model security failure events
in both automata, we let F'! be a set of designated failure tasks of A', and let
F? be a set of failure tasks of A2. We assume that each task in F'' and F? has
oo as its upper bound.

Given t € R>g and an environment Env for both A! and A2, we consider two
experiments. In the first experiment, Env interacts with A" according to some
valid task schedule 71 of A!||[Env, where 71 does not contain any tasks from F!
from time ¢ onwards. In the second experiment, Env interacts with A? according
to some valid task schedule 75 of AZ%||Env, where 75 does not contain any tasks
from F? from time ¢t onwards. Our definition requires that the first experiment
“approximates” the second one, that is, if A! acts ideally (does not perform any
of the failure tasks in F'!) after time ¢, then it simulates A2, also acting ideally
from time ¢ onwards.

More specifically, we require that, for any valid 71, there exists a valid 7 as
above such that the two executions are identical before time ¢ from the point of
view of the environment. That is, the probabilistic execution is the same before
time t. Moreover, the two executions are overall computationally indistinguish-
able, namely, the difference in acceptance probabilities in these two experiments
is negligible provided Env is computationally bounded.

If 7 is a schedule of A||B, then we define projz(7) to be the result of removing
all (T;,t;) where T; is not a task of B. Moreover, let Execsg(A||B, ) denote the
distribution of executions of B when executed with 4 under schedule 7.

Definition 1. Let A' and A? be comparable task-PIOAs that are both compati-
ble with Clock. Let F' and F? be sets of tasks of, respectively, A' and A%, such
that for any T € (F' U F?), ub(T) = oco. Let p,q € N and € € R>q be given.
Then we say that (A', F') <, . (A% F?) provided that the following is true:
For every t € R>q, every quasi-p-bounded environment Env, and every valid
timed schedule T for AY||[Env for the interval [0,t+ q| that does not contain any
pairs of the form (T, t;) where T; € F' and t; > t, there exists a valid timed
schedule o for A?||Env for the interval [0,t + q] such that:

(Z) projEnv(Tl) = projEnv(TQ);

(ii) T2 does not contain any pairs of the form (T;,t;) where T; € F? and t; > t;
(i4i) Execsgny(A!||Env,truncs,(71)) = Execsgn (A2||Env, truncs¢(72));
(iv) | Pacc(AY|Env, 71) — Pacc (A2||Env, 72)| < €.

It can be observed that the <, , . is transitive up to additive errors [19].

The relation <, ,. can be extended to task-PIOA families as follows. Let
Al = {(AY)}ren and A% = {(A?);}ren be pointwise comparable task-PIOA
families. Let F'* be a family of sets such that each (F'!)y is a set of tasks of (A!)y
and let F'? be a family of sets such that each (F2); is a set of tasks of (A?)g,
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satisfying the condition that each task of those sets has an infinite upper bound.
Let € : N — Rx¢ and p, ¢ : N — N be given. We say that (A!, F'') <, . . (A2, F?)
just in case ((./Il)k, (Fl)k) <p(k),q(k),e(k) ((/Iz)k, (FQ)k) for every k.

Restricting our attention to negligible error and polynomial time bounds, we
obtain the long-term implementation relation <pegpt. Formally, a function ¢ :
N — R> is said to be negligible if, for every constant ¢ € N, there exists kg € N
such that e(k) < . for all k > ko. (That is, ¢ diminishes more quickly than the
reciprocal of any polynomial.) Given task-PIOA families A" and A? and task
set families F'' and F?, respectively, of A' and A%, we say that (A', F'') <peg pt
(A2, F?) if Vp,q Je : (AL, F1) <, 4. (A% F?), where p,q are polynomials and e
is a negligible function.

Ezample 4 (Ideal Signature Functionality). In order to illustrate the use of the
relation <eg pt in our example, we specify an ideal signature functionality SigFunc,
and show that it is implemented by the real signature service of Section [l

As with KeyGen, Signer, and Verifier, each instance of SigFunc is parameter-
ized with a security parameter k and an identifier j. It is very similar to the
composition of Signer(k, j) and Verifier(k, j). The important difference is that
SigFunc(k, j) maintains an additional variable history, which records the set of
signed messages. In addition, SigFunc(k, j) has an internal action fail;, which sets
a boolean flag failed. If failed = false, then SigFunc(k, j) uses history to answer
verification requests: a signature is rejected if the submitted message is not in
history, even if Verify; returns 1. If failed = true, then SigFunc(k, j) bypasses
the check on history, so that its answers are identical to those from the real
signature service.

Let us define RealSig(j), =hide(KeyGen(k, j)||Signer(k, j)||Verifier(k, j), signKey )
and IdealSig(j) = hide(KeyGen(k, j)||SigFunc(k, j), signKey; ). We define families
from those automata in the obvious way: RealSig := {RealSig; }ren and IdealSig :=
{IdealSig;, } ren. We show that the real signature service implements the ideal sig-
nature functionality. The proof, which relies on a reduction to standard properties
of a signature scheme, can be found in [19].

Theorem 1. Let j € SID be given. Suppose that (KeyGen,, Sign;, Verify;) is a
complete and EUF-CMA secure signature scheme. Then (RealSig(7), {}) <neg,pt
(IdealSig(j), {fail;}).

6 Composition Theorems

In practice, cryptographic services are seldom used in isolation. Usually, different
types of services operate in conjunction, interacting with each other and with
multiple protocol participants. For example, a participant may submit a docu-
ment to an encryption service to obtain a ciphertext, which is later submitted
to a timestamping service. In such situations, it is important that the services
are provably secure even in the context of composition.

In this section, we consider two types of composition. The first, parallel com-
position, is a combination of services that are active at the same time and may
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interact with each other. Given a polynomially bounded collection of real services
such that each real service implement some ideal service, the parallel composition
of the real services is guaranteed to implement that of the ideal services.

The second type, sequential composition, is a combination of services that are
active in succession. The interaction between two distinct services is much more
limited in this setting, because the earlier one must have finished execution before
the later one begins. An example of such a collection is the signature services in
the timestamping protocol of [I2IT1], where each service is replaced by the next
at regular intervals.

As in the parallel case, we prove that the sequential composition of real ser-
vices implements the sequential composition of ideal services. We are able to
relax the restriction on the number of components from polynomial to exponen-
tial[] This highlights a unique aspect of our implementation relation: essentially,
from any point ¢ on the real time line, we focus on a polynomial length interval
starting from ¢.

Parallel Composition: Using a standard hybrid argument, as exemplified in [20]
for instance, it is possible to show that the relation <pegpt is preserved under
polynomial parallel composition. The theorem contains a technicality: instead
of simply assuming <peg,pt relationships for all the components, we assume a
slightly stronger property, in which the same negligible function € is assumed
for all of the components; that is, € is not allowed to depend on the component
index 1.

Theorem 2 (Parallel Composition Theorem for <,egpt). Let Af, A}, ...
and A3, A3, ... be two infinite sequences of task PIOA families, with Al compa-
rable to A2 for every i. Suppose that 5%, ... are pairwise compatible for
any combination of o; € {1,2}. Let b be cmy polynomial, and for each k, let
(AY), and (A2),, denote ||b(k (ADk and || (.AQ)k, respectively. Let r and s be
polynomials, r,s : N — N, such that r is nondecreasmg, and for every i,k, both
(AD)k and (A%)k are bounded by s(k) - r(i).

For each i, let E be a family of sets such that (F}!)y is a set of tasks of (A})
for every k, and let F? be a family of sets such that (F?)y is a set of tasks of
(A2)g for every k, where all these tasks have infinite upper bounds. Let (Fl),C
and (F?), denote | ;" blk) L (FY), and Ub(k (F?),., respectively.

Assume:

Vp,q e Vi (A}, Fl) <pge (A2 FP), (1)

where p,q are Apolynommls and € is a negligible function.
Then (.A1 D) <neg,pt (A2, F2)

Sequential Composition: We now treat the more interesting case, namely, exponen-
tial sequential composition. The first challenge is to formalize the notion of sequen-
tiality. On a syntactic level, all components in the collection are combined using

! In our model, it is not meaningful to exceed an exponential number of components,
because the length of the description of each component is polynomially bounded.
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the parallel composition operator. To capture the idea of successive invocation, we
introduce some auxiliary notions. Intuitively, we distinguish between active and
dormant entities. Active entities may perform actions and store information in
memory. Dormant entities have no available memory and do not enable locally con-
trolled actions[ In Definition 2] we formalize the idea of an entity A being active
during a particular time interval. Then we introduce sequentiality in Definition[3

Definition 2. Let A be a task-PIOA and let reals t1 < to be given. We say that
A is restricted to the interval [t1,t2] if for every t ¢ [t1,12], environment Env
for A of the form EnV'||Clock, valid schedule T for A||Env for [0,t], and state
s reachable under T, no locally controlled actions of A are enabled in s, and
s.w = L for every variable v of A.

Definition 3 (Sequentiality). Let Ay, As,... be pairwise compatible task-
PIOAs. We say that Ay, As, ... are sequential with respect to the the nonde-
creasing sequence ti,1la, ... of nonnegative reals provided that for every i, A; is
restricted to [t;, t;y1].

Note the slight technicality that each A; may overlap with 4,11 at the boundary
time ti+1 .

Theorem 3 (Sequential Composition Theorem for <,e pt). Let Af, A}, ...
and A%, A3, ... be two infinite sequences of task PIOA families, with A} compara-
ble to A? for every i. Suppose that A 2 ... are pairwise compatible for any
combination of a; € {1,2}. Let L : N — N be an ewponentz’al function and, for
cach k, let (A and (A2), denote ||L(k (A and || (/{iz)k, respectively. Let p
be a polynomial such that both Al and A2 are p- bounded

Suppose there exists an increasing sequence of nonnegative reals t1,to, ... such
that, for each k, both (Ad)g, ..., (/IlL(k))k and (A3, ..., (A2 w )k are sequential
forty,to, ... Assume there is a constant real number ¢ such that consecutive t;’s
are at least ¢ apart.

For each i, let E be a family of sets such that (F}!)y, is a set of tasks of (A} )
for every k and let F? be a family of sets such that (F?)y is a set of tasks of
(A2)g for every k, where all these tasks have infinite upper bounds. Let (Fl),C
and (F?), denote UL(k) (F}), and UL(]C (F?),., respectively.

Assume:

¥p,q e Vi (A}, F}) <pgc (A2, F?), (2)
where p,q are polynomials and € is a negligible function.

Then (A', F1) <peg.pt (A2, F2).

This sequential composition theorem can be easily extended to the case where
a bounded number of components of the system are active concurrently [19].

Application to Digital Timestamping: In this section, we present a formal
model of the digital timestamping protocol of Haber et al. (cf. Section[I]). Recall

2 For technical reasons, dormant entities must synchronize on input actions. Some inputs
cause dormant entities to become active, while all others are trivial loops on the null
state.
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the real and ideal signature services from Sections [l and Bl The timestamping
protocol consists of a dispatcher component and a collection of real signature
services. Similarly, the ideal protocol consists of the same dispatcher with a
collection of ideal signature services. Using the sequential composition theorem
(Thm. B)) and its extension to a bounded number of concurrent components, we
prove that the real protocol implements the ideal protocol with respect to the
long-term implementation relation <,egpt. This result implies that, no matter
what security failures (forgeries, guessed keys, etc.) occur up to any particular
time ¢, new certifications and verifications performed by services that awaken
after time ¢ will still be correct (with high probability) for a polynomial-length
interval of time after .

Note that this result does not imply that any particular document is reliably
certified for super-polynomial time. In fact, Haber’s protocol does not guarantee
this: even if a document certificate is refreshed frequently by new services, there
is at any time a small probability that the environment guesses the current
certificate, thus creating a forgery. That probability, over super-polynomial time,
becomes large. Once the environment guesses a current certificate, it can continue
to refresh the certificate forever, thus maintaining the forgery.

Dispatcher: We define Dispatcher,, for each security parameter k£ and set SID,
the domain of service names, to be N. If the environment sends a first-time
certificate request, Dispatcher; requests a signature from signature service j,
where j is the service active at the time where this request is transmitted. After
service j returns the new certificate, Dispatcher;, transmits it to the environment.

If a renew request for a certificate issued by the j-th signing service comes
in, Dispatcher, first checks to see if service j is still usable. If not, it sends a
notification to the environment. Otherwise, it asks the j-th signature verification
service to check the validity of the certificate. If service j answers affirmatively,
Dispatcher,, sends a signature request to the j'-th signature service, active at the
time of this request. When service j’ returns, Dispatcher,, issues a new certificate
to the environment.

Assume the following concrete time scheme. Let d be a positive natural num-
ber. Each service j is in alive(t) for t = (j — 1)d,...,(j +2)d — 1, so j is alive
in the real time interval [(j — 1)d, (j + 2)d]. Thus, at any real time ¢, at most
three services are concurrently alive; more precisely, ¢ lies in the interior of the
intervals for at most three services. Besides, signature service j accepts signature
requests for t = (j — 1)d, ..., jd — 1.

Protocol Correctness: For every security parameter k, let SID;, C SID denote
the set of p(k)-bit numbers, for some polynomial p. Recall from Section [ that
RealSig(j)x =  hide(KeyGen(k, j)||Signer(k, j)||Verifier(k, j), signKey;) and
IdealSig(j)x = hide(KeyGen(k, j)||SigFunc(k, j), signKey,). Here we define Real;, =
lljesip, RealSig(j)w,ldeal, = ||jesip,|dealSig(j)x, and RealSigSys, =
Dispatcher,||Realy, |dealSigSys;,  :=  Dispatcher,||ldeal;. Eventually, define
Real := {Realy }rcn, Ideal := {ldealj }cn, RealSigSys := {RealSigSys;, }ren and
IdealSigSys := {ldealSigSys;, } ren. We show the following theorem.
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Theorem 4. Assume the concrete time scheme described above and assume
that every signature scheme used in the timestamping protocol is complete and ex-
istentially unforgeable. Then (RealSigSys, ) <neg.pt (IdealSigSys, F), where Fy, :=
Ujesip, {{failj}} for every k.

In order to prove this theorem, we first observe that certain components of the
real and ideal systems are restricted to certain time intervals, in the sense of Def-
inition 2} at most three RealSig(i); and IdealSig(i)x services are alive at the same
time. Then, we observe that the task-PIOA families Realand Ideal are polynomially
bounded and apply the extension of our sequential composition theorem (Thm.[3))
for bounded concurrency to show that (Real, ) <negpt (Ideal, F'). Eventually, us-
ing our parallel composition theorem (Thm.[2]) with the Dispatcher automaton, we
obtain the relation (RealSigSys, ) <negpt (IdealSigSys, F), as needed.

7 Conclusion

We have introduced a new model for long-lived security protocols, based on task-
PIOAs augmented with real-time task schedules. We express computational re-
strictions in terms of processing rates with respect to real time. The heart of our
model is a long-term implementation relation, <,eg pt, which expresses security in
any polynomial-length interval of time, despite of prior security violations. We have
proved polynomial parallel composition and exponential sequential composition
theorems for <peg, pt. Finally, we have applied the new theory to show security prop-
erties for a long-lived timestamping protocol.

This work suggests several directions for future work. First, for our particular
timestamping case study, it remains to carry out the details of defining a higher-
level abstract functionality specification for a long-lived timestamp service, and to
use <peg pt to show that our ideal system, and hence, the real protocol, implements
that specification.

We would also like to know whether or not it is possible to achieve stronger prop-
erties for long-lived timestamp services, such as reliably certifying a document for
super-polynomial time.

It remains to use these definitions to study additional long-lived protocols and
their security properties. The use of real time in the model should enable quantita-
tive analysis of the rate of security degradation. Finally, it would be interesting to
generalize the framework to allow the computational power of the various system
components to increase with time.
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Abstract. The availability of repositories of Web service descriptions enables
interesting forms of dynamic Web service discovery, such as searching for Web
services exposing a specified behavior — or contract. This calls for a formal notion
of contract equivalence satisfying two contrasting goals: being as coarse as pos-
sible so as to favor Web services reuse, and guaranteeing smooth client/service
interaction. We study an equivalence relation under the assumption that interac-
tions are controlled by orchestrators. We build a simple orchestration language
on top of this theory and we show how to synthesize orchestrators out of Web
services contracts.

1 Introduction

Web services are distributed processes equipped with a public description of their in-
terface. Such description typically includes the type of messages exchanged with the
service, the operations provided by the service [8], and also the behavior — or contract
— supported by the service , ]. The description is made public by registering the ser-
vice in one or more Web service repositories [E, , ] that can be queried and searched
for finding services providing a particular contract. This calls for a formalization of the
contract language and particularly of a subcontract relation, which is determined by
comparing the sets of clients satisfied by different services.

In this work we express contracts using a fragment of CCS [@] with two choice
operators (+ for external choice and @& for internal choice) without relabeling, restric-
tion, and parallel composition. For instance, the contract ¢ = a.c.(b @ d) describes a
service that accepts two messages a and ¢ (in this order) and then decides internally
whether to send back either b or d. The contract p = a.c.(b.e +d.e) describes a client
that sends two messages a and ¢ (in this order), then waits for either the message b or
the message d, and finally terminates (e denotes successful termination). The compli-
ance relation p - o tells us that the client p is satisfied by the service o, because every
possible interaction between p and ¢ leads to the client terminating successfully. This
is not true for p and 6’ = a.c.(b ¢), because the service with contract ¢’ may inter-
nally decide to send a message c that the client is not willing to accept, hence p A ¢”.
The subcontract relation o < 7, where T = a.c.b, tells us that every client satisfied by o
(including p) is also satisfied by 7. This is because 7 is more deterministic than ©.

Formal notions of compliance and subcontract relation may be used for implement-
ing contract-based query engines. The query for services that satisfy p is answered with
the set {0 | p 4 0}. The complexity of running this query grows with the number of
services stored in the repository. A better strategy is to compute the dual contract of p,

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 131 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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denoted by p*, which represents the canonical service satisfying p (p 4 p=) and then
answering the query with the set {o | p~ < o'}. If p is the <-smallest service that sat-
isfies p, we are guaranteed that no service is mistakenly excluded. The advantage of this
approach is that < can be precomputed when services are registered in the repository,
and the query engine needs only scan through the <-minimal contracts.

When looking for a suitable theory defining - and =, the testing framework (11, [16]
and the must preorder seem particularly appealing: clients are tests, compliance encodes
the passing of a test, and the subcontract relation is the liveness-preserving preorder
induced by the compliance relation. Unfortunately, the must preorder excludes many
relations that are desirable in the context of Web services. For example, a service with
contract @ + b cannot replace a service with contract a, despite the fact that a + b offers
more options a. The reason is that the client p’ = a.e + b.c.e complies with a simply
because no interaction on b is possible, whereas it can get stuck when interacting with
a + b because such service does not offer c¢ after b. As another example, the client
p” = c.a.(b.e +d.e) fails to interact successfully with & above because it sends the
messages a and ¢ in the wrong order.

In this work we deviate from the classical testing framework by making client and
service interact under the supervision of an orchestrator. In the Web services domain,
an orchestrator coordinates in a centralized way two (or more) interacting parties so as
to achieve a specific goal, in our case to guarantee client satisfaction. The orchestrator
cannot affect the internal decisions of client and service, but it can affect the way they
try to synchronize with each other. In our framework an orchestrator is a bounded,
directional, controlled buffer: the buffer is bounded in that it can store a finite amount
of messages; the buffer is directional in that it distinguishes messages sent to the client
from messages sent to the service; the buffer is controlled by orchestration actions:

— An asynchronous action (a, €) indicates that the orchestrator accepts a message a
from the client, without delivering it to the service; dually, (a,€) indicates that the
orchestrator sends a message a (previously received from the service) to the client;

— an action of the form (g, o) indicates a similar capability on the service side;

— asynchronous action (a,a) indicates that the orchestrator accepts a message a from
the client, provided that the service can receive a; dually for (a,a).

The orchestrator f = (a,a) makes the client p” above compliant with a + b, because
it forbids any interaction on b; the orchestrator ¢ = (c,€).(a,€).(¢,a).(e,c).((b,b) +
(d,d)) makes the client p” above compliant with o, because the orchestrator accepts
¢ followed by a from the client, and then delivers them in the order expected by the
service. Orchestrators can be interpreted as morphisms transforming service contracts:
the relation f : a < a+ b states that every client satisfied by a is also satisfied by a + b
by means of the orchestrator f; the relation g : c.a.(b®d) < a.c.(b® d) states that
every client that sends ¢ before a and then waits for either b or d can also be satis-
fied by a.c.(b®d), provided that g orchestrates its interaction with the service. On the
other hand, no orchestrator is able to make p interact successfully with ¢’, because the
internal decisions taken by ¢’ cannot be controlled.

Structure of the paper. In 2 we define contracts and we recast the standard testing
framework in our setting. In §3] we define compliance and subcontract relations for
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orchestrated processes. From such definitions we design a simple orchestration lan-
guage and prove its main properties. §4shows how to compute the dual contract and 3]
presents an algorithm for synthesizing orchestrators by comparing service contracts. In
g6l we show the algorithm at work on two less trivial examples. We conclude in 7] with
a discussion of the main achievements of this work and possible directions for future
research. Proofs can be found in the full version [@].

Related work. This work originated by revisiting CCS without T’s [12] in the context of
Web services. Early attempts to define a reasonable subcontract relation [B] have even-
tually led to the conclusion that some control over actions is necessary: ] proposes a
static form of control that makes use of explicit contract interfaces; [é] proposes a dy-
namic form of action filtering. The present work elaborates on the idea of ld] by adding
asynchrony and buffering: this apparently simple addition significantly increases the
technicalities of the resulting theory. The subcontract relation presented in this work,
because of its liveness-preserving property, has connections with and extends the sub-
typing relation on session types [ﬁi, ] and stuck-free conformance relation [@].

WS-BPEL [[1] is often presented as an orchestration language for Web services. Re-
markably WS-BPEL features boil down to storing incoming messages into variables
(buffering) and controlling the interactions of other parties. Our orchestrators can be
seen as streamlined WS-BPEL orchestrators in which all the internal nondeterminism of
the orchestrator itself is abstracted away. ORC [@] is perhaps the most notable example
of orchestration-oriented, algebraic language. The peculiar operators >> and where of
ORC represent different forms of pipelining and can be seen as orchestration actions in
conjunction with the composition operator - of orchestrators (§3)).

In software architectures there has been extensive research on the automatic synthe-
sis of connectors for software components (see for example [IE]) and attempts have
been made to apply the resulting approaches to Web services [IE]. In these works the
problem is to connect a set of tightly coupled components so as to guarantee some
safety properties among which deadlock freeness. Unlike Web services, where commu-
nication is peer-to-peer, architectural topologies can be arbitrarily complex. This leads
to the generation of connectors that only work for specific architectural configurations.
In our approach orchestrators are “proofs” (in the Curry-Howard sense) for < whose
transitivity stems directly from the ability of composing orchestrators incrementally.

2 Contracts

The syntax of contracts makes use of a denumerable set .4~ of names ranged over by
a,b, ... and of a denumerable set of variables ranged over by x,y,...; we write .4 for
the set of co-names a, where a € 4. Names represent input actions, while co-names
represent output actions; we let o, 3, ... range over actions; we let @, ¢’, ... range over
sequences of actions; we let R, S, ... range over finite sets of actions; we let & = o and
R = {0 | o € R}. The meaning of names is left unspecified: they can stand for ports,
operations, message types, and so forth. Contracts are ranged over by p,o,7,... and
their syntax is given by the following grammar:

c:=0|a.0|0c+0|0®0|recx.o|x



134 L. Padovani

The notions of free and bound variables in contracts are standard, being rec x the
only binder. In the following we write c{7/,} for the contract ¢’ that is the same as ¢
except that every free occurrence of x has been replaced by 7. We assume variables to
be guarded: every free occurrence of x in a term rec x.c must be found in a subterm
of ¢ having the form ¢.c’. The null contract O describes the idle process that offers no
action (we will omit trailing 0’s); the contract o.c describes a process that offers the
action o and then behaves as o; the contract ¢ + 7 is the external choice of o and T
and describes a process that can either behave as ¢ or as 7 depending on the party it
is interacting with; the contract o & 7 is the internal choice of ¢ and 7 and describes
a process that autonomously decides to behave as either o or 7; the contract rec x.0
describes a process that behaves as g{rec*.0/,}.

The transition relation of contracts is inductively defined by the following rules (sym-
metric rules for 4+ and & are omitted):

a.GLG oOPbT—O0O recx_(y_>(y{recx.6/x}

/ o /
0—0O O—0

c+1—0'+1 o+7-% 0o

The relation — denotes internal transitions, while %, denotes external transitions
labeled with an action ¢. Overall the transition relation is the same as that of cCS
without T’s [Iﬁ]. In particular, the fact that + stands for an external choice is clear from
the fourth rule, where the internal transition ¢ — ¢’ does not preempt the 7 branch.
The guardedness assumption we made earlier ensures that the number of consecutive
internal transitions in any derivation of a contract is finite (strong convergence). We

write = for the reflexive, transitive closure of —; let =% be :>i>:>; we write

: . . . def
0 % if there exists o’ such that 6 —— ¢, and similarly for 0 == let init(c) =

{a] o=}

The transition relation above describes the transitions of a contract from the point of
view of the process exposing the contract. The notion of contract continuation, which
we are to define next, considers the point of view of the process it is interacting with.

Definition 1 (contract continuation). Let ¢ ==. The continuation of © with respect

def

to @, notation 6 (), is defined as 6(a) = @ ___ a ,0'. We generalize the notion of

continuation to finite sequences of actions so that 6(€) = ¢ and o(0.@) = o () ().

For example, a.b @ a.c == b (the process knows which branch has been taken) but
(a.b®a.c)(a) = b c (the party interacting with a.b ® a.c does not know which branch
has been taken after seeing an a action, hence it considers both). Because of the guard-
edness condition there is a finite number of residuals ¢’ such that 0 =% ¢’ , hence
o(o) is well defined. Moreover, the set D(c) = {c(¢@) | © :(P>} is always finite
(see ]). This is a consequence of the fact that our contracts are finite representa-
tions of regular trees, which have a finite number of different subtrees. We will exploit
this property throughout the paper for defining functions over contracts by induction on
the set D(o) above.



Contract-Directed Synthesis of Simple Orchestrators 135

The ready sets of a contract tell us about its internal nondeterminism. We say that ¢
has ready set R, written ¢ |} R, if 0 = ¢’ and R = init(0’). Intuitively, ¢ |} R means
that o can independently evolve, by means of internal transitions, to another contract ¢’
which only offers the actions in R. For example, {a,b} is the only ready set of a+b
(both a and b are always available), whereas the ready sets of a & b are {a}, {b}, and
{a,b} (the contract a ® b may evolve into a state where only a is available, or only b is
available, or both a and b are available).

As in the classical testing framework we model client satisfaction by means of a spe-
cial action e. A client contract p is compliant with a service contract ¢ if every maximal,
finite interaction of p and o leads to a residual client contract p’ such that p’ —. Here
we provide an equivalent coinductive definition which relates more directly with its
weak variant in {3l

Definition 2 (strong compliance). We say that € is a strong compliance relation if
(p,0) € € implies that

1. p Rand ol S implies either e € R or RNS # 0, and
2. p == and 6 == implies (p(a),0(0)) € E.
We write = for the largest strong compliance relation.

Condition (1) requires that for every combination of states R and S of the client and
of the service, either the client has terminated successfully (e € R) or the client and
the service can synchronize (there is an action o € S such that o € R). For instance
a+b-da®band a®b-da+b, buta®b Aadb. Condition (2) ensures that every
synchronization produces a residual client that is compliant with the residual service.
For instance a.(b ® d) A a.b + a.d because after the synchronization on « this reduces
tobddAbdd.

The (strong) compliance relation provides us with the most natural equivalence for
comparing services: the (service) contract ¢ is “‘smaller than” the (service) contract 7 if
every client that is compliant with ¢ is also compliant with 7.

Definition 3 (strong subcontract). We say that ¢ is a strong subcontract of T, notation
o C 1, if for every p we have p - ¢ implies p - 1. We write ~ for the equivalence
relation induced by C, that is ~ =T N1,

For instance, we have a & b C a because every client that is satisfied to interact with a
service that may decide to offer either a or b is also satisfied by a service that system-
atically offers a. On the other hand a.(b+ c¢) [Z a.b + a.c because after interacting on a,
a client of a.(b+ ¢) can decide whether to interact on b or on ¢, whereas in a.b+a.c
only one of these actions is available, according to the branch taken by the service. In
general the set-theoretic definition of the preorder above is rather difficult to work with
directly, and an alternative characterization such as the following is preferred.

Definition 4 (coinductive strong subcontract). We say that . is a coinductive strong
subcontract relation if (0, 7) € . implies

1. Tt S implies 6 |} R and R C S for some R, and
2. 1=% implies 6 == and (6(a),7(at)) € ..
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Condition (1) requires T to be more deterministic than ¢ (every ready set of 7 has a
corresponding one of ¢ that offers fewer actions). Condition (2) requires 7 to offer no
more actions than those offered by ¢, and every continuation after an action offered by
both o and 7 to be in the subcontract relation. We conclude this section with the most
important properties enjoyed by C.

Proposition 1. The following properties hold:

1. T is the largest coinductive subcontract relation;
2. C coincides with the must preorder 12, ] for strongly convergent processes;
3. Cis a precongruence with respect to all the operators of the contract language.

Property (1) states the correctness of Definition [ as an alternative characterization for
C. Property (2) connects = with the well-known must testing preorder. This result is
not entirely obvious because the notion of “passing a test” we use differs from that
used in the standard testing framework (see ] for more details). Finally, property (3)
states that C is well behaved and that it can be used for modular refinement. The weak
variant of the subcontract relation that we will define in §3]does not enjoy this property
in general, but not without reason as we will see.

3 Simple Orchestrators

The strong compliance relation requires that progress must always be guaranteed for
both client and service unless the client is satisfied. We relax this requirement and as-
sume that an orchestrator mediates the interaction of a client and a service by ensuring
that progress is guaranteed for at least one of the parties. The orchestrator must be fair,
in the sense that client and service must have equal opportunities to make progress.

Weak compliance and subcontract relations. Orchestrators perform actions having one
of the following forms: the action (o, &) means that the orchestrator offers o to the
client; the action (g, o) means that the orchestrator offers o to the service; the action
(o, o) means that the orchestrator simultaneously offers ¢ to the client and o to the
service; we let i, ', ... range over orchestration actions and A,A’,... range over sets
of orchestrator actions. A buffer is a map {o,e} x .4~ — Z associating pairs (r,a) with
the number of a messages stored in the buffer and available for delivery to the role r,
where r can be o for “client” or e for “service”; we let B,B’, ... range over buffers. For
technical reasons we allow cod(BB) — the codomain of B — to range over Z, although
every well-formed buffer will always contain a nonnegative number of messages. We
write @ for the empty buffer, the one having {0} as codomain; we write B[(r,a) + n]
for the buffer B’ which is the same as B except that (r,a) is associated with n; we write
Bu for the buffer B updated after the action p:

B(a,e) = B[(e,a) — B(e,a)+ 1] (accept a from the client)
B(a,e) = B[(0,a) — B(o,a) — 1] (send a to the client)
B(e,a) = B[(o,a) — B(o,a)+ 1] (accept a from the service)
B(e,a) = B[(e,a) — B(e,a) — 1] (send a to the service)

B{o,0) =B (synchronize client and service)
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We say that B has rank k, or is a k-buffer, if cod(B) C [0,k]; we say that the k-buffer
B enables the orchestration action (, notation B ; u, if Bu is still a k-buffer. For
instance 0 | (a, &) but 0 ¥ (a, &) because —1 € cod(D(a,£)). We extend the notion to
sets of actions so that B - A if B enables every action in A. Synchronization actions are
enabled regardless of the rank of the buffer, because they leave the buffer unchanged.

When an orchestrator mediates the interaction between a client and a service, it pro-
poses at each interaction step a set of orchestration actions A. If R is a client ready set
and S is a service ready set, then A oS denotes the service ready set perceived by the
client and R e A denotes the client ready set perceived by the service:

def

Aos = {o|(a,e) e alU{acs|(a,a)ca}
def

ReA = {a](e,a) e A}U{aeR| (o, ) € A}

Namely, the client sees an action ¢ if either that action is provided asynchronously
by the orchestrator ({c,€) € A), or if it is provided by the service (o € S) and the
orchestrator does not hide it ({¢t, &) € A); symmetrically for service. We now possess
all the technical notions for defining the compliance relation with orchestrators.

Definition 5 (weak compliance). We say that %y is a coinductive weak k-compliance
relation if (B, p, 0) € 9y implies that B is a k-buffer and there exists a set of orchestra-
tion actions A such that B -, A and

1. p Rand o | s implies either e € R or RN (A0S) #0 or (ReA)NS # 0, and
2. p =5 and 6 == and (9,¢') € A implies (B(9,¢').p(¢),0(¢") € %
We write p 4 © if there exists Dy, such that (0,p,0) € Jy.

While commenting on the definition of weak compliance, it is useful to compare it with
Definition 2l A tuple (B, p, o) represents the state of the system, which comprises the
client p, the service o, and the buffer B. The definition requires the existence of a set A
of orchestration actions compatible with the state of the buffer (B I, A) so that: (1) for
every combination of client states R and service states S, either the client is satisfied
(e € R) or progress is guaranteed for the client (RN (A oS) # 0) or it is guaranteed for
the service ((Re A) NS # 0); (2) whatever action is executed, the state of the system
after the action is still in the compliance relation. For example, if p == and (a, &) € A,
then (B(a,€),p(a), o) must be in the compliance relation.

Directionality of the buffer is necessary for preserving the correct flow of messages
between client and service and also for fairness: it prevents the orchestrator from sat-
isfying one of the parties by sending back its own messages. The index k prevents the
orchestrator from accepting an unlimited number of messages from just one of the par-
ties, letting the other one starve for an interaction.

Weak compliance induces the weak subcontract relation as follows:

Definition 6 (weak subcontract). We say that ¢ is a weak subcontract of T, notation
0 =X 1, if there exists k such that p - © implies p Ay T for every p.

Namely, when ¢ < 7 a service with contract T can replace a service with contract ¢
because every client satisfied by o (p < o) can also be satisfied by 7 (p i 7) by means
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of some orchestrator. The weak subcontract includes the strong one: when proving p i
7 just consider the set A = {(ct, &) | T ==}. On the other hand, we have a < a+ b (by
filtering b out), a.3.6 < B.a.0 (by delaying a from the client until the service needs it),
and a.b.c < b.o..o (by delaying b from the service until the client needs it).

As usual the set-theoretic definition of subcontract relation is not particularly en-
lightening, hence the following alternative characterization.

Definition 7 (coinductive weak subcontract). We say that #; is a coinductive weak
k-subcontract relation if (B, 0, T) € %} implies that B is a k-buffer and there exists a set
of orchestration actions A such that B - A and

1. S implies either (0 4 R and R C AoS for some R) or (De A)NS # 0, and
2. 1=5 and (@, ¢') € A implies 6 =% and (B(9, ¢'),0(¢),7(¢)) € #4.

We write ¢ <° T if there exists W, such that (0,0,7) € #;.

Condition (1) requires that either T can be made more deterministic than ¢ by means
of the orchestrator (the ready set A o S of the orchestrated service has a corresponding
one of ¢ that offers fewer actions), or that 7 can be satisfied by the orchestrator without
any help from the client ((0® A) N'S # @ implies that (¢, ) € A and o € S for some
o). Condition (2) poses the usual requirement that the continuations must be in the
subcontract relation. The two definitions of weak subcontract are equivalent:

Theorem 1. < = <°¢,

Remark 1. Theorem [I] entails a nontrivial property of =< that makes = suitable as a
subcontract relation: o < 7 means that every client p satisfied by o is weakly compliant
with T by means of some orchestrator which, in principle, may depend on p. On the
other hand, 0 <° 7 means that there exists an orchestrator such that every client satisfied
by o is weakly compliant with T by means of that one orchestrator. In practical terms,
this allows us to precompute not only the subcontract relation < but also the orchestrator
that proves it, regardless of the client performing the query.

A simple orchestration language. The definition of weak compliance relation suggests
a representation of orchestrators as algebraic terms specifying sets of orchestration ac-
tions along with corresponding continuations. Following this intuition we propose a
language of simple orchestrators:

fu=0|lpo|f+f|recx.f|x

We let f,g,h,... range over orchestrators. The orchestrator O offers no action (we
will omit trailing 0’s); the orchestrator (. f offers the action u and then continues as f;
the orchestrator f + g offers the actions offered by either f or g; recursive orchestrators
can be expressed by means of rec x.f and recursion variables in the usual way. As
for contracts, we make the assumption that recursion variables must be guarded by at
least one orchestration action. Orchestrators do not exhibit internal nondeterminism.
This calls for a transition relation merely expressing which orchestration actions are
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available. To this aim, we first define a predicate f s meaning that f cannot perform
the orchestration action U:

u u u
u pAU S fre g f{Eee RS/
0+ u u u
JTL f+g—+ recx.f
The transition relation of orchestrators is the least relation inductively defined by the
following rules (symmetric rule for + is omitted):

P E A e B et (N L A e
' fres e fres rec x.f o f/

Note that f —— f" and f —— f” implies f' = f”. We write f —— if there exists f’

such that 5 f'; we write £ 2% if £+55 2 Let init(f) déf{u |f|L>}.We

say that f is a valid orchestrator of rank k, or is a k-orchestrator, if f s, implies that
Ouy - - -y, is a k-buffer. Not every term f denotes a valid orchestrator of finite rank. For
instance rec x.{a, €).x is invalid because it accepts an unbounded number of messages
from the client; (a,€) is invalid because it tries to deliver a message that it has not
received; (€,a).(a,€) is a valid orchestrator of rank 1 (or greater). In the following we
will always work with valid orchestrators of finite rank.

When an orchestrator f mediates an interaction, it is as if the service operates while
being filtered by f. The dual point of view, in which f filters the client, is legitimate, but
it does not allow us to study the theory of simple orchestrators in a client-independent
way, as by Remark [[l We extend syntax and semantics of contracts with terms of the
form f - o, representing the application of the orchestrator f to the contract o:

c—o % o %o pllYp s % g
f.(y_>f.(y’ f.(y_>f/.(y/ f.(yi)f/.(y/ f.(yi)f/.(y

In the first rule the service performs internal actions regardless of the orchestrator;
in the second and third rules the service interacts with the orchestrator, and possibly
with the client if the orchestrator allows it; in the last rule the orchestrator offers its
asynchronous actions to the client independently of the service.

The orchestration language we have just devised is correct and complete with respect
to the weak subcontract relation, in the following sense:

Theorem 2. ¢ <X 7 ifand only if 6 C f- T for some k-orchestrator f.

Orchestrators as morphisms. According to Theorem 2] orchestrators act as functions
from contracts to contracts: if 0 =< 7, then there is a function f mapping services with
contract T into services with contract f - 7 such that ¢ C f - 7. The function determined
by an orchestrator can be effectively computed as follows:

Zf@floc.f’(G)—ka(ﬂWaGRoc.f’(a(oc)) if (Deinit(f))NR=10
() E @i § (200, @S (0)+2 oay, @S (0(0))) D0)

£y
+D (ew f'(o(a)) otherwise
f—f0€r
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For example consider fdef< €).(c,€).((¢,a).(b,b) + (g,c).(d,d)). Then we have
fla.b)=a.ch; flab+cd)=a.c. (b@d) (a b®ec. d) =a.c.(0pb®d). In general we
have (a,a).f(a.0) = a.f(0) and (a,€).f(0) = a.f(0) and (g, a).f(0.0) = f(0).
The next result proves that /(o) is 1ndeed the contract of the orchestrated service f- o:
Theorem 3. f(o) ~ f-o.

The morphism induced by an orchestrator f is monotone with respect to the strong
subcontract relation and is well behaved with respect to the choice operators.

Theorem 4. The following properties hold: (1) 6 C T implies f(0) C f(7); (2) f(0)+
F(D)Eflo+1):(3) flo)@ f(r) ~ f(o D7)
Observe that f(o)+ f(7) ~ f(o + ) does not hold in general, because of the asynchro-

nous actions that f may offer to the client side. Consider for example f &f (a,€).((b,D)+
(d,d)). Then f(b)+ f(d) =a.b+a.d~a.(b®dd)Ca.(b+d)=f(b+d)but f(b+d) L
f(b)+ f(d). Nonetheless Theorem[@ allows us to prove an interesting property of =<: if
oCf-o’andtC f-7,theno+7C f-(6'+7)and 6 &1L f-(6’ @ 7). This means
that if 0 < ¢’ and 7 < 7’ and the two relations are witnessed by the same orchestra-
tor, then 0+ 7 < 0’ + 1 and 0 & 7 < 6’ @ 7’. In other words, a sufficient condition
for being able to orchestrate ¢’ + 7’ is that the orchestrator must be independent of the
branch (either 6’ or 7') taken by the service, which is in fact the minimum require-
ment we could expect. In general however < is not a precongruence: a = a -+ b.c but
a+bdAa+bc+bd~a+b.(cdd).

Composition of orchestrators. Transitivity of < is not granted by its definition, be-
cause 0 =< T means that every client that is strongly compliant with ¢ is also weakly
compliant with 7. So it is not clear whether ¢ < 7 and T < ¢’ implies 0 < ¢’. By
Theorem[2] we know that there exist f and g such that 0 C f- 7T and 7 C g- o’. Further-
more, by Theorem[d{(1) and transitivity of C we deduce that 6 C -7 C f-g-o’. Thus
we can conclude 6 < ¢’ provided that for any two orchestrators f and g it is possible
to find an orchestrator f - g such that f - g-0’ ~ (f-g) - 0’. Alternatively, by considering
orchestrators f and g as morphisms, we are asking whether their functional composi-
tion f o g is still an orchestrator. This is not the case in general. To see why, consider
= {a.e).(c€).(e.a).(b.b) + (€,¢).(d.d)) and g = (a.€).(b,b) + (c.€).(d.d) and
apply them to the contract ¢ &)+ d. We have f-g0~f(g(0)) ~flab+cd)~
a.c.(b@®d). The subsequent applications of g first and then f introduce some nondeter-
minism due to the uncertainty as to which synchronization (on a or on ¢) will happen.
This uncertainty yields the internal choice b & d in the resulting contract. No single
orchestrator can turn b+ d into a.c.(b @ d) for orchestrators do not manifest internal
nondeterminism. The problem could be addressed by adding internal nondeterminism
to the orchestration language, but this seems quite artificial and, as a matter of facts, is
unnecessary. If we just require that f-g-0 C (f-g)- 0, then 0 C (f-g)- o’ follows by
transitivity of C. The orchestrator f - g can be defined as

f2¥Yy e (a - +E ca (€08
f—f

+ 2 (p,0) (0,0 <(P (p > (f ) + Z (s o) (ar,€) (f/ g/)
f——f" g——¢ 0o +¢e —fl g——g
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The first two subterms in the definition of f-g indicate that all the asynchronous
actions offered by f (respectively, g) to the client (respectively, service) are avail-
able. The third subterm turns synchronous actions into asynchronous ones: for exam-
ple, (o, o) -{ct,€) = (o, €) and (e, ) -(a, o) = (€, ). The last subterm accounts for
the “synchronizations” occurring within the orchestrator, when f and g exchange a
message and the two actions annihilate each other. If we consider the orchestrators f
and g defined above, we obtain f-g = (a,€).(c,€).((b,b) + (d,d)) and we observe
(f-g)(b+d)=a.c.(b+d). The following result proves that f-g is correct and, as a
corollary, that < is a preorder:

Theorem 5. f-g-c C (f-g)-O.

Against the objection that f-g is “more powerful” than f o g it is sufficient to observe
that if f and g are k-orchestrators, then f - g is a 2k-orchestrator. Thus, f - g is nothing
more than some proper combination of f and g, as expected.

4 Contract Duality with Orchestration

We tackle the problem of finding the dual contract p* of a given client contract p.
Recall that p should be the smallest (according to <) contract such that p is compliant
with p. Without loss of generality, we restrict the definition of the dual contract to
so-called canonical client contracts. A client contract is canonical if every derivation

leading to O emits e as its last visible action. Formally, p is canonical if p SN p’ and
p’ ~ 0 implies ¢ = ¢’e for some ¢'. This way we avoid client contracts such as a+ b.e
which can fail if synchronizing on a. The subterm a indicates that the client is unable
of handling a, thus the occurrence of a in the contract is useless as far as querying is
concerned and it can be safely ignored.

Definition 8 (dual contract). Let p be a canonical client contract. The dual contract
of p, denoted by p*, is defined as:
PL & ZpUR,egk Dacr P (a)L

The idea of the dual operator is to consider every state R of the client in which the client
cannot terminate successfully (e ¢ R). For every such state the service must provide
at least one way for the client to proceed, and the least service that guarantees this
is given by the internal choice of all the co-actions in R (note that R # () because the
client is canonical). For example (a.e)* = (a.e ® e)* = a (the service must provide a);
(a.e +e)* = 0 (the service need not provide anything because the client can terminate
immediately); (a.e + b.e)L = a® b (the service can decide whether to provide a or b);
(rec x.a.x)* ~ rec x.a.x (the service must provide an infinite sequence of a’s).

Theorem 6 (duality). Let p be a canonical client contract. Then (1) p 4 p* and (2)
p - o implies p* < ©.

The assumption of using orchestrators is essential as far as duality is concerned: (a.e +
e)t = 0 but 0 is not the smallest (according to C) contract satisfying a.e + e. For
example, 0 b C 0 and a.e +e 4 0@ b. On the contrary, 0 is the least element of < and
it can be used in place of any service contract that exposes an empty ready set.
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5 Synthesizing Orchestrators

In this section we devise an algorithm for computing the k-orchestrator witnessing o <
T, provided there is one. The algorithm is defined inductively by the following rules:

(A1)
AC {<(Pa(P/> ‘ o :(p>7T éJB }_k <(P7(P/>} x fresh

Ts=(3FrR:0RARC A0S)V (0eA)NS#0D , (A2)
TU{(B,0,7) —x},B(9.0') bt fip 0 1 0(9) 22 7(¢)) "P9)* (B g 1) = x
[Bhrrecx.Yyeall-fu:0=*7 I'Bhrx:o0=<%71

A judgment of the form I', B - f : ¢ <® 7 means that f is a k-orchestrator proving
that o < 7 when the buffer of the orchestrator is in state B. The context I' memoizes
triples (B, 0, T) so as to guarantee termination (see Proposition[Ilbelow). The k-buffer B
keeps track of the past history of the orchestrator (which messages the orchestrator has
accepted and not yet delivered). We write f: ¢ <3 T if 0,0 f:0=21.

Although rule (A1) looks formidable, it is a straightforward adaptation of the con-
ditions in Definitiond] Recall that the purpose of the algorithm is to find whether there
exists an orchestrator f such that every client strongly compliant with ¢ is weakly
compliant with 7 when this service is orchestrated by f. Since B is a k-buffer, there is a
finite number of useful asynchronous orchestration actions that can be enabled: an ac-
tion (a, €) is enabled only if B(o,a) > 0; an action (g, €) is enabled only if the buffer has
not reached its capacity, namely if B(e,a) < k; symmetrically for asynchronous service
actions. Also, it is pointless to consider any orchestration action that would not cause

/
any synchronization to occur. Hence, the set {(¢,¢’) | & 2 1L B, (p,0')} of
useful, enabled orchestration actions in the first premise of the rule is finite. Of all of
such actions, the algorithm considers only those in some subset A such that the exe-
cution of any orchestration action in A does not lead to a deadlock later on during the
interaction. This is guaranteed if for every (¢, ¢’) € A we are able to find an orches-
trator f, that proves 7(¢') < o(¢) (fourth premise of the rule). When checking the
continuations, the context I" is augmented associating the triple (B, o, 1) with a fresh
orchestrator variable x, and the buffer is updated to account for the orchestration action
just occurred. If the set A is large enough so that T can be made to look like a more
deterministic version of ¢ (third premise of the rule), then ¢ and 7 can be related. The
orchestrator computed in the conclusion of rule (A1) offers the union of all the useful,
enabled orchestration actions (1, each one followed by the corresponding f, continua-
tion. Rule (A2) is used when the algorithm needs to check whether there exists f such
that T, B f: 0 <* tand (B, 0, 1) € dom(I"). In this case I'(B, 0, 7) is a variable that
represents the orchestrator that the algorithm has already determined for proving ¢ < 7.

Theorem 7. The following properties hold:

1. (termination) it is decidable to check whether there exists f such that f : 6 27 T;
2. (correctness) f : 0 2T T implies that f has rank k and o E f-1;
3. (completeness) 6 = T implies f : 0 =% T for some k and some f of rank k.
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6 An Example: Orchestrated Dining Philosophers

Consider a variant of the problem of the dining philosophers in which a service provider
hires two philosophers for providing philosophical thoughts to the clients of the service.
Each philosopher is modeled by the following contract:

P; l rec x.fork; fork;.thought fork.fork.x

where the fork; actions model the philosopher’s request of two forks, thought mod-
els the production of a thought, and the fork actions notify the client that the forks are
returned. We decorate fork; actions with an index i for distinguishing fork requests com-
ing from different philosophers. Also, we need some way for describing the contract of
two philosophers running in parallel. To this aim we make use of a parallel composition
operator over contracts so that ¢ | 7 stands for the interleaving of all the actions in &
and 7. Assuming that ¢ and T never synchronize with each other, the | operator can be
expressed using a simplified form of expansion law [IE]:

o | Tdéf @(ﬂ}RJU,S(ZO{ER a.(o(a)|7)+Xges (0| T(x)))

The client modeled by the contract

¥ recx. Yi—1.2fork;. Y »fork;.thought.fork fork.x

expects to be able to receive thoughts forever, without ever getting stuck. The problem
of this sloppy client is that it does not care that the two forks it provides end up to the
same philosopher and this may cause the system to deadlock. To see whether such client
can be made compliant with P; | P, we compute its dual contract

Ct ~recx.@,_, »fork, @,_, »fork;thought.fork fork.x

and then we check whether C* < Py | P, using the algorithm. If we consider the se-
quence of actions fork,fork, we reduce to checking whether thought.fork.fork.C+ <
Py (fork,) | P»(fork,). Now Py (fork,) | P(fork,) has just the ready set {fork,,fork,},
while the residual of the client’s dual contract has just the ready set {thought}. There is
no orchestration action that can let the algorithm make some progress from this state.
Thus the algorithm finds out that the two forks sent by the client must be delivered to
the same philosopher, and this is testified by the resulting orchestrator

fdéfrec x. Y1 o (fork; fork;).(fork;,fork;).(thought,thought) (fork,fork).(fork,fork).x

Suppose now that the service provider is forced to update the service with two new
philosophers who, according to their habit, produce their thoughts only after having
returned the forks. Their behavior can be described by the contract

Qi  rec x.fork,.fork;.fork fork.thought.x

The service provider may wonder whether the clients of the old service will still be
satisfied by the new one. The problem can be formulated as checking whether P; | P, <



144 L. Padovani

01| Q> and the interesting step is when the algorithm eventually checks P (fork,fork,) |
Py < Q1 (fork,fork,)| Q» (symmetrically for P, and the sequence of actions fork,fork,).
At this stage Py (fork fork,) | P, has just the ready set {thought,fork,}, whereas the
contract Q| (fork fork,) | Qs has just the ready set {fork,fork,}. By accepting the two
Jork messages asynchronously we reduce to checking whether P (fork,fork,) | P, <
thought.Q, | @2, which holds by allowing the thought action to occur, followed by the
asynchronous sending of the two buffered fork messages. Overall the relation is proved
by the orchestrator

g & recx.Tiy o {forki,fork). Sicy 2 {fork;.fork;). (€. fork).(e. fork).
(thought, thought).(fork, €).(fork, &) .x

and now the sloppy C client will be satisfied by the service (f-g)-(Q1]Q2).

7 Discussion

We have adapted the testing framework , ] by assuming that orchestrators can
mediate the interaction between a client and a service. We have been able to define a
decidable, liveness-preserving subcontract relation that is coarser than the existing ones,
thus enlarging the set of services satisfying a given client and favoring service reuse.
Unlike other orchestration languages, the features of simple orchestrators language stem
directly from the equivalence relation, rather than being designed a priori.

The synthesis algorithm as it stands is computationally expensive. It is well known
that deciding C is PSPACE-complete [@] although common practice suggests that worst
cases occur seldom [9]. In our setting more complexity is added for synthesizing the
orchestrator and the algorithm requires one to guess the rank of the orchestrator needed
for relating two contracts ¢ and 7. We plan to study a variant of the algorithm that is
able to discover the best (of smallest rank) orchestrator that proves f : ¢ <% 7 (an upper
bound can be established by exploiting contract regularity) in the spirit of what has been
done in [6] with so-called “best” filters.

The observations of {3l where we present orchestrators as morphisms for relating
otherwise incompatible behavioral types, deserve further investigation. In particular,
we plan to study a class of invertible orchestrators characterizing isomorphic contracts,
much like invertible functions are used in , ] for characterizing isomorphic types
in a functional language.

Asynchronous variants of the classical testing preorders [4, 7 are notoriously more
involved than their synchronous counterparts and they are usually defined assuming that
self-synchronization is possible and that output messages are allowed to float around in
unbounded buffers. Since these assumptions do not reflect the practice of Web services,
our development can be seen as a practical variant of the classical asynchronous testing
theories. In particular, it might be possible to reduce the asynchronous must preorder
without self-synchronization to our subcontract relation by analyzing the structure of
orchestrators proving the relation (an orchestrator that always enables all of its asyn-
chronous input and output actions acts like an unbounded buffer).
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Abstract. The synthesis problem asks to construct a reactive finite-state sys-
tem from an w-regular specification. Initial specifications are often unrealizable,
which means that there is no system that implements the specification. A common
reason for unrealizability is that assumptions on the environment of the system
are incomplete. We study the problem of correcting an unrealizable specification
¢ by computing an environment assumption 1 such that the new specification
1) — ¢ is realizable. Our aim is to construct an assumption ¢/ that constrains
only the environment and is as weak as possible. We present a two-step algo-
rithm for computing assumptions. The algorithm operates on the game graph that
is used to answer the realizability question. First, we compute a safety assump-
tion that removes a minimal set of environment edges from the graph. Second,
we compute a liveness assumption that puts fairness conditions on some of the
remaining environment edges. We show that the problem of finding a minimal set
of fair edges is computationally hard, and we use probabilistic games to compute
a locally minimal fairness assumption.

1 Introduction

Model checking has become a successful verification technique in hardware and soft-
ware design. Although the method is automated, the success of a verification process
highly depends on the quality of the specification. Writing correct and complete speci-
fications is a tedious task: it usually requires several iterations until a satisfactory spec-
ification is obtained. Specifications are often too weak (e.g., they may be vacuously
satisfied [2I14]); or too strong (e.g., they may allow too many environment behaviors),
resulting in spurious counterexamples. In this work we automatically strengthen the en-
vironment constraints within specifications whose assumptions about the environment
behavior are so weak as to make it impossible for a system to satisfy the specification.
Automatically deriving environment assumptions has been studied from several
points of view. For instance, in circuit design one is interested in automatically con-
structing environment models that can be used in test-bench generation [21U19]. In com-
positional verification, environment assumptions have been generated as the weakest
input conditions under which a given software or hardware component satisfies a given
specification [4l6]]. We follow a different path by leaving the design out of the picture
and deriving environment assumptions from the specification alone. Given a specifica-
tion, we aim to compute a least restrictive environment that allows for an implemen-
tation of the specification. The assumptions that we compute can assist the designer in
different ways. They can be used as baseline necessary conditions in component-based
model checking. They can be used in designing interfaces and generating test cases
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for components before the components themselves are implemented. They can provide
insights into the given specification. And above all, in the process of automatically con-
structing an implementation for the given specification (“‘synthesis”), they can be used
to correct the specification in a way that makes implementation possible.

While specifications of closed systems can be implemented if they are satisfiable,
specifications of open systems can be implemented if they are realizable —i.e., there is
a system that satisfies the specification without constraining the inputs. The key idea of
our approach is that given a specification ¢, if ¢ is not realizable, it cannot be complete
and has to be weakened by introducing assumptions on the environment of the system.
We do this by computing an assumption v such that the new specification ¢y — ¢ is
realizable. Our aim is to construct a condition v that does not constrain the system and
is as weak as possible. The notion that 1) must constrain only the environment can be
captured by requiring that v itself is realizable for the environment —i.e., there exists
an environment that satisfies ¢ without constraining the outputs of the system. The
notion that i) be as weak as possible is more difficult to capture. We will show that in
certain situations, there is no unique weakest environment-realizable assumption v, and
in other situations, it is NP-hard to compute such an assumption.

Example. During a typical effort of formally specifying hardware designs [3], some
specifications were initially not realizable. One specification that was particularly diffi-
cult to analyze can be simplified to the following example. Consider a system with two
input signals r and c, and one output signal g. The specification requires that (i) every
request is eventually granted starting from the next time step, written in linear temporal
logic as O(r — (O0g); and (ii) whenever c or g are high, then g has to stay low in the
next time step, written ((c V g) — (O—g). This specification is not realizable because
the environment can force, by sending c all the time, that g has to stay low forever
(Part (i1)). Thus requests cannot be answered, and Part (i) is violated.

One assumption that makes this specification realizable is 1)y = [—c. This as-
sumption is undesirable because it forbids the environment to send c. A system syn-
thesized with this assumption would ignore the signal c. Assumptions ¢ = [J)—c and
13 = O(r — O—c) are more desirable but still not satisfactory: 15 forces the environ-
ment to lower c infinitely often even when no requests are sent, and 3 is not strong
enough to implement a system that in each step first produces an output and then reads
the input. Assume that the system starts with output g = 0 in time step 0, then receives
the input r = 1 and ¢ = 0, now in time step 1, it can choose between (a) g = 1, or (b)
g = 0. If it chooses to set grant to high by (a), then the environment can provide the
same inputs once more (r = 1 and ¢ = 0) and can set all subsequent inputs tor = 0 and
¢ = 1. Then the environment has satisfied )3 because during the two requests in time
step 0 and 1 the signal ¢ was kept low, but the system cannot fulfill Part (i) of its speci-
fication without violating Part (ii) due to g = 1 in time step 1 and ¢ = 1 afterwards. On
the other hand, if the system decides to choose to set g = 0 by (b), then the environment
can choose to set the inputs to r = 0 and ¢ = 1 and the system again fails to fulfill
Part (i) without violating (ii). The assumption ¢4 = O(r — (O¢—c), which is a subset
of 13, is sufficient. However, there are infinitely many sufficient assumptions between
b3 and 14, such as P = (~c AQws)Vps. The assumption ¢5 = O(r — OO(—cVg))
is also weaker than 13 and still sufficient, because the environment only needs to lower
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c eventually if a request has not been answered yet. Finally, let ¢ = r — O0(—c V g)
and consider the assumption ¢s = E W(£ A (cVg) AQg), which is a sufficient assump-
tion (where W is the weak-until operator of LTL). It is desirable because it states that
whenever a request is sent, the environment has to eventually lower c if it has not seen
the signal g, but as soon as the system violates its specification (Part (ii)) all restrictions
on the environment are dropped. If we replace ¢ in 1) with & = r — O(—c V g), we
get again an assumption that is not sufficient for the specification to be realizable. This
example shows that the notion of weakest and desirable are hard to capture.

Contributions. The realizability problem (and synthesis problem) can be reduced to
emptiness checking for tree automata, or equivalently, to solving turn-based two-player
games on graphs [17]. More specifically, an w-regular specification ¢ is realizable iff
there exists a winning strategy in a certain parity game constructed from (. If ¢ is not
realizable, then we construct an environment assumption ¢ such that ¢y — ¢ is realiz-
able, in two steps. First, we compute a safety assumption that removes a minimal set
of environment edges from the game graph. Second, we compute a liveness assumption
that puts fairness conditions on some of the remaining environment edges of the game
graph: if these edges can be chosen by the environment infinitely often, then they need
to be chosen infinitely often. While the problem of finding a minimal set of fair edges
is shown to be NP-hard, a local minimum can be found in polynomial time (in the size
of the game graph) for Biichi specifications, and in NP N coNP for parity specifica-
tions. The algorithm for checking the sufficiency of a set of fair edges is of independent
theoretical interest, as it involves a novel reduction of deterministic parity games to
probabilistic parity games. We show that the resulting conjunction of safety and live-
ness assumptions is sufficient to make the specification realizable, and itself realizable
by the environment. We also illustrate the algorithm on several examples, showing that
it computes natural assumptions.

Related work. There are some related works that consider games that are not winning,
methods of restricting the environment, and constructing most general winning strate-
gies in games. The work of [11]] considers games that are not winning, and considers
best-effort strategies in such games. However, relaxing the winning objective to make
the game winning is not considered. In [8]], a notion of nonzero-sum game is proposed,
where the strategies of the environment are restricted according to a given objective,
but the paper does not study how to obtain an environment objective that is sufficient to
transform the game to a winning one. A minimal assumption on a player with an objec-
tive can be captured by the most general winning strategy for the objective. The results
of 3] show that such most general winning strategies exist only for safety games, and
also present an approach to compute a strategy, called a permissive strategy, which sub-
sumes behavior of all memoryless winning strategies. Our approach is different, as we
attempt to construct the minimal environment assumption that makes a game winning.

Outline. In Section 2] we introduce the necessary theoretical background for defining
and computing environment assumptions. Section[3discusses environment assumptions
and why they are difficult to capture. In Sections 4] and Bl we compute, respectively,
safety and liveness assumptions, which are then combined in Section[6l A full version
with detailed proofs can be found in [7].
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2 Preliminaries

Words, languages, safety, and liveness. Given a finite alphabet X’ and an infinite word
w € X, we use w; to denote the (7 + l)th letter of w, and w’ to denote the finite prefix
of w of length i 4 1. Given a word w € X, we write odd(w) for the subsequence of
w consisting of the odd positions (Vi > 0 : odd(w); = wa;+1). Givenaset L C X of
infinite words, we define the set of finite prefixes by pref(L) = {v € X* | 3w € L,i >
0:0v= wi}. Given a set L. C J* of finite words, we define the set of infinite limits by
safe(L) = {w € ¥* | Vi > 0 : w’ € L}. A language L C X“ is a safety language
if L = safe(pref(L)). A language L C X“ is a liveness language if pref(L) = X*.
Every w-regular language . C X can be presented as the intersection of the safety
language Lg = safe(pref(L)) and the liveness language L;, = (X \ Lg) U L [1I.

Transducers. We model reactive systems as deterministic finite-state transducers. We
fix a finite set P of atomic propositions, and a partition of P into a set O of output
and a set I of input propositions. We use the alphabets ¥ = 27, 0 = 29, and 7 =
27, A Moore transducer with input alphabet Z and output alphabet O is a tuple 7 =
(Q,4q1, A, k), where @ is a finite set of states, g; € (@ is the initial state, A: Q XxZ — @
is the transition function, and x: Q — O is a state labeling function. A Mealy transducer
is like a Moore transducer, except that x: Q x Z — O is a transition labeling function.
A Moore transducer describes a reactive system that reads words over the alphabet Z
and writes words over the alphabet O. The environment of the system, in turn, can
be described by a Mealy transducer with input alphabet O and output alphabet Z. We
extend the transition function A to finite words w € Z* inductively by A(q,w) =
A(A(q, w®!=1), wy,,) for [w| > 0. Given a word w € I, the run of 7 over w is
the infinite sequence m € QY of states such that 7 = ¢y, and m;41 = A(m;, w;)
for all ¢ > 0. The run 7 over w generates the infinite word 7 (w) € X“ defined by
T(w); = k(m;) Uw; forall ¢« > 0 in the case of Moore transducers; and 7 (w); =
k(m;, w;) Uw; for all ¢ > 0 in the case of Mealy transducers. The language of T is the
set L(T) = {7 (w) | w € ¥} of all generated infinite words.

Specifications and realizability. A specification of a reactive system is an w-regular
language L C X“. We use Linear Temporal Logic (LTL) formulae over the atomic
proposition P, as well as w-automata with transition labels from X/, to define specifi-
cations. Given an LTL formula (resp. w-automaton) ¢, we write L(¢) C X“ for the
set of infinite words that satisfy (resp. are accepted by) ¢. A transducer 7 satisfies a
specification L(¢y), written 7 |= ¢, if L(7) C L(y). Given an LTL formula (resp.
w-automaton) ¢, the realizability problem asks if there exists a transducer 7~ with input
alphabet Z and output alphabet O such that 7 |= ¢. The specification L(y) is Moore
realizable if such a Moore transducer 7 exists, and Mealy realizable if such a Mealy
transducer 7 exists. Note that for an LTL formula, the specification L(yp) is Mealy re-
alizable iff L(y’) is Moore realizable, where the LTL formula ¢’ is obtained from ¢
by replacing all occurrences of o € O by (Oo. The process of constructing a suitable
transducer 7 is called synthesis. The synthesis problem can be solved by computing
winning strategies in graph games.
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Graph games. We consider two classes of turn-based games on graphs, namely, two-
player probabilistic games and two-player deterministic games. The probabilistic games
are not needed for synthesis, but we will use them for constructing environment assump-
tions. For a finite set A, a probability distribution on A is a function 6: A — [0, 1] such
that 4 0(a) = 1. We denote the set of probability distributions on A by D(A).
Given a distribution § € D(A), we write Supp(d) = {x € A | §(x) > 0} for the
support of §. A probabilistic game graph G = ((S, E), (S1,S2,Sp), d) consists of a
finite directed graph (.5, E), a partition (S7, S2, Sp) of the set .S of states, and a prob-
abilistic transition function d: Sp — D(S). The states in Sy are player-1 states, where
player 1 decides the successor state; the states in Sy are player-2 states, where player 2
decides the successor state; and the states in Sp are probabilistic states, where the suc-
cessor state is chosen according to the probabilistic transition function. We require that
forall s € Sp andt € S, we have (s,t) € E iff 6(s)(t) > 0, and we often write
d(s,t) for 0(s)(t). For technical convenience we also require that every state has at
least one outgoing edge. Given a set E/ C F of edges, we write Source(E’) for the set
{s €S| 3teS:(st) e E'} of states that have an outgoing edge in E’. We write
E; = EN(S1 x9S)and E; = EN(S2 x .S) for the sets of player-1 and player-2 edges.
Deterministic game graphs are the special case of the probabilistic game graphs with
Sp = 0, that is, the state space is partitioned into player-1 and player-2 states. In such
cases we omit Sp and ¢ in the definition of the game graph.

Plays and strategies. An infinite path, or play, of the game graph G is an infinite se-
quence T = $0S182 .. . of states such that (s, sx1+1) € F forall k > 0. We write IT
for the set of plays, and for a state s € .S, we write II, C I for the set of plays that
start from s. A strategy for player 1 is a function a: S* - S; — S that for all finite se-
quences of states ending in a player-1 state (the sequence represents a prefix of a play),
chooses a successor state to extend the play. A strategy must prescribe only available
moves, that is, a(7 - s) € E(s) forall 7 € S* and s € S;. The strategies for player 2
are defined analogously. Note that we have only pure (i.e., nonprobabilistic) strategies,
but all our results hold even if strategies were probabilistic. We denote by A and B the
sets of strategies for player 1 and player 2, respectively. A strategy « is memoryless if it
does not depend on the history of the play but only on the current state. A memoryless
player-1 strategy can be represented as a function a: S7 — S, and a memoryless player-2
strategy is a function 3: S — S. We denote by AM and BM the sets of memoryless
strategies for player 1 and player 2, respectively.

Once a start state s € S and strategies o € A and 5 € B for the two players are fixed,
the outcome of the game is a random walk 7% for which the probabilities of events
are well-defined, where an event £ C II is a measurable set of plays. Given strategies
« for player 1 and (3 for player 2, a play m = sgs153 . . . is feasible if for all £ > 0, we
have a(sgs1 ... Sk) = Sgpt1 if sp € S1, and B(sps1 ... Sk) = Sg41 if s € S2. Given
two strategies o € A and 5 € B, and a state s € .S, we write Outcome(s, ar, 3) C Il
for the set of feasible plays that start from s. Note that for deterministic game graphs,
the set Outcome(s, a, 3) contains a single play. For a state s € S and an event £ C 1,
we write Pr®?(€) for the probability that a play belongs to £ if the game starts from
the state s and the two players follow the strategies «v and (.
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Objectives. An objective for a player is a set @ C II of winning plays. We consider
w-regular sets of winning plays, which are measurable. For a play 7 = sgs152.. .,
let Inf(7) be the set {s € S | s = sy, for infinitely many & > 0} of states that appear
infinitely often in 7. We consider safety, Biichi, and parity objectives. Givenaset ' C S
of states, the safety objective Safe(F') = {sos182... € II | Vk > 0 : s, € F} requires
that only states in F be visited. The Biichi objective Buchi(F') = {n € II | Inf(7) N
F # 0} requires that some state in F' be visited infinitely often. Given a function p: S —
{0,1,2,...,d — 1} that maps every state to a priority, the parity objective Parity(p)
requires that of the states that are visited infinitely often, the least priority be even.
Formally, the set of winning plays is Parity(p) = {w € II | min{p(Inf(r))} is even}.
Biichi objectives are special cases of parity objectives with two priorities.

Sure and almost-sure winning. Given an objective @, a strategy o € A is sure win-
ning for player 1 from a state s € S if for every strategy 3 € B for player 2, we have
Outcome(s, a, 3) C &. The strategy « is almost-sure winning for player 1 from s for
@ if for every player-2 strategy /3, we have Pr®”(#) = 1. The sure and almost-sure
winning strategies for player 2 are defined analogously. Given an objective @, the sure
(resp. almost-sure) winning set {(1)) sure (P) (resp. (1)) aimost (P)) for player 1 is the
set of states from which player 1 has a sure (resp. almost-sure) winning strategy. The
winning sets (2)) sure (?) and ((2)) aimost (@) for player 2 are defined analogously. It fol-
lows from the definitions that for all probabilistic game graphs and all objectives P,
we have (1) sure (D) C (1)) atmost (P). In general the subset inclusion relation is strict.
For deterministic games the notions of sure and almost-sure winning coincide [13],
i.e., we have (1)) sure (D) = (1) atmost (P), and in such cases we often omit the sub-
script. Given an objective @, the cooperative winning set ((1,2)) qure(P) is the set of
states s for which there exist a player-1 strategy « and a player-2 strategy 3 such that
Outcome(s, o, 3) C P.

Theorem 1 (Deterministic games [10]). For all deterministic game graphs and parity
objectives D, the following assertions hold: (i) (1) sure(P) = S\ (2) sure (1T \ @);
(ii) memoryless sure winning strategies exist for both players from their sure winning
sets; and (iii) given a state s € S, if s € (1)) sure (P) can be decided in NP N coNP.

Theorem 2 (Probabilistic games [9]). Given a probabilistic game graph G =
((S,E), (S1,852,5p),0) and a parity objective ¢ with d priorities, we can construct
a deterministic game graph G = ((S, E), (3; 3;)) with S C S, and a parity objective
® with d + 1 priorities such that (i) |S| = O(|S| - d) and |E| = O(|E| - d); and (ii) the
set (1)) aimost (@) in G is equal to the set <<1>>Sm«e($) N S in G. Moreover, memoryless
almost-sure winning strategies exist for both players from their almost-sure winning
sets in G.

Realizability games. The realizability problem has the following game-theoretic
formulation.

Theorem 3 (Reactive synthesis [17]]). Given an LTL formula or w-automaton o, we
can construct a deterministic game graph G, a state sy of G, and a parity objective ®
such that L(p) is Moore (resp. Mealy) realizable iff s; € (1)) sure (D).
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The deterministic game graph GG with parity objective @ referred to in Theorem 3 is
called the Mealy (resp. Moore) synthesis game for . Starting from an LTL formula ¢,
we construct the synthesis games by first building a nondeterministic Biichi automaton
that accepts L(¢) [20]]. Then, following the algorithm of [16], we translate this automa-
ton to a deterministic parity automaton that accepts L(¢). By splitting every state of
the parity automaton w.r.t. inputs / and outputs O, we obtain the Mealy (resp. Moore)
synthesis game. Both steps involve exponential blow-ups that are unavoidable: for LTL
formulae ¢, the realizability problem is 2EXPTIME-complete [18]].

Synthesis games, by relating paths in the game graph to the specification L(), have
the following special form. A Moore synthesis game G is a tuple (G, sy, A, @), where
G = ((S,E), (51, 52)) is a deterministic bipartite game graph, in which player-1 and
player-2 states strictly alternate (i.e., E C (57 x.S2)U(S2 x S1)), the initial state s; € Sy
is a player-1 state, the labeling function A: S — OUZ maps player-1 and player-2 states
to letters in Z and O, respectively (i.e., A(s) € Z for all s € Sy, and A(s) € O for all
s € S2), and @ is a parity objective. Furthermore, synthesis games are deterministic
w.r.t. input and output labels, that is, for all edges (s, s'), (s, s”) € E,if A\(s') = A(s"),
then s’ = s”. Without loss of generality, we assume that synthesis games are complete
w.r.t. input and output labels, that is, for all states s € .Sy (resp. Sz) and [ € O (resp. 7),
there exists an edge (s, s’) € E such that A(s’) = [. We define a function w: IT — X%
that maps each play to an infinite word such that w; = A(m2;4+1) U A(mai42) for all
1 > 0. Note that we ignore the label of the initial state.

Given the Moore synthesis game G for a specification formula or automaton ¢ (as
referred to by Theorem 3), every Moore transducer 7 = (Q, qr, A, ) that satisfies
L(p) represents a winning strategy « for player 1 as follows: for all state sequences
7 € (S1 - S2)* - S1, let w be the finite word such that w; = A\(7;41) forall 0 < i < |7;
then, if there is an edge (7),,s") € E with A(s') = k(A(qz,0dd(w))), let (1) =
s', and else let «(7) be arbitrary. Conversely, every memoryless winning strategy o
of player 1 represents a Moore transducer 7 = (Q, qr, 4, k) that satisfies L(p) as
follows: let Q@ = S1, g1 = s1, k(q) = Ma(q)), and A(g,1) = ¢’ if \(s’) = [ and
(a(q), s’) € E. The construction of a Mealy synthesis game for the Mealy realizability
problem is similar.

3 Assumptions

We illustrate the difficulties in defining desirable conditions on environment assump-
tions through several examples. W.l.o.g. we model open reactive systems as Moore
transducers, and correspondingly, their environments as Mealy transducers (with inputs
and outputs swapped). Given a specification formula or automaton ¢ that describes the
desired behavior of a system S (a Moore transducer), we search for an assumption on
the environment of S which is sufficient to ensure that S exists and satisfies L((). For-
mally, a language K C X% is a sufficient assumption for a specification L. C X% if
(X% \ K) U L is Moore realizable. In other words, if the specification is given by an
LTL formula ¢, and the environment assumption by another LTL formula ), then v
is sufficient for ¢ iff L(¢) — ¢) is realizable. In this case, we can view the formula
1) —  as defining a corrected specification.
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Example 1. Consider the specification ¢ = b U a, where U is the until operator of LTL.
No system S with input a and output b can implement , because S does not control
a, and ¢ is satisfied only if a eventually is true. We have to weaken the specification
to make it realizable. A candidate for the assumption 1 is {a, because it forces the
environment to assert the signal a eventually. Further candidates are false, which makes
the specification trivially realizable, Ob, and {$—b, which lead to corrected specifications
such as ¢’ = Ob — ¢ = (-b) V ¢. The system can implement ¢’ independent of ¢
simply by keeping b low all the time.

Example [Tl shows that there may be several different sufficient assumptions for a given
specification L. C X%, but not all of them are satisfactory. For instance, the assumption
false does not provide the desired information, and the assumption that (b cannot be
satisfied by any environment that controls only a. Environment assumptions that are un-
satisfiable or falsifiable by the system correspond to a corrected specification ¢ — ¢ that
can be satisfied vacuously [2/14]] by the system. In order to exclude such assumptions, we
require that an environment assumption X C 3 for L fulfill the following condition.

(1) Realizability by the environment: There exists an implementation of the environ-
ment that satisfies K. Formally, we require that the language K be Mealy realizable
with input alphabet O and output alphabet 7.

Note that Condition 1 implies that the specification L has to be nonempty for a suitable
assumption K to exist. If a formula ¢ is not satisfiable, then there exists only the triv-
ial solution ©» = false. We assume from now on that specifications are nonempty (i.e.,
satisfiable). Apart from Condition 1, we aim to restrict the environment “as little as pos-
sible.” For this purpose, we need to order different assumptions. An obvious candidate
for this order is language inclusion.

(2) Minimality: There exists no other sufficient assumption that is realizable by the
environment and strictly weaker than K. Formally, there is no language K’ C X¢
such that K C K’ and K’ is both a sufficient assumption for L and realizable by
the environment.

The following example shows we cannot ask for a unique minimal assumption.

Example 2. Consider the specification ¢ = (bUay) V (-bUay), where a; and a,
are inputs and b is an output. Again, ¢ is not realizable. Consider the assumptions
11 = Qay and 1y = Qa,. Both are sufficient because, assuming 1)1, the system can
keep the signal b constantly high, and assuming 2, it can keep b constantly low. Both
the assumptions are also realizable by the environment. However, if we assume the
disjunction ¥ = 11 V 19, then the system does not know which of the two signals a;
and a, the environmentis going to assert eventually. Since a unique minimal assumption
has to subsume all other sufficient assumptions and 1) is not sufficient, it follows that
there exists no unique minimal assumption that is sufficient.

Let us consider another example to illustrate further difficulties that arise when com-
paring environment assumptions w.r.t. language inclusion.
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Example 3. Consider the specification ¢ = [(a — Ob) AO(b — (O—b) with input a
and output b. The specification is not realizable because whenever a is set to true in two
consecutive steps, the system cannot produce a value for b such that ¢ is satisfied. One
natural assumption is ¢ = O(a — (O—a). Another assumption is ¢’ = VO (—an(Ob),
which is weaker than ¢ w.r.t. language inclusion and still sufficient and realizable by
the environment. Looking at the resulting corrected system specification ¢/ — ¢ =
(Vv O(—aAOb)) — ¢ =1 — (O(-a — O—b) A p), we see that )’ restricts the
system instead of the environment.

Intuitively, using language inclusion as ordering criterion results in minimal environ-
ment assumptions that allow only a single implementation for the system. We aim for
an assumption that does not restrict the system if possible. One may argue that ¢ should
refer only to input signals. Let us consider the specification of Example 3l once more.
Another sufficient assumption is ¥ = (a — (O—a)W(b A Ob), which is weaker
than 4. This assumption requires that the environment guarantees a — ()—a as long
as the system does not make a mistake (by setting b to true in two consecutive steps),
which clearly meets the intuition of an environment assumption. The challenge is to
find an assumption that (a) is sufficient, (b) does not restrict the system, and (c) gives
the environment maximal freedom.

Note that the assumptions v and )" are safety assumptions, while the assumptions
in Example [2] are liveness assumptions. In general, every w-regular language can be
decomposed into a safety and a liveness component. We use this separation to provide
a way to compute environment assumptions in two steps. In both steps, we restrict the
environment strategies of synthesis games to find sufficient environment assumptions.
More precisely, we put restrictions on the player-2 edges, which represent decisions
made by the environment. If the given specification is satisfiable, then these restrictions
lead to assumptions that are realizable by the environment.

4 Safety Assumptions

We first compute assumptions that restrict the safety behavior of the environment.

Nonrestrictive safety assumptions on games. Given a deterministic game graph G =
((S,E), (S1,52)), a safety assumption is a set Es C Ey of player-2 edges requiring
that player 2 chooses only edges nof in Eg. A natural order on safety assumptions is
the number of edges in a safety assumption. We write Es < Eg’ if |[Es| < |Es’| holds.
For a given player-1 objective @, a safety assumption refers to the safety component of
the objective, namely, &g = Safe({(1,2)) sure (?)). Let AssumeSafe(Eg, P) = {r =
$08182 ... | either (i) there exists ¢ > 0 such that (s;, s;+1) € Eg, or (i) m € $g} be
the set of all plays in which either one of the edges in Fg is chosen, or that satisfy the
safety component of @. The safety assumption Eg is safe-sufficient for a state s € S and
player-1 objective @ if player 1 has a winning strategy from s for the modified objective
AssumeSafe(FEg, @). A synthesis game G = (G, s7, A, @) with a safety assumption Eg
specifies the environment assumption K (FEg) defined as the set of words w € X* such
that there exists a play m € IT,, with w = w(n) and (7;, mi4+1) € Eg foralli > 0.
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Fig.1. Game with two equally small safe- Fig.2. Synthesis game for C(a — (Ob) A
sufficient safety assumptions for si: Es = O(b — (O—b)
{(s3,51)} and Es" = {(s5,57)}

Theorem 4. Let G, = (G, s1, A, P) be the Moore synthesis game for an LTL formula
(or w-automaton) @, and let Eg be a safety assumption. If Es is safe-sufficient for the
state sy and objective ®, then K(Eg) is a sufficient assumption for the specification

safe(pref(L(¢))).

The following example shows that there exist safety games without a unique minimal
safety assumption that is safe-sufficient.

Example 4. Consider the game shown in Figure [[l Circles denote states of player 1;
boxes denote states of player 2. The objective for player 1 is to stay inside the set
{s1,...,86} of states marked by double lines. Player 1 has no winning strategy from
s1. There are two equally small safety assumptions that are safe-sufficient for si:
Es = {(s3,51)} and Es’ = {(s5,57)}. In both cases, player 1 has a winning strategy
from s;. If we consider a specification where the corresponding synthesis game has this
structure, then neither of these assumptions are satisfactory. Figure 2lshows such a syn-
thesis game, for the specification (a — (Ob) A J(b — (O—b) with input a and output
b (cf. Example [3). Using the safety assumption Es, the corrected specification would
allow only the implementation that keeps b constantly low. The other safety assumption
Es' leads to a corrected specification that additionally enforces [J(—a — ()—b).

Therefore, besides safe-sufficiency, we look for a safety assumption that does not re-
strict player 1. This condition can be formalized as follows. Given a deterministic game
graph G = ((S, E), (51, S2)), a safety assumption Eg is restrictive for a state s € S
and a player-1 objective @ if there exist strategies o € A and 8 € B for the two players
such that the play Outcome(s, «, 3) contains an edge from Eg and is in @. Intuitively,
a nonrestrictive safety assumption allows all edges that do not lead to an immediate vi-
olation of the safety component of the objective for player 1.

Theorem 5. Given a deterministic game graph G = ((S, E), (S1, S2)), an objective &
Sorplayer 1, and a state s € S, if s € (1, 2)) sure (D), then there exists a unique minimal
safety assumption Eg that is nonrestrictive and safe-sufficient for s and ®. Moreover; if
s € (1, 2)) sure (P) and Eg is the minimal safety assumption for s and ®, then player 2
has a winning strategy from s for the objective to avoid all edges in Eg.

Applying Theorem[3]to environment assumptions, we obtain Theorem [6l
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Theorem 6. Let G = (G, sy, A\, D) be the Moore synthesis game for a satisfiable LTL
formula (or w-automaton) . Then there exists a unique minimal safety assumption Eg
that is nonrestrictive and safe-sufficient for the state s; and objective . Moreover; the
corresponding assumption K (Eg) is realizable by the environment.

Computing nonrestrictive safety assumptions. Given a deterministic game graph G
and player-1 objective @, we compute the unique minimal nonrestrictive and safe-
sufficient safety assumption Fg as follows. First, we compute the set (1, 2)) syre (P)
of states. Note that for this set the players cooperate. We can compute (1, 2)) sure (D)
in polynomial time for all objectives we consider. In particular, if @ is a parity ob-
jective, then ((1,2))sure (?) can be computed by reduction to Biichi automata [13].
Then the safety assumption Fg is the set of all player-2 edges (s,t) € Fs such that
5 € (1, 2) sure(®) and t & (1, 2)) sure (®).

Theorem 7. For every deterministic game graph G and player-1 objective D, the edge
set Es = {(s,t) € By | s € (1,20 sure(P) andt & ((1,2) sure(P)} is the unique
minimal safety assumption that is nonrestrictive and safe-sufficient for all states s €
(1, 2)) sure (D). The set Eg can be computed in polynomial time for parity objectives P.

For the game show in Figure [Il we obtain the safety assumption Es = {(s3,51),
(s5,s7)}. For the corresponding synthesis game in Figure 2] the set F'g defines the en-
vironment assumption ¢, = (—aV —b) W((-aV —b) AaA (O—b) AbA (Ob). This
safety assumption meets our intuition of a minimal environment assumption, because it
states that the environment has to ensure that either a or b is low as long as the system
makes no obvious fault by either violating ((a — (Ob) or J(b — O—b).

5 Liveness Assumptions

In a second step, we now put liveness assumptions on the environment.

Strongly fair assumptions on games. Given a deterministic game graph G =
((S,E), (S1,52)) and a player-1 objective @, a strongly fair assumption is a set Ej, C
Es of player-2 edges requiring that player 2 plays such that if a state s € Source(E',)
is visited infinitely often, then for all states ¢ € S such that (s,t) € Er, the edge (s, 1)
is chosen infinitely often. Let AssumeFair(Ey,, @) be the set of plays 7 such that either
(i) there is a state s € Source(Ey,) that appears infinitely often in 7 and there is an edge
(s,t) € Ey, that appears only finitely often in 7, or (i) = belongs to the objective &.
Formally, AssumeFair(EL,®) = {m = s¢s152... | either (i) 3(s,t) € Ey, such that
sy = s for infinitely many k’s and there are only finitely many j’s such that s; = s and
sj41 = t, or (ii) m € @}. The strongly fair assumption Ey, C Ej is live-sufficient for a
state s € S and player-1 objective @ if player 1 has a winning strategy from s for the
modified objective AssumeFair(Ey,, ®). A state s € S is live for player 1 if player 1
has a winning strategy from s for the objective Safe({(1, 2)) syre (P)).

Theorem 8. Given a deterministic game graph G = ((S, E), (51, S2)) and a safety or
Biichi objective @, for every state s € S that is live for player 1, there exists a strongly
fair assumption Ey, that is live-sufficient for s and .

A synthesis game G = (G, sy, \, @) with a strongly fair assumption E, specifies the
environment assumption K (E7) defined as the set of words w € X* such that there
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exists a play m € IIs, with w = w(w) and for all edges (s,t) € Fy, either there exists
i > 0 such that for all j > i we have m; # s, or there exist infinitely many &’s such
that m;, = s and 7,1 = t. Note that this definition and the structure of synthesis games
ensure that K (F}) is realizable by the environment. These definitions together with
Theorem[3land[8llead to the following theorem.

Theorem 9. Let G = (G, s1, \, ®) be a Moore synthesis game for an LTL formula (or
w-automaton) @, and let E1, be a strongly fair assumption. If Ey, is live-sufficient for
the state sy and objective ®, then K (EY,) is a sufficient assumption for the specification
L(p). Moreover, the assumption K (Ey,) is realizable by the environment. Conversely,
if @ is a safety or Biichi objective, if sy is live for player 1, and if there exists some
sufficient assumption K # () for the specification L(p), then there exists a strongly fair
assumption that is live-sufficient.

Computing strongly fair assumptions. We now focus on solution of deterministic
player games with objectives AssumeFair(E},, ®), where @ is a parity objective. Given
a deterministic game graph G, an objective @, and a strongly fair assumption £, on
edges, we first observe that the objective AssumeFair(Ey,®) can be expressed as an
implication: a strong fairness condition implies ¢. Hence given @ as a Biichi or a parity
objective, the solution of games with objective AssumeFair(E},, ®) can be reduced to
deterministic Rabin games. However, since deterministic Rabin games are NP-complete
we would obtain NP solution (i.e., an NP upper bound), even for the case when @ is
a Biichi objective. We now present an efficient reduction to probabilistic games and
show that we can solve deterministic games with objectives AssumeFair(Ey, @) in NP
M coNP for parity objectives ¢, and if ¢ is a Biichi objective, then the solution is achieved
in polynomial time.

Reduction. Given a deterministic game graph G = ((5, E), (S1,.52)), a parity func-
tion p, and a set £, C FEj of player-2 edges we construct a probabilistic game
G = ((S,E), (Sl, S, Sp) §) with parity function p as follows.

1. State space. S = S U {5 | s € Source(Eyr) and E(s) \ By # 0}.
2. State space partition. S; = S1, Sp = Source(EL), and Sy = S\ (Sl U Sp)
3. Edges and transition. We explain edges for the three different kind of states.
(a) Forastate s € 51 we have E(s) = E(s).
(b) For a state s € Sy if s € Sy, then E(s) = E(s);else s = ' and §' €
Source(Ey ) and we have E(s) = E(s') \ Ey.
(c) Forastate s € Sp, if E(s) C Er, then E(s) = E(s) else E(s) = E(s)U{3}.
In both case the transition function is uniform over its successors. _
4. Objective. For all states s € S, we have that p(s) = p(s), and for a state Sin S\ S,
let 5 be the copy of s, then p(s) = p(s).

Intuitively, the edges and transition function can be described as follows: all states s in
Source(E],) are converted to probabilistic states, and from s all edges in F(s) and the
edge to s, which is a copy of s, are chosen uniformly at random. From s player 2 has
the choice of the edges in F(s) that are not contained in F,.

We refer to the above reduction as the edge assumption reduction and denote it by
AssRed, i.e., (G,p) = AssRed(G, Er, p). The following theorem states the connection
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Fig. 3. Constructed environment assumption for  Fig.4. System constructed with assumption
H(xr — 0g) A0(c — Og) shown in Figure3]

about winning in G for the objective AssumeFair(Ey,, Parity(p)) and winning almost-
surely in G for Parity(p). The key argument for the proof is as follows. A memoryless
almost-sure winning strategy « in G can be fixed in G, and it can be shown that the strat-
egy in G is sure winning for the Rabin objective that can be derived from the objective
AssumeFair(Ep,, Parity(p)). Conversely, a memoryless sure winning strategy in G for
the Rabin objective derived from AssumeFair(Ey, Parity(p)) can be fixed in G, and it
can be shown that the strategy is almost-winning for Parity(p) in G.A key property use-
ful in the proof is as follows: for a probability distribution . over a finite set A that assigns
positive probability to each element in A, if the probability distribution y is sampled in-
finitely many times, then every element in A appears infinitely often with probability 1.

Theorem 10. Let G' be a deterministic game graph, and let @ be a parity objective
defined by a priority function p. Let Ey, be a set of player-2 edges, and let (G,p) =
AssRed(G, Ey,, p). Then (1)) gimost (Parity(p)) NS = (1)) sure (AssumeFair(Ep,, D)).

Theorem[IQl presents a linear-time reduction for AssumeFair(Ey,, Parity(p)) to proba-
bilistic games with parity objectives. Using the reduction of Theorem [l and the results
for deterministic parity games (Theorem[I)) we obtain the following corollary.

Corollary 1. Given a deterministic game graph G, an objective @, a set E, of player-2
edges, and a state s of G, whether s € (1)) sure (AssumeFair(Er, ®)) can be decided
in quadratic time if @ is a Biichi objective, and in NP N coNP if ® is a parity objective.

Complexity of computing a minimal strongly fair assumption. We consider the prob-
lem of finding a minimal set of edges on which a strong fair assumption is sufficient. Due
to space limitation, we present here only the theorem, the proof can be found in [7].

Theorem 11. Given a deterministic game graph G, a Biichi objective ®, a number
k € N, and a state s of G, the problem of deciding if there is a strongly fair assumption
E;, with at most k edges (i.e., |EL| < k) which is live-sufficient for s and @, is NP-hard.

Computing locally minimal strongly fair assumptions. Since finding a minimal
set of edges is NP-hard, we focus on computing a locally minimal set of edges.
Given a deterministic game graph G, a state s, and a player-1 objective @, a set
Ep C FE, of player-2 edges is a locally-minimal strongly fair assumption for s and
@ if s € (1)) sure (AssumeFair(Ey, ®)) and for all proper subsets E," C Ep, we
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have s & ((1))sure(AssumeFair(EL’, ®)). A locally-minimal strongly fair assump-
tion Er* can be computed by a polynomial number of calls to a procedure that
checks, given a set Ey, of player-2 edges, whether s € (1)) sure (AssumeFair(EL, @)).
The computation proceeds as follows. Initially all player-2 edges are in E.*. As
long as s € (1)) sure (AssumeFair(EL™,®)), we search for an edge e such that s €
(1)) sure (AssumeFair(EL* \ {e}, ®)). If such an e exists, then we remove e from Ep,*
and proceed; otherwise we stop and return E7*. In the worst case, we have at most
m'(ZLH) procedure calls, where m is the number of player-2 edges.

Theorem 12. Given a deterministic game graph G, a state s of G, and a parity ob-
Jjective @, the computed set Er* is a locally-minimal strongly fair assumption for s
and ®. If © is a Biichi objective, then we can compute a locally-minimal strongly fair
assumption 1" for s and @ in polynomial time.

6 Combining Safety and Liveness Assumptions

Now we put everything together. Let ¢ be an LTL formula (or w-automaton) and let
G = (G, s, A\, P) be the corresponding Moore synthesis game. We first compute a
nonrestrictive safety assumption Es as described in Section M (Theorem 7). If ¢ is
satisfiable, then it follows from Theorem [@] that g exists and that the corresponding
environment assumption K (Eg) is realizable by the environment. Then, we modify the
player-1 objective with the computed safety assumption: we extend the set of winning
plays for player 1 with all plays in which player 2 follows one of the edges in Eg. Since
FEs is safe-sufficient for s; and @, it follows that sy is live for player 1 in the modified
game. On the modified game, we compute a locally-minimal strongly fair assumption
EL” as described in Section [B] (Theorem [I2). Finally, using Theorems [§] and 0] we
conclude the following.

Theorem 13. Given an LTL formula (or w-automaton) @, let K = K (Eg) N K (EL*),
where Eg and E1* are computed as described in Theorems 7 and 12. If K # (), then
K is a sufficient assumption for the specification L(p) which is realizable by the envi-
ronment. Conversely, if the Moore synthesis game for @ has a safety or Biichi objective,
and if there exists a sufficient assumption K # () for the specification L(y), then the
computed assumption K is nonempty.

Recall the example from the introduction with the signals r, c, and g, and the specifi-
cation O(r — O0g) AO((c Vg) — (O—g). Our algorithm computes the environment
assumption 1Z shown in Figure [3] (double lines indicate Biichi states). Since it is not
straightforward to describe the language using an LTL formula, we give its relation to
the assumptions proposed in the introduction. The computed assumption LZ includes
1 = O-c and 2 = OO—c, is a strict subset of g = EW(E A (¢ V g) A Og) with
& =1 — O0(—c V g), and is incomparable to all other sufficient assumptions. Even
though the computed assumption is not the weakest w.r.t. language inclusion, it still
serves its purpose: Figure [l shows a system synthesized from the corrected specifica-
tion of using the environment assumption 1Z
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1 Overview

This paper presents Smyle, a tool for synthesizing asynchronous and distributed
implementation models from sets of scenarios that are given as message sequence
charts (MSCs). The latter specify desired or unwanted behavior of the system to
be. Provided with such positive and negative example scenarios, Smyle employs
dedicated learning techniques and propositional dynamic logic (PDL) over MSCs
to generate a system model that conforms with the given examples.

Synthesizing distributed systems from user-specified scenarios is becoming in-
creasingly en vogue ﬂ] There exists a wide range of approaches for synthesizing
implementation models from a priori given scenarios ﬂa, , , , ﬁ, ] The
approaches mainly differ in their specification language, the inference procedure,
and the final implementation model. Several of them employ MSCs as specifica-
tion language because they are standardized by the ITU Z.120 ﬂQ] and adopted by
the UML as sequence diagrams. Other approaches try to utilize more expressive
notations like triggered MSCs [14], high-level MSCs [d], or live sequence charts
ﬂg] On the one hand, more expressive power results in richer specifications. On
the other hand, however, it is just this great expressiveness that disqualifies them
for non-professional or a fortiori unexperienced users, which are overstrained
by these formalisms. As requirements specifications over and over demonstrate,
human beings strongly prefer to express scenarios in terms of simple pictures
including the acting entities and their interaction. Due to this reason, we will
restrict to so-called basic MSCs, only, which consist of processes (i.e., vertical
axes denoting evolution of time) and messages (i.e., horizontal or slanted arrows
between processes signifying asynchronous information exchange).

Many approaches to synthesizing distributed systems typically model synchro-
nous communication, infer labeled transition systems, and use standard automata-
theoretic solutions to project the global system onto its local components. As can
be shown easily, this results in missing or implied behavior that was not stipu-
lated by the user. In contrast, we regard asynchronous communication behavior
and derive a distributed model in terms of a message passing automaton (MPA),
which models the asynchronous communication in a natural manner deploying
FIFO channels. It consist of one local automaton for every process involved in the
system. Harel in his recent article ﬂ] states that it is an intrinsically difficult task to
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Fig. 1. Smyle’s architecture

“[...] distribute the intuitive played-in behavior [...]” and it is still a dream to em-
ploy scenario-based programming. Nevertheless we try to converge to this vision
using the tool Smyle presented in this paper.

2  Smyle from a User Perspective

Smyle is an acronym for Synthesizing Models bY Learning from Examples. Its
major objective is to ease the development of concurrent systems. More specifi-
cally, the overall goal is to derive communication models of concurrent systems.
The synthesis process starts by providing the tool with a set of sample MSCs
where each MSC is either positive or negative. Positive MSCs describe system
behavior that is possible and negative MSCs characterize unwanted or forbid-
den behavior. Smyle focuses on basic-MSC features like asynchronous message
exchange and forbids to deploy the complete MSC standard—which allows for
alternation, loops etc.—on purpose: the more expressive a specification language
gets the less intuitive and manageable it becomes. Simple pictures however are
easy to understand and easy to supply. As mentioned in the previous section,
human beings prefer to describe system runs by means of simple examples and
pictures. Basic MSCs constitute such a device. More information about the for-
mal basis Smyle builds on can be found in E]

The learning chain: In order to initiate the synthesis process, a so-called learning
setup is specified where the channel capacities of the final system are fixed a
priori by a bound B € IN. The user can choose from two variants: she may
either want to learn a universally-B-bounded system, which means that the
outcome will be realizable using finite channel capacity B, thus resulting in
a finite-state system, or to infer a possibly infinite-state system by requiring
existential bounds on the system’s channels. An existentially-B-bounded learning
setup allows the system developer to include system behavior that may exceed
the system’s channel bound B but at the same time guarantees that there is
at least one execution (i.e., a total ordering of events or a linearization) that
adheres to this limit for each scenario recognized by the final system. Hence, an
appropriate scheduler will always be able to execute the good linearizations (i.e.,
runs not exceeding B) and disregard the ones going beyond the bound. Having
chosen a learning setup, a set of MSCs has to be provided as initial input to
the tool. Smyle will ask the user to classify these MSCs and start the learning
procedure (cf. Figure [I(a)). Successively, new MSCs as depicted in Figure 2fa)
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Fig. 2. Smyle GUI

are presented to the user (acting as Teacher) who in turn has to classify these
scenarios as either wanted (positive) or illegal (negative). Whenever Smyle has
a complete and consistent view of the current internal system, it presents a
window (cf. Figure [J(c)) for testing and simulating the derived system. Within
this component, the user (now acting as Oracle) may execute actions to see how
the system behaves. These actions are monitored and the related scenario is
depicted as MSC on the right hand side of the frame (cf. Figure P(c)). If, after
an intensive simulation, there is no evidence for wrong or missing behavior, the
user will terminate the simulation session and the concurrent system is deduced.
If, however, some illegal or missing behavior is detected, then the user can use the
corresponding MSC as counterexample, or, respectively, edit the missing scenario
to a (positive) counterexample. This singleton set of counterexamples may of
course be enriched by additional MSCs, and the learning procedure continues
as explained until reaching the next consistent model. An exemplifying video of
this learning process can be downloaded from the tool’s webpage ﬁ]

The MSC' editor: When new MSCs have to be specified in order to start or
continue the learning phase, Smyle can either load MSC documents containing
basic MSCs from the file system or offer to use the integrated MSC editor (cf.
Figure (b)) for easy specification of basic MSCs. The MSCs can directly be
classified and fed back to Smyle in order to derive a new MPA. The editor also
provides functionality for storing MSCs in many different formats (e.g., WTEX,
fig, etc.). An extended, stand-alone version of the editor covering the ITU Z.120
standard to a large extend will soon be available @]

Easing the learning process: In order to simplify the user’s task of classifying
scenarios, Smyle contains means for specifying formulas from PDL over MSCs,
a simple logic that comes with an efficiently solvable membership problem M]
Like MSCs, PDL formulas are used to express desired or illegal behavior, but in
a broader sense. They are to be seen as general rules which apply for all runs of
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the system (and not only all executions of one scenario). Hence, if a user detects
generally wanted or unwanted properties of the presented MSCs she may specify
formulas which express these generics. Smyle is supplied with these formulas and
can, from that moment on, accept or reject all MSCs that fulfill or, respectively,
violate one of these formulas. This technique reduces the number of user queries
substantially. An example formula is ¢ = A ([p?c(a); proc; p?c(a)] false) which
states that there must not be two subsequent occurrences of the same action (i.e.,
p?c(a)) on the same process p. Hence, if formula ¢ is fed to Smyle as negative
generic, all MSCs featuring this behavior, e.g., the one in Figure[2 (d), would be
regarded as negative samples without questioning the user.

3 Smyle’s Implementation Details

Smyle is a platform-independent application written in Java 1.5. For visualiza-
tion purposes, e.g., displaying MSCs and the implementation model, it uses the
graph-visualization libraries Grappa [and JGraph H and employs the MSC2000
parser ﬂﬂ] for parsing the input MSC documents. As depicted in Figure [[(b),
Smyle consists of six main packages: the graphical user interface (GUI), one
package for MSC components, one for learning components, one comprising the
MSC editor functionality, one for graph components, and an interface to the
learning library LearnLib ] The functionality of these components is briefly
described in the following.

MSC components: This package contains the MSC2000 ﬂﬁ] parser for handling
MSC documents according to the I'TU Z.120 standard E] It provides the classes
for representing the internal MSC objects.

Learning components: The tasks of the learning component are manifold. It con-
tains important functionality for efficient partial-order treatment, harbors the
simulator which can be applied to the learned model, and comprises the Learner,
the Assistant, and the University, which acts as mediator between the compo-
nents of this package and the other packages as shown in Figure[Il(a).

MSC editor components: The MSC editor components feature the implementa-
tion of an integrated MSC editor, which is able to load, store, and alter basic
MSCs. Moreover, the created MSCs can be exported to WTEX and the fig format
and thus can be converted, using available tools, to all other prevalent graphical
formats (e.g., eps, pdf, jpeg).

Graph components: The graph components package includes functionality for
checking MSC behavior (e.g., the FIFO property) and the consistency of the
implementation models.

Interface to LearnLib: This package includes an interface to a learning library
called LearnLib [@], which implements Angluin’s algorithm L* E] This inter-
face is by courtesy of the Fachbereich Informatik, Lehrstuhl 5 (University of
Dortmund).

! Grappa: http://www.research.att.com/ john/Grappa,/
2 JGraph: http://www.jgraph.com/
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4 Future Work

We have applied Smyle to a number of examples. We inferred, for example,
a model for the ABP, one for a part of the USB 1.1 protocol and one for a
leader election protocol for a unidirectional ring. Moreover, Smyle has also been
considered in @] where scenarios represented as MSCs are derived from natural
language specifications.

For future work, we plan to extend the formula component and integrate it into
the MSC editor to be able to derive PDL formulas from visually annotated MSCs.
Moreover, we intend to apply Smyle to larger sized case studies to evaluate its
feasibility for real world problems.

The synthesis tool Smyle, the MSC editor as well as dedicated theoretic back-
ground information and an exemplifying video presenting the learning chain can
be freely downloaded for educational and research purposes from:

http://wuw.smyle-tool.org/

References

—_

Smyle webpage, http://wuw.smyle-tool.org/

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87-106 (1987)

3. Bollig, B., Katoen, J.-P., Carsten, K., Leucker, M.: Replaying play in and play out:
Synthesis of design models from scenarios by learning. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 435-450. Springer, Heidelberg (2007)

4. Bollig, B., Kuske, D., Meinecke, I.: Propositional dynamic logic for message-passing
systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp.
303-315. Springer, Heidelberg (2007)

5. Damas, C., Lambeau, B., Dupont, P.: Generating annotated behavior models from
end-user scenarios. IEEE Trans. Softw. Eng. 31(12), 1056-1073 (2005)

6. Genest, B., Muscholl, A.; Seidl, H., Zeitoun, M.: Infinite-state high-level mscs:
model-checking and realizability. J. Comput. Syst. Sci. 72(4), 617647 (2006)

7. Harel, D.: Can programming be liberated, period? Computer 41(1), 28-37 (2008)

8. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

9. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC 1999) (1999)

10. Kof, L.: Scenarios: Identifying missing objects and actions by means of computa-
tional linguistics. In: 15th IEEE RE, pp. 121-130 (2007)

11. Makinen, E., Systéa, T.: MAS — An interactive synthesizer to support behavioral
modeling in UML. In: ICSE, pp. 15-24. IEEE Computer Society, Los Alamitos
(2001)

12. Neukirchen, H.: MSC 2000, Parser (2000),
neukirchen@informatik.unigoettingen.de

13. Ralffelt, H., Steffen, B.: LearnLib: A library for automata learning and experimen-
tation. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 377-380.
Springer, Heidelberg (2006)

14. Sengupta, B., Cleaveland, R.: Triggered message sequence charts. IEEE Trans.
Softw. Eng. 32(8), 587607 (2006)

15. Uchitel, S., Brunet, G., Chechik, M.: Behaviour model synthesis from properties

and scenarios. In: ICSE, pp. 34-43. IEEE Computer Society, Los Alamitos (2007)


http://www.smyle-tool.org/

SYCRAFT: A Tool for Synthesizing Distributed
Fault-Tolerant Programs™*

Borzoo Bonakdarpour and Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University
East Lansing, MI 48823, U.S.A.

{borzoo,sandeep}@cse.msu.edu

Abstract. We present the tool SYCRAFT (SYmboliC' synthesizeR and
Adder of Fault-Tolerance). In SYCRAFT, a distributed fault-intolerant
program is specified in terms of a set of processes and an invariant. Each
process is specified as a set of actions in a guarded command language,
a set of variables that the process can read, and a set of variables that
the process can write. Given a set of fault actions and a specification,
the tool transforms the input distributed fault-intolerant program into
a distributed fault-tolerant program via a symbolic implementation of
respective algorithms.

1 Introduction

Distributed programs are often subject to unanticipated events called faults (e.g.,
message loss, processor crash, etc.) caused by the environment that the program
is running in. Since identifying the set of all possible faults that a distributed
system is subject to is almost unfeasible at design time, it is desirable for design-
ers of fault-tolerant distributed programs to have access to synthesis methods
that transform existing fault-intolerant distributed programs to a fault-tolerant
version.

Kulkarni and Arora [4] provide solutions for automatic addition of fault-
tolerance to fault-intolerant programs. Given an existing program, say p, a set f
of faults, a safety condition, and a reachability constraint, their solution synthe-
sizes a fault-tolerant program, say p’, such that (1) in the absence of faults, the
set of computations of p’ is a subset of the set of computations of p, and (2) in
the presence of faults, p’ never violates its safety condition, and, starting from
any state reachable by program and fault transitions, p’ satisfies its reachability
condition in a finite number of steps. In particular, they show that the synthesis
problem in the context of distributed programs is NP-complete in the state space
of the given intolerant program.

To cope with this complexity, in a previous work [2], we developed a set
of symbolic heuristics for synthesizing moderate-sized fault-tolerant distributed

* This work was partially sponsored by NSF CAREER CCR-0092724 and ONR Grant
N00014-01-1-0744.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 167 2008.
© Springer-Verlag Berlin Heidelberg 2008
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programs. The tool SYCRAFT implements these symbolic heuristics. It is written
in C++ and the symbolic algorithms are implemented using the Glu/CUDD 2.1
package. The source code of SYCRAFT is available freely and can be downloaded
from http://www.cse.msu.edu/~sandeep/sycraft

Related work. Our synthesis problem is in sprit close to controller synthesis and
game theory problems. However, there exist several distinctions in theories and,
hence, the corresponding tools. In particular, in controller synthesis and game
theory, the notion of addition of recovery computations does not exist, which
is a crucial concept in fault-tolerant systems. Moreover, we model distribution
by specifying read-write restrictions, whereas related tools and methods (e.g.,
GASt, Supremica, and the SMT-based method in [3]) do not address the issue
of distribution.

2 The Tool SYCRAFT

2.1 Input Language

We illustrate the input language and output format of SYCRAFT using a classic
example from the literature of fault-tolerant distributed computing, the Byzan-
tine agreement problem [B] (Figure [Il). In Byzantine agreement, the program
consists of a general g and three (or more) non-general processes: 0, 1, and 2.
Since, the non-general processes have the same structure, we model them as a
process j that ranges over 0..2. The general is not modeled as a process, but
by two global variables bg and dg. Each process maintains a decision d; for the
general, the decision can be either 0 or 1, and for the non-general processes,
the decision can be 0, 1 or 2, where the value 2 denotes that the correspond-
ing process has not yet received the value from the general. Each non-general
process also maintains a Boolean variable f that denotes whether that process
has finalized its decision. To represent a Byzantine process, we introduce a vari-
able b for each process; if b.j is true then process j is Byzantine. In SYCRAFT, a
distributed fault-intolerant program comprises of the following sections:

Process sections. Each process includes (1) a set of process actions given in
guarded commands, (2) a fault section which accommodates fault actions that
the process is subject to, (3) a prohibited section which defines a set of transitions
that the process is not allowed to execute, (4) a set of variables that the process
is allowed to read, and (5) a set of variables that the process is allowed to write.
The syntax of actions is of the form g — st, where the guard ¢ is a Boolean
expression and statement st is a set of (possibly non-deterministic) assignments.
The semantics of actions is such that at each time, one of the actions whose
guard is evaluated as true is chosen to be executed non-deterministically. The
read-write restrictions model the issue of distribution in the input program.
Note that in SYCRAFT, fault actions are able to read and write all the program
variables. Prohibited transitions are specified as a conjunction of an (unprimed)
source predicate and a (primed) target predicate.
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In the context of Byzantine agreement, each non-general process copies the
decision value from the general (Line 6) and then finalizes that value (Line 8).
A fault action may turn a process to a Byzantine process, if no other process is
Byzantine (Line 10). Faults also change the decision (i.e., variables d and f) of a
Byzantine process arbitrarily and non-deterministically (Line 12). In SYCRAFT,
one can specify faults that are not associated with a particular process. This
feature is useful for cases where faults affect global variables, e.g., the decision of
the general (Lines 18-22). In the prohibited section, we specify transitions that
violate safety by process (and not fault) actions. For instance, it is unacceptable
for a process to change its final decision (Line 14). Finally, a non-general process
is allowed to read its own and other processes’ d values and update its own d
and f values (Lines 15-16).

Invariant section. The invariant predicate has a triple role: it (1) is a set
of states from where execution of the program satisfies its safety specification
(described below) in the absence of faults, (2) must be closed in the execution of
the input program and, (3) specifies the reachability condition of the program,
i.e., if occurrence of faults results in reaching a state outside the invariant, the
(synthesized) fault-tolerant program must safely reach the invariant predicate in
a finite number of steps. In order to increase the chances of successful synthesis,
it is desired that SYCRAFT is given the weakest possible invariant. In the context
of our example, the following states define the invariant: (1) at most one process
may be Byzantine (Line 24), (2) the d value of a non-Byzantine non-general
process is either 2 or equal to dg (Line 25), and (3) a non-Byzantine undecided
process cannot finalize its decision (Line 26), or, if the general is Byzantine and
other processes are non-Byzantine their decisions must be identical and not equal
to 2 (Line 28).

Specification section. Our notion of specification is based on the one defined
by Alpern and Schneider [I]. The specification section describes the safety spec-
ification as a set of bad prefizes that should not be executed neither by a process
nor a fault action. Currently, the size of such prefixes in SYCRAFT is two (i.e.,
a set of transitions). The syntax of specification section is the same as prohib-
ited section described above. In the context of our example, agreement requires
that the final decision of two non-Byzantine processes cannot be different (Lines
30-31). And, validity requires that if the general is non-Byzantine then the final
decision of a non-Byzantine process must be the same as that of the general
(Lines 32). Notice that in the presence of a Byzantine process, the program may
violate the safety specification.

2.2 Internal Functionality

SYCRAFT implements three nested symbolic fixedpoint computations. The inner
fixedpoint deals with computing the set of states reachable by the input intoler-
ant program and fault transitions. The second fixedpoint computation identifies
the set ms of states from where the safety condition may be violated by fault
transitions. It makes ms unreachable by removing program transitions that end
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1) program Byzantine Agreement;
2) const N = 2;

3) var boolean bg, b.0..N, £.0..N;
4) int dg: domain 0..1, d.0..N: domain 0..2;
}
5) process j: 0..N
6) ((d.j ==2) & '£.j & 'b.j) --> d.j := dg;
7) ]
8) ((d.j '=2) & '£.5 & 'b.j) -=> £.j := true;
9) fault Byzantine NonGeneral
10) ('bg) & (forall p in 0..N::(!b.p)) --> b.j := true;
11) 0
12) (b.j) -—> (d.j :=1) [0 (@a.j :=0) 0O
(f.j := false) [] (£f.j := true);
13) endfault
14)  prohibited (!b.j)&(!b.3’)&(£.3)&((d.j'=d.3*) | (1£.3°))
15) read: d.0..N, dg, £.j, b.j;
16) write: d.j, f.j;
17) endprocess
}
18) fault Byzantine General
19) 'bg & (forall p in 0..N:: (!'b.p)) --> bg := true;
20) ]
21) bg --> (dg := 1) [1 (dg := 0);
22) endfault
{ }
23) invariant
24) ('bg & (forall p, q in 0..N:(p !'= @) :: (!b.p | !'b.@))&
25) (forall r in 0..N::(!b.r => ((d.r == 2) | (d.r == dg)))) &
26) (forall s in 0..N:: ((!'b.s & f.s) => (d.s != 2))))
27) |
28) (bg & (forall t in 0..N:: (!b.t)) &
(forall a,b in 0..N::((d.a==d.b)&(d.a!=2))));
}
29) specification:
30) (exists p, 9 in 0..N: (p '= @ :: (!b.p’ & 'b.q’ & (d.p’ !'= 2) &
31) (d.q> '=2) & (d.p’ '=d.q’) & £.p’ & £.9°)) |
32) (exists r in 0..N:: (!bg’ & !'b.xr’ & f.r’ & (d.r’ '= 2) & (d.r’ !'=dg’)));

Fig. 1. The Byzantine agreement problem as input to SYCRAFT

in a state in ms. Note that in a distributed program, since processes cannot read
and write all variables, each transition is associated with a group of transitions.
Thus, removal or addition of a transition must be done along with its corre-
sponding group. The outer fixedpoint computation deals with resolving deadlock
states by either (if possible) adding safe recovery simple paths from deadlock
states to the program’s invariant predicate, or, making them unreachable via
adding minimal restrictions on the program.

2.3 Output Format

The output of SYCRAFT is a fault-tolerant program in terms of its actions. Figure[2]
shows the fault-tolerant version of Byzantine agreement with respect to process
j = 0. SYCRAFT organizes these actions in three categories. Unchanged actions
entirely exist in the input program (e.g., action 1). Revised actions exist in the
input program, but their guard or statement have been strengthened (e.g., Line
8 in Figure [[] and actions 2-5 in Figure 2]). SYCRAFT adds Recovery actions to
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UNCHANGED ACTIONS:

1-((d0==2) & !(£0==1)) & !(b0==1) --> (d0:=dg)

REVISED ACTIONS:

2-(b0==0) & (d0==1) & (d1==1) & (£0==0) -=>  (£0:=1)
3-(b0==0) & (d0==0) & (d2==0) & (£0==0) -->  (f0:=1)
4-(b0==0) & (d0==0) & (d1==0) & (£0==0) -->  (f0:=1)
5-(b0==0) & (d0==1) & (d2==1) & (£0==0) -->  (f0:=1)

NEW RECOVERY ACTIONS:

6-(b0==0) & (d0==0) & (d1==1)&(d2==1) & (£0==0) -=>  (d0:=1)[1((d0:=1), (£0:=1))
7-(b0==0)&(d0==1) & (d1==0) & (d2==0) & (£0==0) -->  (d0:=0) [1((d0:=1), (£0:=1))

Fig. 2. Fault-tolerant Byzantine agreement

enable the program to safely converge to its invariant predicate. Notice that the
strengthened actions prohibit the program to reach a state from where validity or
agreement is violated in the presence of faults. It also prohibits the program to
reach deadlock states from where safe recovery is not possible.

3 Conclusion

SYCRAFT allows for transformation of moderate-sized fault-intolerant distrib-
uted programs to their fault-tolerant version with respect to a set of uncon-
trollable faults, a safety specification, and a reachability constraint. In addition
to the obvious benefits of automated program synthesis, we have observed that
SYCRAFT can be potentially used to debug specifications as well, since the algo-
rithms in SYCRAFT tend to add minimal restrictions on the synthesized program.
Thus, testing approaches can be used to evaluate behaviors of the synthesized
programs to identify missing requirements. To address this potential application
of program synthesis, we plan to add supervised synthesis features to SYCRAFT.
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Abstract. We introduce subsequence invariants, which characterize the
behavior of a concurrent system in terms of the occurrences of synchro-
nization events. Unlike state invariants, which refer to the state variables
of the system, subsequence invariants are defined over auxiliary counter
variables that reflect how often the event sequences from a given set have
occurred so far. A subsequence invariant is a linear constraint over the
possible counter values. We allow every occurrence of a subsequence to
be interleaved arbitrarily with other events. As a result, subsequence in-
variants are preserved when a given process is composed with additional
processes. Subsequence invariants can therefore be computed individu-
ally for each process and then be used to reason about the full system.
We present an efficient algorithm for the synthesis of subsequence invari-
ants. Our construction can be applied incrementally to obtain a growing
set of invariants given a growing set of event sequences.

1 Introduction

An invariant is an assertion that holds true in every reachable state. Since most
program properties can either directly be stated as invariants or need invari-
ants as part of their proof, considerable effort has been devoted to synthesizing
invariants automatically from the program text ﬂ, E, B, @, B, @]

The most natural approach to invariant generation, followed in almost all
previous work, is to look for constraints over the program variables that are
inductive with respect to the program transitions. This approach works well
for sequential programs, but often fails for concurrent systems: to be inductive,
the invariants must refer to variables from all (or at least multiple) processes;
working on the product state space, however, is only feasible if the number of
processes is very small.

We introduce a new type of program invariants, which we call subsequence
invariants. Instead of referring to program variables, subsequence invariants
characterize the behavior of a concurrent system in terms of the occurrences of
synchronization events. Subsequence invariants are defined over auxiliary counter
variables that reflect how often the event sequences from a given set of subse-
quences have occurred so far. A subsequence invariant is a linear constraint over

* This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).
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the possible counter values. Each occurrence of a subsequence may be scattered
over a sequence of synchronization events: for example, the sequence acacb con-
tains two occurrences (acacb and acacb) of the subsequence ab. This robustness
with respect to arbitrary interleavings with other events ensures that subse-
quence invariants are preserved when a given process is composed with addi-
tional processes. Subsequence invariants can therefore be computed individually
for each process and then be used to reason about the full system.

As an example, consider the arbiter tree shown in Figure[ll The environment
represents the clients of the system, which may request access to a shared re-
source from one of the leaf nodes of the arbiter tree. The arbiter node then sends
a request to its parent in the tree. This request is forwarded up to the central
root process, which generates a grant as soon as the resource is available. The
grant is propagated down to a requesting client, which then accesses the resource
and eventually sends a release signal when it is done. Each arbiter node satisfies
the following subsequence invariants:

(1) Whenever a grant is given to a child, the number of grants given to the other
child so far equals the number of releases received from it. For example, for
Arbiter 1, each occurrence of gr, in an event sequence w is preceded by an
equal number of occurrences of gr; and rel;:

|w|gr1 gro = ‘w‘reh gra and, SymmetricaIIY7 ‘w‘grz gr, — |w|re12 gr, -

(2) Whenever a grant is given to a child, the number of grants received from the
parent exceeds the number of releases sent to it by exactly 1. For example, for
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Arbiter 1, each occurrence of gry or gr, is preceded by one more occurrence
of gr, than of rely:

|w|gr0 gr, — ‘w‘relo er; + |w|gria for i = 172~

(3) Whenever a release is sent to, or a grant received from, the parent, the
number of releases received from each child equals the number of grants
given to that child. For Arbiter 1:

‘w‘gri gro — ‘w‘reli grg and |w|gri relp — |w|re1i relps for i = 172

(4) The differences between the corresponding numbers of grants and releases
only ever take values in {0,1}. For Arbiter 1:

‘w‘gri rel; T |w|re1i gr, — |w|gri gr; + ‘w‘reli rel; T ‘w‘relia for i = 0,1,2.

Combined, the subsequence invariants (1) - (4) of all arbiter nodes imply that
the arbiter tree guarantees mutual exclusion among its clients.

In this paper, we present algorithms for the synthesis of subsequence invariants
that automatically compute all invariants of an automaton for a given set of
subsequences. Since the set of invariants is in general not finite, it is represented
algebraically by a finite set of generators. Based on the synthesis algorithms, we
propose the following verification technique for subsequence invariants:

To prove a desired system property ¢, we first choose, for each process, a
set U of relevant subsequences and then synthesize a basis of the subsequence
invariants over U. The invariants computed for each individual process translate
to invariants of the system. If ¢ is a linear combination of the system invariants,
we know that ¢ itself is a valid invariant.

The only manual step in this technique is the choice of an appropriate set
of subsequences, which depends on the complexity of the interaction between
the processes. A practical approach is therefore to begin with a small set of
subsequences and then incrementally compute a growing set of invariants based
on a growing set of subsequences until ¢ is proved.

In the following, due to space constraints, all proofs have been omitted. We
refer the reader to the full version of this paper ﬂa]

Related work. There is a significant body of work on the generation of invari-
ants over program variables, ranging from heuristics (cf. ﬂ]), to methods based on
abstract interpretation (cf. [1, 2, @g@}) and constraint solving (cf. [3]). The key
difference to our approach is that, while these approaches aim at finding a concise
characterization of a complex state space, we aim at finding a concise represen-
tation of a complex process interaction. T-invariants, which relate the number of
firings of different transitions in a Petri net, have a similar motivation (cf. ﬂﬂ]),
but are not applied in the compositional manner of subsequence invariants.

Subsequence occurrences have, to the best of our knowledge, not been used in
verification before. However, there has been substantial interest in subsequences
in the context of formal languages, in particular in connection with Parikh ma-
trices and their generalizations; see, for example, ﬁ 7 |E7 @}7 as well as Parikh’s
original paper ﬂﬂ], introducing Parikh images.

9
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Subsequences are also used in machine learning, in the context of kernel-based
methods for text classification E}, here the focus is on their use as characteristic
values of given pieces of text, not on the characterization of languages or systems
by constraints on their possible values.

2 Preliminaries

Linear algebra. For a given finite set U, the real vector space RY generated
by U consists of all tuples ¢ = (¢, )ucv of real numbers indexed by the elements
of U. For a given set of vectors ¢',..., ¢* € RY, the subspace span(¢', ..., ¢*)

spanned by ¢',...,¢" consists of all linear combinations Aj¢! + ... A\pp® for
AL, ..., Ak € R. We assume that the set U is equipped with a total ordering
<, ie, U = {u},...,u™} with u' < --- < u™. We write vectors as tuples

(Pury- -, dum) according to this order. The pivot element pivot(¢) is the <-least
element u such that ¢, is nonzero.

A set B of linearly independent vectors is a basis for a subspace H C RY
ifft H = span(B). When we collect the basis vectors of a subspace, we ensure
the linear independence of the vectors with the following construction: To add
a new vector 1 to a set {¢',... ¢"} of vectors, we consider, for each vector
@', the pivot element u’ := pivot(¢') and reduce n to 1 — (n,:/¢’,;)¢". For the
resulting vector 7" we know that 7/, = 0 for all i. If / = 0, then the new set of
vectors is the same as the original set {¢!, ..., oF }; otherwise, we reduce each
vector ¢ from the original set to 1’ := ¢ — ( ; /Mwi )7, resulting in the new set
{vh. i)

As an example, consider the set of vectors {¢*,¢?} < RI5H where
o' = (1,2,0,—1,1)T and ¢*> = (0,0,1,2,—2)7, with pivot elements 1 and
3, respectively. A new vector n = (1,1,2,2,—1)T would first be reduced to
(0,—1,2,3,—2)T (by subtracting ¢'), and then to n’ = (0,—1,0,-1,2)7 (by
subtracting 2¢?). Reducing ¢!, we obtain ! = (1,0, 0, —3,5)7, resulting in the
new set {(1,0,0,—3,5)7,(0,0,1,2,—2)T, (0, 1,0, —1,2)T}.

The orthogonal complement H* of a subspace H C RY consists of the vectors
that are orthogonal to those in H, i.e., all vectors ¢ where the scalar product
V¢ =73 cuYudu is zero for all ¢ € H. Given a basis B for H that has been
reduced as described above, a basis for H' is obtained as follows:

Let V' C U be the set of all u € U which are not the pivot element of
any ¢ € B. For each u € V, define a vector ¢¥* by ¢! = 1,9y = 0 for all
v € V\ {u}, and for each ¢ € B, pivot(¢) = —bu/ Ppivot(s)- For example, given
the basis B = {(1,0,0,-3,5)%,(0,0,1,2,-2) (0, -1,0,—1,2)T}, we have that
V = {4,5}, and therefore obtain the basis vectors * = (3, —1,-2,1,0)T and
Y5 = (=5,2,2,0,1)T for span(B)*.

Alphabets and Sequences. An alphabet is a finite set of symbols. For an
alphabet A, A* is the set of finite sequences over A. The empty sequence is
denoted by ¢, the composition of two sequences v,w € A* by v.w, and the
length of a sequence w by |w]|.
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For alphabets A; C As, the projection w |a, of a sequence w € A3 onto Ay
is defined recursively by

(wla,).a ifaeA,

w A, otherwise.

€ lAlz €, (w.a) lAlZ {

We equip A with a total order <, and A* with the corresponding length-
lexicographical ordering given by u <, v iff either

— Ju| < |v| or
— |u| = |v|, and there are x,y,z € A",a,b € A with a < b,u = zay,v = xbz.
d th A* a,b e A with b b

In particular, elements ¢ of the vector space RY, generated by a finite subset
U C A*, are written according to this order, i.e., ¢ = (dy1,...,yn) for U =
{ulv e 7un}’ ul <llezx " <llex u”.

Communicating automata. We consider concurrent systems that are given
as a set of communicating finite-state automata. A (nondeterministic) finite
automaton P = (Qp,Ap,q%, Tp) consists of

— a finite set Qp of locations,

— a finite alphabet Ap of synchronization events,
— an initial location ¢% € Qp, and

— a transition relation Tp C Qp X Ap XQp.

When dealing with automata P, ..., P,, we use i as the subscript instead of P;.

We denote (q,a,7) € Tp by ¢ p 7. For a sequence w = wy ...w, € A,
g Spriff ¢q Bp - Bp r. The language of a location ¢ € Qp is the set
L(g) :== {w € A% : ¢ %p q}; q is reachable iff L(g) # (. We assume in
the following that our automata only contain reachable locations. For a subset
Q' C Qp of the locations, the language of ) is the union of all languages of the
locations in Q’. The language of an automaton P is the language of its locations,
L(P) := L(Qp).

A set {Py,...,P,} of finite automata defines a system automaton S =
(Q7A7q07_>)a where Q:Ql X X Qna A:AIUUAn7 and (qlv'”uqn) i)
(ri,...,m) iff for allé € {1,...,n} either

—a€A;and g i>i7"i,or
—aé¢A;and ¢; =7y

The language L(S) of S thus consists of all sequences w over A, such that, for

each automaton P;, the projection w], . to the alphabet A; is in the language
L(P,).

3 Subsequence Invariants

Let P = (Q,A,q°,T) be a finite automaton. We define the subsequence in-
variants of P relative to a given finite, prefix-closed set of sequences U =
{ul,...,u™} C A*, which we call the set of subsequences.
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Given two sequences u = uy...ur and w = wy ... w, € A", the set of oc-
currences of u as a subsequence in w is [w]y = {(i1,...,0) 1 1 < i1 < -+ <
ir < n,w;; =u; for all j}. For example, [aababb]., = {(1,3), (1,5), (1,6), (2,3),
(2,5), (2,6), (4,5), (4,6)}. The sizes of these sets define the numbers of occur-
rences |wly = ||[w]y]|. These numbers can be computed recursively, using the
recurrence [§]

Wy.p + |W ifa=10
|w|5 = 17 ‘€|u.b - 07 |w.a\u_b = { ‘u | |u 3

|w]w.b otherwise,

for all u,w € A* a,b € A. This gives rise to a mapping |.|; from A* into RY
defined by |w|y = (Jw|u1, -, [W|yn).

For any subset Q' C @, the subsequence hull of Q' is the subspace Hg: of RV
spanned by the subsequence occurrences {|w|y : w € L(Q")}.

Definition 1. A subsequence invariant for Q' C Q over U is a vector ¢ € RV
such that for all w € L(Q'), >, ctr Pulw]u = 0.

The subsequence invariants for @’ define a linear subspace I C RY, which is
the orthogonal complement of Hg: in RY. Special cases are the local subsequence
invariants I, = I;qy at ¢ € Q and the global invariants of P, Ip = Ig. The spaces
of the invariants satisfy the relation Io: = (,co/ Ig-

The sequences that satisfy a given set of subsequence invariants form a
context-sensitive language ﬂﬁ] The expressiveness of subsequence invariants
is, however, incomparable to the regular and context-free languages. For ex-
ample, subsequence invariants can characterize the context-sensitive language
{a™"c™ :n e N} ={w € A" : |w|q = |w|p, |w]p = |wle, |w]pa = 0, |w|ee = 0}, but
not the regular language {a.w : w € A*} for some a € A..

Requiring invariants to be linear equalities may appear restrictive. In the
remainder of this section we illustrate the expressive power of subsequence in-
variants by translating two useful types of invariants, conditional and disjunctive
invariants, to equivalent linear subsequence invariants.

Resolving conditions. Properties (1)—(3) of the arbiter tree discussed in the
introduction are examples of conditional invariants, stating that a linear equality
over the numbers |w|,, should hold whenever some event a € A occurs. Obviously,
the equality must be in Ig, , where E, is the set of locations in which an a-
transition can occur. We can resolve the event condition to obtain a global
statement, using subsequences no more than one symbol longer than those in U,
as follows:

Theorem 1. Let a € A and E, := {q € Q : ¢ = 7 for somer € Q}. Then

Y ower Gulwlu = 0 for all w € L(E,) if and only if Y, .oy du|w|u.a = 0 for all
w € L(P).

Thus, for example, the condition that the number of releases received from the
left child must equal the number of grants given to it whenever a grant is given to
the right child, i.e., [w|g, = |wliel, for all w € E, , is equivalent to |w|gp, .gr, =
[W]reiy.gr, for all w € L(P).
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Resolving disjunctions. Consider now the fourth statement in the introduc-
tory example: The differences between the corresponding numbers of grants and
releases only ever take values in {0,1}. Such a disjunctive condition can be
translated in two steps into an equivalent linear equation: The condition is first
transformed into a polynomial equation (Step 1), and then reduced, using alge-
braic dependencies, to an equivalent linear equation (Step 2).

Step 1 is simple: The condition } . ¢u|w|s € {c1,...,cr} is equivalent to
(Cer bultwhs — 1) (2 e dulwh — cx) = 0.

For the transformation of the resulting polynomial equation into a linear equa-
tion, we define, as an auxiliary notion, the set of coverings of x € A* by u and
v to be

[x}u,'u = {((11’7“6)?(.]17’.]7”)) : Z.l <--- < ik’jl < <jma
U= Ty o+ Tjy, UV="Tgj, .. T,

{i17~'~7ik7j17"'7jm}:{17"'7“r‘}}7

i.e., the set of pairs of occurrences of u and v as subsequences of z such that
every index in 1,...,|z| is used in at least one of them. For example,

[aabaa]gaa,aba ={((1,2,4), (1,3,5)), ((1,2,4), (2,3,5)), ((1,2,5), (1,3,4)), ((1,2,5), (2,3,4)),

((1,4,5),(2,3,4)),((1,4,5),(2,3,5)),((2,4,5),(1,3,4)), ((2,4,5),(1,3,5)) }.

Let |w]yw = ||[w]u,v|| denote the number of coverings, which can be computed
recursively as follows:
1 ifu=v=e¢,
uv —

ol 1 ifu=w, |
= W - €
Uy€ €u 0 otherwise,

|w .
0 otherwise,

|w|u,v + |w|u.b,v + ‘w‘u,v.c ifb=a= c,

|w]u0.c ifb=a#c,

|w-af‘u.b v.c — ’ .
’ |w]w.b.v ifb#a=c,
0 if b#a#c.

It is easy to see that for every u,v € A*, the set C'(u,v) := {x € A™ : [2]y # 0}
of sequences coverable by u and v is finite, since it cannot contain sequences
longer than |u| + |v].

Theorem 2 (See Theorem 6.5.18 in [8] for an equivalent statement to (2))

1. For all u,v,w € A*, there is a bijection between [w], X [w], and
Weco o) ([Zluw X [wa), and therefore,

2. For all u,v,w € A, |w|,|w|, = ZwEC(u,u) |20 W]
Simple examples for Theorem B are the equalities |w|? = 2|w|4a + |w|s and
|wla|wly = |w]ap + |w]pe. For u = ab and v = ba, we obtain the equality

|w|ab‘w‘ba = ‘w‘aba + |w|bab + ‘w‘abab + Q‘w‘abba + 2|w|baab + |w|baba-
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The degree k polynomial equation p(|w|y1, . . ., |w|y») = 0 resulting from Step 1
can then be transformed into a linear equation using the equalities from
Theorem[2l This linear equation involves subsequences of length up to kI, where [
is the maximum length of any u € U.

Ezample: For property (4) from the introduction, we obtain

|w|gri - ‘w‘reli € {07 1}
& (Jwlgr, = [wlret, ) (|w]gr, = [wlrer; = 1) =0
A |’w|§r1 - Q‘w‘gri w‘l‘eli + ‘w‘feli - ‘w‘grq‘, + |w|reli = 0
= |w|gri . gr; + |’U] rel;.rel; + |w|rel71 - |w|gri.reli + |w|reli .gr, .

This technique can also handle more complicated constraints: An alternative
characterization of Arbiter 1 is given by the requirement that for all w € L(P),

|w|gr0 - ‘w‘relo 0 1 1 1
|U]|gr1 - ‘w‘l‘ell S 0 ) 0 ) O ) 1
|w|gr2 - ‘w‘relg 0 0 1 0

Note that the possible values for the linear expressions are mutually dependent.
The set of vectors on the right-hand side can be characterized as the set of all
(x,7,2)T for which 22 —x,9% —y, 22 — 2,2y —y, 2z — z and yz are all zero. Using
Theorem 2] we again obtain a set of linear subsequence constraints. In general,
we have:

Theorem 3. Let |U| = n,max{|u| :u € U} =1, M € R¥*" and ¢*,..., ¢™ €
R¥. Then the constraint given by M|w|y € {¢*,...,¢™} is equivalent to a finite
set of linear subsequence constraints involving subsequences of length < ml.

4 Computing Subsequence Invariants

In this section, we present two algorithms for computing the subsequence in-
variants of a given finite automaton P = (Q, A, ¢°, T) with respect to a finite,
prefix-closed set U C A™ of subsequences. The first algorithm is generally ap-
plicable. The second algorithm is a more efficient solution that is applicable if
the state graph is strongly connected.

4.1 The General Algorithm

The subsequence invariants are computed using matrices F, representing the
effect of appending a € A, which are defined by

1 ifue {v,v.a},

0 otherwise.

F, = (fu,'u)u,UEU : fu,'u - {

For example, for U = {e, a,b, aa, ab, ba, bb},

1000000 1000000
1100000 0100000
0010000 1010000

|w_a‘ = |o101000 |w| |wb‘ — |oo0o01000 ‘w‘ i

U 0000100 Us U 0100100 U
0010010 0000010
0000001 0010001
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Data: Automaton P = (Q, A, ¢", T), finite prefix-closed U C A*
Result: Bases By for the subspaces Hq = span(|w|v : w € L(q))
// Initialization:
foreach g € Q do B, :=0;
// B, initially contains {|e[v}
By = {(1,0,...,0)"}
// The open list, containing pairs (q,¢) to be explored
0 = {(¢", (1.0,....0)")};
// Basis construction:
while O # () do
take (q, ¢) from O;
foreach ¢ = r do
= Fag;
begin reduce 1 with B,:
foreach n € B, do
v:=min{u € U : 9, # 0};
Y= — (Yo/n0)m;

end

if ¢ # 0 then
By := B, U{¢};
O :=0U{(rv¥)}

Fig. 2. Fixpoint iteration computing the subspaces H,

These matrices are easily seen to be unit lower triangular matrices (recall that
U is ordered by <jje,) and thus have determinant 1; their inverses are

(=D ifu=wv.a" k>0,
0 otherwise.

FJI - (bu,v)u,vEU : bu,v - {

To compute the invariants, we determine, for all ¢ € @), a basis of the subspace
H, = span({|w|y : w € L(q)}), using the fixpoint iteration shown in Figure 2

Theorem 4. 1. The sets B, computed by the fixpoint iteration shown in Fig-
ure[d are bases for the vector spaces Hy spanned by {|w|y : w € L(q)}.

2. When called for an automaton P = (Q,A,q°,T) with |T|| = m and U C A*
with |U|| = n, the fizpoint iteration terminates in time O(mn3).

4.2 An Optimized Algorithm for Strongly-Connected Automata

If P is strongly connected, i.e., there is a path from ¢ to r for all locations
q,m € @, we can improve the construction of the invariants. For w = wy ... w,
such that ¢ = r, the composition F,, = Fy,, ...Fy, is an isomorphism from
H, to its image F,,(H,) C H,, implying in particular dim(H,) < dim(H,). In
the strongly connected case, this implies dim(H,) = dim(H,) for all ¢,r, and
H, = F,(H,), i.e., F, is an isomorphism from H, to H, when ¢ o



finding isomorphisms M, :

Theorem 5.

Subsequence Invariants

Data: Automaton P = (Q, A, ¢", T), finite prefix-closed U C A*
Result: Bases By for the subspaces Hq = span(|w|v : w € L(q))
// Initialization:
My :=1C :=0;
0:={4¢"}
// Exploration:
while O # () do
take g from O;
foreach ¢ = r do
N = F,Myg;
if M, not yet defined then
define M, := N;
O :=0U{r}
else if M, # N then
C:=CU{M'N};

// Basis construction:
By :={(1,0,...,0)};
0 :={(1,0,...,0)};
while O # () do
take ¢ from O; foreach M € C' do
= M;
begin reduce ¢ with B o:
foreach n € B do
v:=min{u € U : n, # 0};
Y= — (Po/n0)m;

end

if ¢ # 0 then
Byo := By U {3};
0:=0uU{y}

foreach € Q\{¢"} do
By {chb ¢ € By}

Fig. 3. Local fixpoint iteration computing the subspaces H,
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The local fixpoint iteration shown in Figure [B] exploits this observation by

Figure[3 forms a basis of H o
2. When called for an automaton P =

: Hpo — Hy for all ¢ € Q as well as a set C of
automorphisms of Hg corresponding to a cycle basis of the automaton. The
matrices C; € C are then used to compute a basis of Hyo. For all other q € Q,
H, is obtained via M,. The main advantage of this algorithm is the lower number
of reduction steps if the cycle degree | T|| — [|Q]| + 1 of P is small:

1. The set By computed by the local fizpoint iteration shown in

(Q,A,q°,T) with ||T|| = m and cycle

degree v == |T|| — |Q| + 1, and U C A™ with ||U| = n, the local fixpoint

iteration terminates in time O(mn? + yn?).
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{€, a, b, ¢, aa, ab, ac,

(1,0,...

1FbFa to O;

C

@ = FbF;
F.F,F. to C;

F,

0, B ={¢"}, where ¢°

Fig. 4. Example for the local fixpoint construction
o =1C

C, and C correspond to the two basic undirected cycles ¢° = ¢ b2 &

Log®, L2¢°, LaL1¢°, L1L2¢°, L3¢, we obtain basis vectors

All further products L;¢’ reduce to O.

0¢ 220 3¢ 0
and ¢ — ¢ —q¢° —q".
3. Basis construction: Successively extending B by reducing and adding L;¢°,

1. Initialization:

Ezxample: Consider the automaton in Figure @l Using U
2. Exploration:

ba, bb, be, ca, cb, cc}, we compute Byo as follows:
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4. Local invariant generation: Computing the orthogonal complement, we ob-
tain the following basis for o

Yl =(0, 3, —=2,1, 0, 0, 0, 0, 0, 0,0,0,0)7,
Y?=(0, 3, 0,0, 3, —2,1, 0, 0, 0,0,0,0)7,
Y3 =(0, 2, —=1,0, 0, 0, 0, 3, —2,1,0,0,0)7,
Pt = (0, 0, 0, 0, 3, 0, 0,-2, 0, 0,1,0,0)7,
Y5 =(0,-2,-1,0, 0, 3,0, 0, —2,0,0,1,0)7,
Y8 = (0, -6, —1,0,-9, 6, 0, 6, —4,0,0,0,1)7.

For example, 1* represents the invariant 3|w|, — 2w, + |w|. = 0, 1? the
invariant 3|w|, + 3|w|aa — 2|w|ap + [W|ae = 0.

5. Global invariant generation: Adding the vectors M,¢’ to B and computing
the orthogonal complement, we obtain the single global invariant 3|w|sq —
2|w|pg + |w|ea = 0.

5 From Process to System Invariants

A key advantage of subsequence invariants is that invariants that have been
computed for an individual automaton are immediately inherited by the full
system and can therefore by composed by simple conjunction.

Theorem 6. Let S = {Py,...,P,} be a system of communicating finite au-
tomata. If 3 iy dulw|lu = 0 is a global subsequence invariant for P; over
U CAj, then Y, .y dulw]y = 0 also holds for all w € L(S).

The system S may satisfy additional invariants, not covered by Theorem [6] that
refer to interleavings of sequences from A’ with sequences from a different A;. In
the following, we present two methods for obtaining such additional invariants.

5.1 System Invariants Obtained by Projection

The first approach works similarly to the resolution of conditions in the Sec-
tion 3l It uses the fact that given any subsequence invariant for .S, we can obtain
a new subsequence invariant by appending the same symbol to all involved sub-
sequences:

Theorem 7. Let ) iy ¢u|w|y =0 for all w € L(S), and a € A. Then we also
have Y, cir PulWlu.a = 0 for all w € L(S).

Ezample: Consider a system containing the automaton from Figure @l From
the invariant (3|w|aq — 2|w|pe + |W]ea)|W|ad = O we obtain the new invariants
3|w|aad - 2|w|bad + ‘w‘cad = 07 S‘w‘aaad - 2‘w‘baad + |w|caad = 07 and S‘M‘aada -
2|w|pada + |W|cada = 0 by appending d, ad, and da, respectively.
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5.2 System Invariants Obtained by Algebraic Dependencies

The equalities in Theorem 2l can be used to derive new invariants from a given
set of subsequence invariants:

Let D, cp @ulwly = 0 for all w € L(S), and v € A*. Then obviously, )
Gulwlu|w|, is also zero; Using the equalities |wlu|wly = >, o @
this can be transformed into new linear subsequence invariants 3,1y 2. ccu,v)

Oulz

uelU
Wz,

U,v

U, w"p =0.

Ezample: Consider a system containing the automaton from Figure @l It con-
tributes the invariant 3|w|qq — 2|w|pa + |W]eq = 0 for all w € L(S). For v = ad,
Theorem [2] provides the algebraic dependencies

‘w‘aa‘w‘ad - Q‘w‘aad + ‘w‘ada + 3‘w‘aaad + 2|w|aada + |w|adaa7
[Wlpa|wlad = |W|pad + [W]abad + [W]abda + [W]adba + 2|W|baad + [W]padas
‘w‘ca‘w‘ad - ‘w‘cad + ‘w‘acad + |w|acda + |w|adca + 2|w|caad + ‘w‘cadaa

which can be used to obtain from (3|w|eq — 2|w|pe + |W|ca)|w]ed = 0 the new
subsequence invariant 6|w|aad+3‘w‘ada+9‘w‘aaad+6‘w‘aada+3‘w‘adaa_2|w|bad_
2|w|abad - 2|w|abda - 2|w|adba - 4|w|baad - 2‘w‘bada + ‘w‘cad + |w|acad + ‘w‘acda +
|w|adca + 2|w|caad + ‘w‘cada =0.

Using the invariants from the previous example, the new invariant reduces to
3|w|aad+3‘w‘ada+3‘w‘aaad+3|w|aada+3|w|adaa_Q‘w‘abad_Q‘w‘abda_2|w|adba+
|w|acad + |w|acda + ‘w‘adca =0.

6 Incremental Invariant Generation

For the invariant generation algorithms of Section [, we considered the set U of
subsequences as given and fixed. In practice, however, the set of subsequences
depends on the complexity of the interaction between the processes, and is there-
fore not necessarily known in advance. In this section, we present an incremental
method that allows for growing sets of subsequences.

Let P = (Qp,Ap,q%,Tp) be an automaton and U C A* be finite and prefix-
closed. Let V' = Uw{v} again be prefix-closed, i.e. v = u.a for some u € U, a € A.

Theorem 8. Assume that for ¢ € Qp and the set of subsequences U, a basis of
the space Hyy = span(|w|y : w € L(q)) has already been computed, consisting
of the vectors ¢',...,¢*. Then either

1. H, v is spanned by vectors ', . .. R such that ) = @1 for allu € U, or
2. Hyy is spanned by the vectors ', . .. Uk given by:

— ) =) for allu € U, and ¥J = 0;

— Ny =0 forallueU, andn, = 1.

All invariants obtained for U remain valid; in the first case, we additionally
obtain a new invariant |w|, — Zf:l(wf)/w;i) wl,: = 0, where u" = pivot(¢*) for
all 7, while in the second case, the set of invariants is unchanged.
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Ezample: Consider again the automaton in Figure Ml Starting with the
smaller set of subsequences U = {e,a,b,c}, we obtain the basis {(1,0,0,0)%,
(0,1,0,-3)7,(0,0,1,2)7} for Hy p, along with the single local invariant
3lw|a — 2|w|p + Jw|. = 0 for ¢°. When U is extended to V = U U {aa, ab} by
first adding aa and then ab, case (2) of Theorem [§ holds each time. Hypo y has
the basis {(1,0,0,0,0,0)%, (0,1,0,-3,0,0)T, (0,0,1,2,0,0)%, (0,0,0,0,1,0)%,
(0,0,0,0,0,1)7}. Extending V to W = V U {ac}, case (1) holds: Hyo w
has the basis {(1,0,0,0,0,0,0)T, (0,1,0,-3,0,0,-3)%, (0,0,1,2,0,0,0)7,
(0,0,0,0,1,0,-3)T, (0,0,0,0,0,1,2)7}, and we obtain a new invariant,
3lw|a + 3|w|aa — 2|wap + |w|ae = 0.

We compute H, v incrementally from H, 1 as follows:

— for each basis vector ¢, except for the initial unit vector |e|y;, we remember
by which multiplication F, it was obtained and how it was reduced; these
steps are repeated for the new index v.

— we also remember which successors F, 1 are reduced to zero; when extending
U by v = u.a, where u € U, we check for all such ¢ whether the reductions
result in a nonzero vector, indicating that case (2) of Theorem [ holds.

If case (2) holds for some location g, then the new basis vector n of H, is
invariant under all F, v, because, by choice, v cannot be a prefix of another
sequence in V. Therefore, 7 is also contained in the subspace H, for all locations
r reachable from ¢. The check for case (2) therefore only needs to be performed
in one location of each strongly connected component.

7 Conclusions and Future Work

We have introduced a new class of invariants, subsequence invariants, which
are linear equalities over the occurrences of sequences of synchronization events.
Subsequence invariants are a natural specification language for the description
of the flow of synchronization events between different processes; basic equations
over the number of occurrences of events as well their conditional and disjunctive
combinations can easily be expressed.

The key advantage of subsequence invariants is that they can be computed
individually for each process and compose by simple conjunction to invariants
over the full system. The synthesis algorithms in this paper provide efficient
means to obtain subsequence automatically from the process automata; they
thus provide the foundation for a verification method that proves global system
properties from locally obtained invariants.

A promising direction of future work is to extend the incremental invariant
generation method from Section [0] into a refinement loop that automatically
computes an appropriate set of subsequences. Also interesting is the idea of
expanding the class of invariants by considering linear inequalities over the vari-
ables |w|y. Such an approach could make use of established techniques for linear
transition systems, combined with special properties of subsequence occurrences:
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for example, Theorem [ can be used to derive general, system-independent in-
equalities like |w|qq — |w|q + [w|e > 0.

References

1. Bensalem, S., Lakhnech, Y.: Automatic generation of invariants. Formal Methods
in System Design 15(1), 75-92 (1999)

2. Bjgrner, N.S., Browne, A., Manna, Z.: Automatic generation of invariants and
intermediate assertions. Theoretical Comput. Sci. 173(1), 49-87 (1997)

3. Colén, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420-432. Springer, Heidelberg (2003)

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among the
variables of a program. In: Proc. POPL, pp. 84-97 (January 1978)

5. Serbanuta, V.N., Serbanuta, T.F.: Injectivity of the Parikh matrix mappings re-
visited. Fundam. Inf. 73(1,2), 265-283 (2006)

6. Dréger, K., Finkbeiner, B.: Subsequence invariants. Technical Report 42, SFB/TR
14 AVACS (June 2008), http://www.avacs.org| ISSN: 1860-9821

7. German, S.M., Wegbreit, B.: A Synthesizer of Inductive Assertions. IEEE trans-
actions on Software Engineering 1(1), 68-75 (1975)

8. Sakarovitch, J., Simon, I.: Subwords. In: Lothaire, M. (ed.) Combinatorics on
Words, pp. 105-144. Addison-Wesley, Reading (1983)

9. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. J. Mach. Learn. Res. 2, 419-444 (2002)

10. Mateescu, A., Salomaa, A., Yu, S.: Subword histories and Parikh matrices. J.
Comput. Syst. Sci. 68(1), 1-21 (2004)

11. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541-580 (1989)

12. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570-581 (1966)

13. Salomaa, A., Yu, S.: Subword conditions and subword histories. Inf. Com-
put. 204(12), 1741-1755 (2006)

14. Tiwari, A., Ruel; H., Saidi, H., Shankar, N.: A technique for invariant genera-
tion. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 113-127.
Springer, Heidelberg (2001)


http://www.avacs.org

Invariants for Parameterised Boolean
Equation Systems*
(Extended Abstract)

Simona Orzan and Tim A.C. Willemse

Department of Mathematics and Computer Science,
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. The concept of invariance for Parameterised Boolean Equa-
tion Systems (PBESs) is studied in greater detail. We identify a weakness
with the associated theory and fix this problem by proposing a stronger
notion of invariance called global invariance. A precise correspondence is
proven between the solution of a PBES and the solution of its invariant-
strengthened version; this enables one to exploit global invariants when
solving PBESs. Furthermore, we show that global invariants are robust
w.r.t. all common PBES transformations and that the existing encod-
ings of verification problems into PBESs preserve the invariants of the
processes involved. These traits provide additional support for our notion
of global invariants, and, moreover, provide an easy manner for transfer-
ring (e.g. automatically discovered) process invariants to PBESs. Several
examples are provided that illustrate the advantages of using global in-
variants in various verification problems.

1 Introduction

Parameterised Boolean Equation Systems (PBESs), introduced in [I0[9] as an
extension of BESs [8] with data, and studied in detail in [7], provide a funda-
mental framework for studying and solving verification problems for complex
reactive systems. Problems as diverse as model checking problems for symbolic
transition systems [0] and real-time systems [10]; equivalence checking problems
for a variety of process equivalences [2]; and static analysis of code [4] have been
encoded in the PBES framework. The solution to the encoded problem can be
found by solving the PBES. Several verification tools rely on PBESs or fragments
thereof, e.g. the uCRL [6], mCRL2 [3] and the CADP [5] toolsets.

Solving a PBES is in general an undecidable problem, much like the problems
that can be encoded in them. Nevertheless, there are pragmatic approaches to
solving PBESs, such as symbolic approzimation [7] and instantiation [3]. While
these techniques have proved their merits in practice, the undecidability of solv-
ing PBESs in general implies that these techniques are not universally applicable.
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A concept that has turned out to be very powerful, especially when com-
bined with symbolic approximation, is the notion of an invariant for PBESs.
For instance, invariants have been used successfully in [2] when solving PBESs
encoding the branching bisimulation problem for two systems: the invariants al-
lowed the symbolic approximation process to terminate in a few steps, whereas
there was no indication that it could have terminated without the invariant. As
such, the notion of an invariant is a powerful tool which adds to the efficacy of
techniques and tooling such as described in [67].

An invariant for a PBES, as defined in [7] (hereafter referred to as a local
invariant), is a relation on data variables of a PBES that provides an over-
approximation of the dependencies of the solution of a particular predicate vari-
able X on its own domain.

We show that the theory of local invariants, as outlined in [7] does not allow
for combining invariants with common solution-preserving PBES-manipulations;
moreover, the theory cannot be extended to cope with such manipulations. We
remedy this situation by introducing the concept of a global invariant, and show
how this notion relates to local invariants. Moreover, we demonstrate that global
invariants are preserved by the common PBES manipulation methods, viz. un-
folding, migration and substitution [7]. An invariance theorem that allows one to
calculate the solution for an equation system, using a global invariant to assist
the calculation, is proved. As a side-result of the theory, we are able to provide
a partial answer to a generalisation of an open problem coined in [7], which con-
cerns the solution to a particular PBES pattern. Patterns are important as they
allow for a simple look-up and substitute strategy to solving a PBES. Finally,
we prove that traditional process invariants [1] are preserved under the PBES-
encoding of the first-order modal pi-calculus model checking problem [6] and the
PBES-encoding of various process equivalences [2].

Related Work. Invariants are indispensable in mature verification methodolo-
gies aiming at tackling complex cases, such as networks of parameterised sys-
tems [I2/13], equivalence checks between reactive system [I] and for infinite data
domains in general, such as hybrid systems [I4]. Much research is aimed at
stretching the limits of verification for specific classes of systems and properties.
Techniques, such as invariants, that are developed for PBESs, on the other hand,
are applicable to all problems that can be encoded in them.

Several works [I2IT4] focus on the automated discovery of invariants for spe-
cialised classes of specifications and properties. It is likely that these techniques
can be adapted for specific PBESs. This is supported by our result that process
invariants are preserved under the existing encodings of verification problems.
An advantage of verification using PBESs is that predicates can be identified
that are invariants for the PBES, but that fail to be invariants for the origi-
nal process(es) involved. This is because the PBES-encoding incorporates more
information from the input (see Section [ for an example).

Structure. In Section 2l we introduce PBESs and some basic notation. We recall
the definition of local invariants and introduce global invariants in Section [3]
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and we show that the theory for local invariants has weaknesses, which are
resolved by the theory for global invariants. The influence of solution-preserving
manipulations for PBESs on global invariants is investigated in Section Fl and
in Section Bl we investigate the relation between process invariants and global
invariants. Two small examples illustrate several aspects of the developed theory.
We present our conclusions in Section [l All the proofs, more details and more
examples can be found in the accompanying technical report [IT].

2 Preliminaries

In this section, we give a brief overview of the concepts and notations that
provide the basis to the theory in the remainder of this paper. We refer to [7]
for a more detailed account.

Predicate formulae. Predicate formulae are part of the basic building blocks for
PBESs; these are basically ordinary predicates extended with predicate variables.

Definition 1. A predicate formula is a formula defined by the following grammar:
d):lzb ‘ ¢1 /\d)z | ¢1V¢2 ‘VdD ¢ | dd:D. d) ‘ X(e)

where b is a data term of sort B. Furthermore, X is a (sorted) predicate variable
to which we associate a data variable dx of sort Dx; e is a data term of the sort
Dx . Data variables are taken from a set D. The set of all predicate variables is
referred to as P.

The set of all predicate formulae is denoted Pred. Predicate formulae ¢ not
containing predicate variables are referred to as simple predicates. The set of
predicate variables that occur in a formula ¢ is denoted by occ(¢). Note that
negation does not occur in predicate formulae, except as an operator in data
terms; b = ¢ is a shorthand for =b V ¢ for terms b of sort B.

Note that we use predicate variables X to which we associate a single variable
dx of sort Dx instead of vectors dx of sort Dx. This does not incur a loss in
generality; it is merely a matter of convenience.

Predicate formulae may contain both bound and unbound (free) data vari-
ables. We assume that the set of bound variables and the set of free variables
in a predicate formula are disjoint. For a closed data term e, i.e. a data term
not containing free data variables, we assume an interpretation function [] that
maps the term e to the semantic data element [e] it represents. For open terms,
we use a data environment e that maps each variable from D to a data value of
the intended sort. The interpretation of an open term e is denoted by [e]e and
is obtained in the standard way. We write [e/d] to stand for the environment e
for all variables different from d, and e[e/d](d) = e. A similar notation applies
to predicate environments. For brevity, we do not explicitly distinguish between
the abstract sorts of expressions and their semantic counterparts.
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Definition 2. Let 6 be a predicate environment assigning a function Dx — B
to every predicate variable X, and let € be a data environment assigning a value
from domain D to every variable d of sort D. The interpretation []0e of a
predicate formula in the context of 0 and e is either true or false, as follows:

[b] 0= = [ole [p1 A p2] O = [p1]Oe and [p2] O
[X(e)]l0e = true iff O(X)([e] €) [61V @3] 0 = [¢1] b or [po] b
Vd:D. ¢|0c = for all v € D, [¢]6(c[v/d))

[410(e[v/d))

[3d:D. ¢]|0e = for some v € D, [
Definition 3. Let ¢ and 1 be predicate formulae. We write ¢ — 1 iff for all
predicate environments 0 and all data environments €, [¢] e implies [¢] fe.

The symmetric closure of — induces a logical equivalence on Pred, denoted «.
Basic properties such as commutativity, idempotence and associativity of A and
V are immediately satisfied.

Predicate Variables and Substitution. A basic operation on predicate formulae
is substitution of a predicate formula for a predicate variable. To this end, we
introduce predicate functions: predicate formulae casted to functions. As a short-
hand, we write ¢4, to indicate that ¢ is lifted to a function (Adx:Dx. ¢), i.e
the variable dx possibly occurring in ¢ acts as a placeholder for an expression
of sort Dx. The semantics of a predicate function is defined in the context of a
predicate environment 6 and a data environment e:

[p(ax)l0e = IveDx. [¢]0c[v/dx]

The substitution of ¢4, for a predicate variable X in a predicate formula ¢ is
defined by the following set of rules:

blhiax)/X] = b .
Y@Waa/X] = {0

(61 N d2)[Wiax)/X] = O1[tax)/X] A d2thiax)/X]

(61 V @2)[Wiax)/X] = ¢1[Yax)/X]V d2thiax)/X]

(Vd:D. ¢)[hiaxy/X] = VdD P[Yiax)/X]

(3d:D. §)[Y(ax)/X] = 3d:D. [y dx)/X]
Ezample 1. Consider the formulae X (f(d)) AY (g(d)) and ¢ := Y (h(dy)). Then
(XCF(@) A Y (9(d)) ayy /Y] yields: X(7(d)) AY (hlg(a)) 0
Property 1. Let ¢, be predicate formulae, and 6, ¢ environments. Then:

[#[t)ax)/ X0 = [@10[[(ax)] O /X]e. H

For convenience, we generalise single syntactic substitutions ¢[¢ 4/ X] to finite
sequences of substitutions using the following notation:
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Definition 4. LetV = (X1,..., X,,) be avector of predicate variables and let ¢; be
an arbitrary predicate formula. The consecutive substitution ¢ [ x.evPildx,) / Xi]
1s defined as follows:

¢ [Xie(>¢i<dxi>/Xi] =¢

¢ [Xie(X1,...,Xn>¢i<dXi>/Xi] = (0[01(4,)/X1]) [Xie<X2’m’Xn>¢i<dxi)/Xi]

When for all ¢;, at most variable X; occurs in ¢; and all variablesin (X1, ..., X,,)
are distinct, the consecutive substitution ¢ [Xie<X1,...,Xn>¢i<dxi>/Xi] yields
the same for all permutations of vector (Xi,...,X,,), i.e. it behaves as a si-
multaneous substitution. In this case, we allow abuse of notation by writing

¢ [Xie{Xlw.,Xn}(bi(dxi>/Xi] .

Parameterised Boolean FEquation Systems. A Parameterised Boolean Equation
System (henceforth referred to as an equation system) is a finite sequence of
equations of the form (¢ X (dx:Dx) = ¢); ¢ is a predicate formula in which the
variable dx is considered bound. ¢ denotes either the least (1) or the greatest
(v) fixed point. We denote the empty equation system by e.

We say an equation system is closed whenever all predicate variables occurring
at the right-hand side of an equation occur at the left-hand side of some equation.
An equation system is open if it is not closed. For a given equation system &,
the set bnd(€) denotes the predicate variables occurring in the left-hand side
of the equations of £, and the set occ(€) denotes the set of predicate variables
occurring in the predicate formulae of the equations of £. The solution to an
equation system is a predicate environment, defined as follows:

Definition 5. Given a predicate environment 6 and an equation system E. The
solution [£]0e is an environment that is defined as follows:

[e] 6 0
[(0X (dx:Dx) = $)€]0e = [E](6] o Xe[Dx — Bl. [prax] ([E10[X/X))e/X e

Note that the fixed points are taken over the complete lattice of functions
([Dx — BJ,C) for (possibly infinite) data sets Dx, where f C g is defined
as the point-wise ordering: f C g iff for all v € Dyx: f(v) implies g(v). The
predicate transformer associated to a predicate function [¢(q,)] e, denoted

)\XE[DX — B] M)wxﬁe[X/X}&‘

is a monotone operator [6/7]. The existence of fixed points of this operator in
the lattice ([Dx — B], C) follows immediately from Tarski’s Theorem [I5].

Note 1. The solution to an equation system is sensitive to the ordering of the
equations: while (uX = Y)(vY = X) has L as solution for X and Y, the equation
system (Y = X)(uX =Y) has T as solution for X and Y. Manipulations such
as unfolding, migration and substitution, however, do not affect the solution to
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an equation system [7]. Using the latter two, all equation systems can be solved
(using a strategy called Gauf Elimination), provided that one has the techniques
and tools to eliminate a predicate variable from its defining equation. One such
methods is e.g. symbolic approzimation, see [7].

3 Invariants for Equation Systems

Invariants for equation systems first appeared in [7]. We first repeat its definition:

Definition 6. Let (60X (dx:Dx) = ¢) be an equation and let I be a simple
predicate formula, i.e. a formula without predicate variable occurrences. Then I
s an invariant of X iff

Ing « (ING)[INX(dx)) 4,y /X]

The above definition may appear awkward to those familiar only with invariants
for transition systems. It does, however, express what is normally understood as
the invariance property; the unusual appearance is a consequence of the possi-
bility of having multiple occurrences of X in subformulae of ¢. The invariance
criterion only concerns a transfer property on equation systems: an initialisation
criterion is not applicable at this level. The analogue to the initialisation crite-
rion is, however, part of Theorem [2 (see page [[94)), and Theorems 40 and 42
of [7]. For completeness’ sake, we recall the latter and expose its weakness by an
example:

Theorem 1 (See [7]). Let (6 X (dx:Dx) = ¢) be an equation and let I be an
mvariant of X. Assume that:

1. for some x with X ¢ occ(x), we have for all equation systems € and all n,e:
[(cX(dx:Dx)=IA¢) Ene = [(6X(dx:Dx) = x) E]ne.
2. for the predicate formula ¢ we have ¥ < P[(I A X(dx))q,)/X]-

Then for all equation systems &y, E1 and all environments n, e:

[(O'/Y(dytDy) = ¢) 50(0’X(dxle) = (b) 51] ne
= [(0e'Y(dy:Dy) = P[x(ax)/X]) Eo(c X (dx:Dx) = ¢) &) ne. O

Theorem [ states that if one can show that ¢ < ¢[(I A X(dx)) 4,/ X] (the
analogue to the initialisation criterion for an invariant), and y is the solution of
X’s equation strengthened with I, then it suffices to solve Y using y for X rather
than X'’s original solution. However, a computation of xy cannot take advantage
of PBES manipulations when X’s equation is open. Such equations arise when
encoding process equivalences [2] and model checking problems [9l6]. A second
issue is that invariants may “break” as a result of a substitution:

Ezample 2. Consider the following (constructed) closed equation system:
(uX(n:N)=n>2AY(n))

(WY (n:N)=Z(n)VY(n+1)) (1)
(uZ(n:N)=n<2VvVY(n-1))
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The simple predicate formula n > 2 is an invariant for equation Y in equation
system (I): n > 2A (Z(n)VY (n+1)) < n>2A(Z(n)V(n+1>2AY(n+1))).
However, substituting n < 2V Y (n—1) for Z in the equation of Y in system ()
yields the equation system of ([2):

(uX(n:N)=n>2AY(n))
(WY (nN)=n<2VY(n—-1)VY(n+1)) (2)
(uZ(n:N)=n<2VvY(n-1))

The invariant n > 2 of Y in () fails to be an invariant for Y in (). Worse still,
computing the solution to Y without relying on the equation for Z leads to an
awkward approximation process that does not terminate; one has to resort to
using a pattern to obtain the solution to equation Y of ({I):

(uY (n:N) =n >2A3i:N. Z(n+1))

Using this solution for ¥ in the equation for X in (), and solving the resulting
equation system leads to the solution AveN. v > 2 for X and AveN. T for YV
and Z. A weakness of Theorem [l is that in solving the invariant-strengthened
equation for Y, one cannot employ knowledge about the equation system at
hand as this is prevented by the strict conditions of Theorem [Il Weakening
these conditions to incorporate information about the actual equation system is
impossible without affecting correctness: solving, e.g., the invariant-strengthened
version for Y of (@) leads to the solution AveN. L for X. Theorem 40 of [7] is
ungainly as it even introduces extra equations. O

ExamplePlshows that identified invariants (cf. [7]) fail to remain invariants when
substitution is exercised on the equation system, and, more importantly, that
Theorem [I] cannot employ PBES manipulations for simplifying the invariant-
strengthened equation.

As we demonstrate in this paper, both issues can be remedied by using a
slightly stronger invariance criterion, taking all predicate variables of an equation
system into account. This naturally leads to a notion of global invariance; in
contrast, we refer to the type of invariance defined in Def. [0 as local invariance.

Let f:V — Pred, V C P, be a function that maps a predicate variable to
a predicate formula. We say f is simple iff f(X) is simple, that is not con-
taining predicate variables, for all X€V. Note that the notation f(X) is purely
meta-notation; e.g. it is not affected by syntactic substitutions: f(X)[¥(ay)/X]
remains f(X), since f(X) is simple.

Definition 7. The simple function f:V — Pred is said to be a global invari-
ant for an equation system & iff V.2 bnd(E) and for each (¢ X(dx:Dx) = ¢)
occurring in &, we have:

FE)NG = (FX)N) [, (F(Xi) A Xildx,)) gy, )/ Xi] -

Proposition 1. Let f:V — Pred be a global invariant for an equation system
E. Let W C V. Then for all equations (X (dx:Dx) = ¢) in &€, we have:

FENG = (FXIAG) [y (FXD) A Xildx ) oy /K] - 0
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Corollary 1. Let f be a global invariant for an equation system £. Then f(X),
for any X € bnd(€) is a local invariant. O

Note 2. The reverse of the above corollary does not hold: if for all X € bnd(£),
we have a predicate formula f(X) that is a local invariant for X in &, then f is
not necessarily a global invariant. Consider the following equation system:

wX(n:N)=Y(n—-1)) (uY(n:N) = X(n+1))

X and Y both have n > 5 as local invariants (in fact, any simple predicate is a
local invariant), but (AZ € {X,Y}. n > 5) fails to be a global invariant.

Let pvi(¢) yield the set of predicate variable instantiations in ¢:

pvi(b) =0 pvi(X(e)) ={X(e)}
pvi(Vd:D. ¢) = pvi(¢) pvi(o1 A ¢p2) = pvi(¢p1) U pvi(¢2)
pvi(3d:D. ¢) = pvi(¢) pvi(d1 V ¢2) = pvi(¢1) U pvi(e2)

A sufficient condition for a function f to be a global invariant is given below:

Property 2. Let € be an equation system and f:bnd(€) — Pred a simple function;
then f is a global invariant for £ if for every equation (60X (dx:Dx) = ¢) in €

we have f(X) — Ay(e)epvi(¢)(f(Y))[e/dY]~ 0

We next establish an exact correspondence between the solution of an equation
system £ and the equation system £ which is derived from £ by strengthening
it with the global invariant. Strengthening is achieved by the operation Apply:

Definition 8. Let f:V — Pred be a simple function. Let £ be an equation system
satisfying bnd(E) C V. The equation system Apply (f,E) is defined as follows:

Apply (f,€) €
Apply (f,(0X(dx:Dx) = ¢) &) = (6 X (dx:Dx) = f(X) A ¢) Apply (f,&o)

The correctness of the above-mentioned correspondence relies, among others,
on the following lemma. The main result of this section is Theorem [l which
improves upon Theorem [T} it immediately follows the below lemma.

Lemma 1. Let (6 X (dx:Dx) = ¢) be a possibly open equation. Let f:V — Pred
be a simple function such that

1. occ(g) C V.
2. f(X)N¢ = (f(X) A (X) A X(dx)) () /X]-

Then for all environments 1, e:

MWeDx. [f(X)]e[v/dx] A (eX € [Dx — Bl [¢ay)]nlX/X]e)(v)
= MWeDx. [f(X)]e[v/dx] A (oX € [Dx — B]. [(f(X)A @)y ]nlX/X]e)(v).0

Theorem 2. Let f:V — Pred be a simple function. Let £ be an equation system
and let n1,n2 be arbitrary predicate environments. If the following holds:
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1. bnd(€)Uocc(€E) CV and
2. forall X € V:
(a) [f(X)AX(dx)lme = [f(X) A X(dx)]n2e.
(0) F(X)Nd = (F(X)AD) [, oy (f(Xi) AXildx,)) ay,)/Xi] -

then we have for all X € V':
[F(X) A X (dx))] ([E]me)e = [f(X) A X(dx)I([Apply (f, E)lm2e)e. U

Corollary 2. Let f:V — Pred be a global invariant for an equation system &.
Then for all predicate formulae ¢ with occ(¢p) CV and all environments n,e:

¢ = 0 [ oy (F(X0) AXi(dx,)) (ay,/ Xi]
implies [¢] ([E]ne)e = [¢] ([Apply (f,E)ne)e O

This means that for an equation system £ and a global invariant f of £, it does
not matter whether we use £ or its invariant-strengthened version Apply (f, ) to
evaluate a predicate formula ¢ for which the initialisation criterion for invariant
f holds. As another consequence of Theorem [, we have the proposition below:

Proposition 2. Let £ be an equation system. Let f be a global invariant for €
and assume E contains an equation for X of the form:

(vX(d:D) = f(X)/\/\ Que; Bl Qe B Y = X(gi(d, e}, ....el")))
il
where Q; € {V, 3} for any j, and for all i, v; are simple predicate formulae and

gi is a data term that depends only on the values of d and e}, ... el"". Then X
has the solution f(X). O

In the terminology of [7], the equation above is a pattern which has solution
f(X). This pattern is an instance of a generalisation of the unsolved pattern
of [7]. This pattern turns out to be extremely useful in the examples of Section[dl

4 Preservation of Global Invariants under
Solution-Preserving Manipulations

A serious defect of local invariants is that this notion is not robust with respect
to substitution. In this section, we study the robustness of (global) invariants
with respect to most common solution-preserving manipulations, viz. migration,
unfolding and substitution [7].

Theorem 3. Let £ := &) (60X (dx:Dx) = ¢) & &2 be an equation system with
occ(p) = 0. Let F := &y & (0X(dx:Dx) = ¢) & be the result of a migration.
If f:V — Pred is a global invariant for £ then f is a global invariant for F. O

Unfolding and substitution [7] involve replacing predicate variables with the
right-hand side expressions of their corresponding equation. The difference is
that unfolding operates locally and substitution is a global operation. The fol-
lowing lemma proves robustness of invariants under replacing variables with their
corresponding right-hand side expressions.
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Lemma 2. Let & be an equation system and let f:V — Pred be a global invariant
for E. For any predicate variable X € bnd(E), we denote the right-hand side of
X's defining equation in £ by ¢x. Then for all X,Y € bnd(E):

F(X)Nox by 44/ Y]
A (f(X) A ¢X[¢Y<dy>/YD [Zev(f(Z) A Z(dZ))<dZ>/Z] O

The above lemma immediately leads to the robustness of invariants under sub-
stitution and unfolding. This is expressed by the following theorems:

Theorem 4. Let £ := &y (6 X(dx:Dx) = ¢) & be an equation system and let
f:V — Pred a global invariant for £. Then f is also a global invariant for the
equation system F := & (0 X (dx:Dx) = ¢day)/X]) 1. |

Theorem 5. Let £ := & (60X (dx:Dx) = ¢) & ('Y (dy:Dy) = ¢) & and
F =& (0X(dx:Dx) = ¢lhay)/Y]) & (0'Y(dy:Dy) = 1) & be PBESs. If
f:V — Pred is a global invariant for € then f is also a global invariant for F. O

An interesting observation is that both substitution and unfolding not only pre-
serve existing global invariants, but also may lead to new global invariants. We
illustrate this phenomenon with an example for unfolding.

Ezample 3. Let v X (n:N) = X(n + 1) be an equation system. Using unfolding,
we obtain the equivalent equation system vX (n:N) = X(n + 2). Clearly, the
function f that assigns to X the predicate formula even(n) is a global invariant
for the latter equation. However, f is not a global invariant for the original
equation. Thus, by unfolding, the set of invariants for an equation system may
increase. g

5 Process Invariants and Equation Invariants

Linear process equations (LPEs) have been proposed as symbolic representa-
tions of general (infinite) labelled transition systems, a semantic framework for
specifying and analysing complex, reactive systems. In an LPE, the state of
a process is modelled by a finite vector of (possibly infinite) sorted variables,
and the behaviour is described by a finite set of condition-action-effect rules.
The apparent restrictiveness of this format is misleading: parallelism, (infinite)
non-determinism and other operators can often be mapped losslessly onto LPEs.

Definition 9. A linear process equation is an equation taking the form

P(d:D) = Z{ Z ca(d,eq) = a(fald,eq)) - P(ga(d,eq)) | a € Act}

eq:Eq

where fo:D X B, — Dy, go:D X E, — D and c¢.:D x E, — B for each action
label a € Act. D, D, and E, are general data sorts. The restrictions to single
sorts D and E, are again only for brevity and do not incur a loss of generality.
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In the above definition, the LPE P specifies that if in the current state d the
condition ¢, (d, e,) holds, for an arbitrary e, of sort E,, then an action a carrying
data parameter f,(d,e,) is possible and the effect of executing this action is that
the state is changed to g,(d, e, ). Thus, the values of the condition, action para-
meter and new state may depend on the current state and the non-deterministic
chosen value for variable e,.

Definition 10. Let P be the LPE of Def.[d A simple predicate ¢ is an invariant
for P iff for all actions a € Act: v A cq(d,eq) — (t[ga(d, eq)/d]) holds.

Model Checking. In [9J6], the first-order modal p-calculus (p-calculus for short)
is defined, a modal language for verification of data-dependent process specifica-
tions. The language is a first-order extension of the standard modal p-calculus
due to Kozen. It permits the use of data variables and parameters to capture
the essential data-dependencies in the process behaviour. The grammar of the
calculus is given by the following rules:

¢u=0b|X(€)| =g |pAG|Vd:D. ¢ |[a]¢ | (wX(df:Dy:=e). ¢)
az=blale)| ~a|aAa|VdD.«a

where v is the greatest fixed point sign (note that uX(dx:Dx = e).¢ is a
shorthand for -vX (dx:Dx := €).m¢[~X (dx) 4,,/X]). The meaningful formulae
are those formulae for which every occurrence of a variable X is under an even
number of negations. The semantics of p-calculus formulae is defined over an
LTS, induced by an LPE P, see [Gl9] for details. The global model checking
problem P = @ and the local model checking problem P(e) = @, where e is
an initial value for P and @ is a pu-calculus formula, can be translated to the
problem of solving the equation system E(®) [96].

Theorem 6. Let @ be a p-calculus formula. Let v be an invariant for the LPE
P of Def.[9. Then (AXebnd(E(®)). 1) is a global invariant of E(P). O

The reverse of the above theorem does not hold: if f is a global invariant for
an equation system E(®) for some formula ¢ and LPE P, then f does not
necessarily lead to an invariant for the process P (see the below example).

Ezxample 4. Consider the following process, that models the rise and fall of a
stock value of a company and may report its current value if asked.

M(v:N) =3 qup-M(v+m)
+ current(v) - M(v)
+ > ,nm < v=>dowun- M(v—m)
Verifying that without decreases, the stock value is always above threshold T

(provided it is so initially), i.e. vX.[-down]X AVn:N.[current(n)](n > T), using
an equation system boils down to solving the below equation system:

vX(w:N)=VmN X(v+m))AVvnN.v=n = n>T

Clearly, X has v>T as an invariant whereas this is not an invariant for M. 0O
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Process Equivalences. In [2] various equivalences, such as strong and branching
bisimulation, between two LPEs M and S have been encoded as solution problems
of equation systems. Branching bisimulation is the most complex of the process
equivalences tackled in [2], yielding the equation system vFsy pFE7, which is of al-
ternation depth 2. Here, F; and F» are sets of equations obtained from a syntactic
manipulation of the input LPEs M and S, where bnd(E») = { X5 X%M} and
bnd(E) = {YMS YS5M | a e Act}.

Theorem 7. Let M be an LPE. Assume v is an invariant for LPE M. We
define function f as follows:

£(2) = L if Z € {XMS XIM yS M| 5 e Act}
T leAcM(de) if Z € {YM5 | a€ Act}

Then f is a global invariant for the equation system vEouEy, resulting from the
encoding of branching bisimulation between M and a second LPE S. O

The remaining encodings in [2] yield similar global invariants, see [I1]. The sig-
nificance of the preservation of process invariants under the PBES-encoding of
an equivalence lies in the fact that this helps ensuring that the solution of the
equation system does not relate all unreachable states of the input processes.
Relating unreachable parts of processes is often neither meaningful nor compu-
tationally tractable (in particular for infinite state systems).

6 Examples

To illustrate how invariants typically assist in solving equation systems, we pro-
vide two easily understood examples of verifications using equation systems. The
first example treats the privacy problem of a rudimentary voting protocol; the
second is a mutual exclusion problem for readers and writers.

6.1 Voting Protocol

The voting protocol is given by the LPE E below. The intended votes of partic-
ipants are modelled by variable V, a bitlist; we write V.i to indicate the vote of
voter i. A high bit represents a yes and a low bit represents a no vote. Registered
voters are maintained in set R and parameters y, n record the number of casted
yes/no votes so far. Voting of a person is modelled by action vote, and it follows
no particular order. The outcome of the vote is published by action outcome.

E(V:£({0,1}), R:2Y y, n:N) =
R = () = outcome(y,n) - &
£ i € R—=> vote(i)- B(V, R\ {i},y + Vii,n + (1 - Vi)

One way to warrant privacy of the voting process is to ensure that an external
observer cannot tell whether V.4 = 0 or V.i = 1 for any voter i. Formally, privacy
is then guaranteed if process E(l,r,0,0) is strongly bisimilar to E(n(l),r,0,0),
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where list 7(1) is an arbitrary permutation of list . Strong bisimilarity is encoded
by the below equation system (see [2] for the general translation scheme).

(X (V:L({0,1}), B2y, n:N, V":£({0,1}), R":2N ¢/, n’:N) =

(ViN.ie R = (ie R

AX(V,R\{i},y+ Vin+ (1 —V.i),V R\ {i},y +V'i,n' + (1 -V"43)))
AViN. i€ R = (i€ R

AX'(V.R\ {i},y+ Vi,n+ (1 —Va), V' R\ {i},v + V'i,n'+ (1 -V"1))))
ANR=0+= R =0)AN(R=0 = (y=y An=n')))
(vX'(V":L({0,1}), R":2Y ¢/, n":N, V:L£({0,1}), R:2Y, y, :N) =

X(Vvv Rayvna Vllevylvn/))

E(l,r,0,0) and E(x(l),r,0,0) are bisimilar iff X (,r,0,0,7(l),r,0,0) is true. A
symbolic approximation of variable X generates a non-converging series of in-
creasingly complex equations expressing constraints on subsets of R, meaning
that we cannot compute the general solution to X.

The equation system encodes the strong bisimulation relation between two
processes F, i.e. both reachable and unreachable states of the two processes F
will be related in the solution to X . However, we are interested only in the answer
to X (1,7,0,0,7(l),r,0,0). We state the following three predicate formulae:

— 11 := R = R’ formalises that we are not interested in relating information
for different sets of voters,
— 1y :=y+n =y +n formalises that the total number of expressed votes

should be the same in both protocols,
— 13 =Y+ . cnVi=9y 4>, cp Vi formalises, among others, that we are
dealing with permutations.

Let ¢ := 11 A s A tg; from Property Bl we immediately conclude that ¢ is an
invariant for X and X’. Note that ¢ is a tautology when instantiated with the
initial values due to the verification problem E(I,7,0,0) = E(n(l),,0,0). So,
without affecting the answer to our verification problem, we can strengthen the
equations for X and X’ with +. The variable X', appearing in the equation for
X can be removed by a substitution. We observe that for equation X:

AN(R=0<=PR=0)AN(R=0 = (y=y'An=n'))) <=1

We find that the equation for X is of the form of Proposition 2} it therefore has
solution ¢. Since X (I,7,0,0,7(l),r,0,0) holds, privacy is indeed guaranteed.

6.2 Readers-Writers Mutual Exclusion

We consider a standard mutual exclusion problem between distributed readers
and writers. A total of N > 0 (N is some arbitrary value) readers and writers
are assumed.

P(np,ng, tN)=t>1=r, - P(n, + 1,n4,t — 1)
+n,>0=r. P(n, —1,ny,t+1)
+t>N = ws-P(nyn,+1,t—N)
+ Ny > 0= w. - P(ng,ny, —1,t+ N)
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Here the actions rg and w, express the starting of reading and writing of a
process. Likewise, the actions r. and w, model the ending of reading and writing.
Mutual exclusion between readers and writers holds when:

1. No writer can start if readers are reading: vX.[T]X Az VY. ([-re]Y Alws]L).
2. No reader can start if writers are busy: vX.[T]X A [ws]vY.([-w.]Y A [rs]L).

We only treat the first property; proving the second property follows the same
reasoning. The equation system that encodes the first property is given below:

wXnp,ne, tN)=((t>1 = (X(nq+ L,nu,t — 1) AY (n,. + 1,n4,t — 1)))
Ang >0 = X(n, —L,ne,t+1))AN(Et>N = X(n,,ny+1,t—N))
Ay >0 = X(ny,ny, — 1,1+ N))))
WY (nr,ny, tN) =t < NA(t>1 = Y(n, + 1,ny,t — 1))
ANy >0 = Y(nq,ne — 1,6+ N)))

With standard techniques, Y can only be solved using an unwieldy pattern [7],
which introduces multiple quantifications and additional selector functions; sym-
bolic approximation does not converge in a finite number of steps. The use of
invariants is the most appropriate strategy here. An invariant of process P is
t = N —(n,+mny-N), which, by Theorem[fis also a global invariant for the equa-
tions X and Y. Furthermore, n,, > 1 for Y and T for X is a global invariant. Both
X and Y can be strengthened with the above invariants. The simple predicate
formulat < N follows from ¢t = N —(n,+mn,-N)An, > 1; we can therefore employ
Proposition 2l and conclude that Y has solution t = N — (n, +ny - N) An, > 1.
Substituting this solution for Y in X, using Proposition [l to simplify the result-
ing equation, we find the following equivalent equation for X:

WX (np,ne, tN)=(t>1 = (X(n, + 1,n4,t —1)))
An. >0 = X(n,—1L,ngy,,t+1))A(t>N = X(n,,ny,+1,t—N))
Ay >0 = X(np,ny — L, t+ N))At=N — (n, +ny - N)))

Another application of Proposition [ immediately leads to the solution ¢ =
N — (n, + ny - N) for X. Thus, writers cannot start writing while readers are
active if initially the values for n,., n,,, t satisfy t = N — (n, + nq, - N).

Mutual exclusion can also be expressed by a single p-calculus formula with
data variables; then invariants linking process and formula variables are required.

7 Closing Remarks

Techniques and concepts for solving PBESs have been studied in detail [7].
Among these is the concept of invariance, which has been instrumental in solv-
ing verification problems that were studied in e.g. [7I2]. In this paper, we further
studied the notion of invariance and show that the accompanying theory is im-
practical for PBESs in which open equations occur. We have proposed a stronger
notion of invariance, called global invariance, and phrased an invariance theo-
rem that remedies the issues of the invariance theorem of [7]. We moreover have
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shown that our notion of invariance is preserved by three important solution-
preserving PBES manipulations. This means that, unlike the notion of invariance
of [7], global invariants can be used in combination with these manipulations
when solving equation systems. As a side-result, we obtain a partial answer to
an open question put forward in [7], concerning a specific pattern for PBESs.

We continued by demonstrating that invariants for processes automatically
yield global invariants in the PBESs resulting from two standard verification
encodings, viz. the encoding of the first-order modal p-calculus model checking
problem and the encoding of branching bisimulation for two (possibly infinite)
transition systems. This means that in the PBES verification methodology, one
can take advantage of established techniques for checking and discovering process
invariants. We conjecture that many such techniques, see e.g. [T2/T3], can be put
to use for (automatically) discovering global invariants in PBESs. Additional
research is of course needed to substantiate this conjecture.

Acknowledgements. The authors would like to thank Jan Friso Groote for valu-
able feedback.
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Abstract. We propose a framework for model-based diagnosis of sys-
tems with mobility and variable topologies, modelled as graph transfor-
mation systems. Generally speaking, model-based diagnosis is aimed at
constructing explanations of observed faulty behaviours on the basis of
a given model of the system. Since the number of possible explanations
may be huge we exploit the unfolding as a compact data structure to
store them, along the lines of previous work dealing with Petri net mod-
els. Given a model of a system and an observation, the explanations can
be constructed by unfolding the model constrained by the observation,
and then removing incomplete explanations in a pruning phase. The the-
ory is formalised in a general categorical setting: constraining the system
by the observation corresponds to taking a product in the chosen cate-
gory of graph grammars, so that the correctness of the procedure can be
proved by using the fact that the unfolding is a right adjoint and thus
it preserves products. The theory thus should be easily applicable to a
wide class of system models, including graph grammars and Petri nets.

1 Introduction

The event-oriented model-based diagnosis problem is a classical topic in discrete
event systems [7UI5]. Given an observed alarm stream, the aim is to provide ez-
planations in terms of actual system behaviours. Some events of the system are
observable (alarms) while others are not. In particular, fault events are usually
unobservable; therefore, fault diagnosis is the main motivation of the diagnosis
problem. Given a sequence (or partially ordered set) of observable events, the
diagnoser has to find all possible behaviours of the model explaining the obser-
vation, thus allowing the deduction of invisible causes (faults) of visible events
(alarms). The paper [I6] provides a survey on fault diagnosis in this direction.
Since the number of possible explanations may be huge, especially in the case
of highly concurrent systems, it is advisable to employ space-saving methods.
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In [I6IT0], the global diagnosis is obtained as the fusion of local decisions: this
distributed approach allows one to factor explanations over a set of local observers
and diagnoses, rather than centralizing the data storage and handling.

We will build here upon the approach of [5] where diagnoses are stored in
the form of unfoldings. The unfolding of a system fully describes its concurrent
behaviour in a single branching structure, representing all the possible compu-
tation steps and their mutual dependencies, as well as all reachable states; the
effectiveness of the approach lies in the use of partially ordered runs, rather than
interleavings, to store and handle explanations extracted from the system model.

While [5] and subsequent work in this direction was mainly directed to Petri
nets, here we face the diagnosis problem in mobile and variable topologies. This
requires the development of a model-based diagnosis approach which applies to
other, more expressive, formalisms. Unfoldings of extensions of Petri nets where
the topology may change dynamically were studied in [8I6]. Here we focus on
the general and well-established formalism of graph transformation systems.

In order to retain only the behaviour of the system that matches the obser-
vations, it is not the model itself that is unfolded, but the product of the model
with the observations, which represents the original system constrained by the
observation; under suitable observability assumptions, a finite prefix of the un-
folding is sufficient. The construction is carried out in a suitably defined category
of graph grammars, where such a product can be shown to be the categorical
product. A further pruning phase is necessary in order to remove incomplete
explanations that are only valid for a prefix of the observations.

We show the correctness of this technique, i.e., we show that the runs of
the unfolding properly capture all those runs of the model which explain the
observation. This non-trivial result is obtained by using the fact that unfolding
for graph grammars is a coreflection, hence it preserves limits (and especially
products, such as the product of the model and the observation). In order to
ensure that the product is really a categorical product, special care has to be
taken in the definition of the category.

Additional technical details and the proofs of all the results can be found in
the full version of the paper [4].

2 Graph Grammars and Grammar Morphisms

In this section we summarise the basics of graph rewriting in the single-pushout
(spo) approach [I3]. We introduce a category of graph grammars, whose mor-
phisms are a variation of those in [2] and we characterise the induced categorical
product, which turns out to be adequate for expressing the notion of composition
needed in our diagnosis framework. Then we show that the unfolding semantics
smoothly extends to this setting, arguing that the unfolding construction can
still be characterised categorically as a universal construction. The proof relies
on the results in [2]; this motivates our choice of the SPO approach as opposed
to the more classical double-pushout (DPO) approach, for graph rewriting.
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2.1 Graph Grammars and Their Morphisms

Given a partial function f : A — B we write f(a) | whenever f is defined on
a € Aand f(a)] whenever it is undefined. We will denote by dom/(f) the domain
of f,i.e., theset {a € A| f(a)l}. Let f,g: A — B be two partial functions. We
will write f < g when dom(f) C dom(g) and f(z) = g(z) for all z € dom(f).

For a set A, we denote by A* the set of sequences over A. Given f : A —
B, the symbol f* : A* — B* denotes its extension to sequences defined by
f(a1...an) = f(a1)... f(an), where it is intended that the elements on which
/ is undefined are “forgotten”. Specifically, f*(a; ...a,) = € whenever f(a;) T
for any i € {1,...,n}. Instead, f~: A* — B* denotes the strict extension of f to
sequences, satisfying f*(ay ...a,) T whenever f(a;) 1 for some i € {1,...,n}.

A (hyper)graph G is a tuple (Ng, Eq, ca), where Ng is a set of nodes, Eg is
a set of edges and c¢ : Fg — N is a connection function. Given a graph G we
will write z € G to say that = is a node or edge in G, i.e., x € Ng U Eg.

Definition 1 (partial graph morphism). A partial graph morphism f : G —
H is a pair of partial functions f = (fn : N¢ — Nu, fg : Eq — En) such that:
cnofe < fyoca (%)

We denote by PGraph the category of hypergraphs and partial graph mor-

phisms. A morphism is called total if both components are total, and the corre-
sponding subcategory of PGraph is denoted by Graph.

Notice that, according to condition (*), if f is defined on an edge then it must
be defined on all its adjacent nodes: this ensures that the domain of f is a well-
formed graph. The inequality in condition (*) ensures that any subgraph of a
graph G can be the domain of a partial morphism f: G — H.

We will work with typed graphs [9I14], which are graphs labelled over a struc-
ture that is itself a graph, called the graph of types.

Definition 2 (typed graph). Given a graph T, a typed graph G over T is
a graph |G|, together with a total morphism tg : |G| — T. A partial morphism
between T-typed graphs f : G1 — G3 is a partial graph morphism f : |G| — |Ga|
consistent with the typing, i.e., such that tq, > ta,o f. A typed graph G is called
injective if the typing morphism tg is injective. The category of T-typed graphs
and partial typed graph morphisms is denoted by T-PGraph.

Definition 3 (graph production, direct derivation). Fizing a graph T of
types, a (T-typed graph) production ¢ is an injective partial typed graph mor-
phism Lg ™ Rgy. It is called consuming if vy is not total. The typed graphs L,
and R, are called left-hand side and right-hand side of the production.

Tq

Given a typed graph G and a match, i.e., a total injective  Lg ‘R,
morphism g : Ly — G, we say that there is a direct derivation ¢ h
6 from G to H using ¢ (based on g), written 6 : G =, H, if ¢ LN H

there is a pushout square in T-PGraph as on the right.

Roughly speaking, the rewriting step removes from G the image of the items of
the left-hand side which are not in the domain of r,, namely g(L, — dom(ry)),
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Fig. 1. Dangling edge removal in SPO rewriting

adding the items of the right-hand side which are not in the image of r,, namely
R, — rq(dom(rq)). The items in the image of dom(ry) are “preserved” by the
rewriting step (intuitively, they are accessed in a “read-only” manner). Addi-
tionally, whenever a node is removed, all the edges incident to such a node are
removed as well. For instance, consider production fail at the bottom of Fig.
Its left-hand side contains a unary edge (i.e., an edge connected to only one node)
and its right-hand side is the empty graph. Nodes and edges are represented as
circles and boxes, respectively. The application of fail to a graph is illustrated
in Fig. [[I where the match of the left-hand side is indicated as shaded.

Definition 4 (typed graph grammar). A (T-typed) SPO graph grammar G
is a tuple (T,Gg, Py, A, \), where Gy is the (typed) start graph, P is a set
of production names, 7 is a function which associates to each name ¢ € P a
production w(q), and A : P — A is a labelling over the set A. A graph grammar
1s consuming if all the productions in the range of ™ are consuming.

As standard in unfolding approaches, in the paper we will consider consuming
graph grammars only, where each production deletes some item. Hereafter, when
omitted, we will assume that the components of a given graph grammar G are
(T, G, P, A, \). Subscripts carry over to the component names.

For a graph grammar G we denote by Elem(G) the set Np U Ep U P. As
a convention, for each production name ¢ the corresponding production 7(g)

will be L, N R,. Without loss of generality, we will assume that the injective
partial morphism 7, is a partial inclusion (i.e., that r4(x) = x whenever defined).
Moreover we assume that the domain of r,, which is a subgraph of both |L,|
and |R,|, is the intersection of these two graphs, i.e., that |L,|N|Ry| = dom(ry),
componentwise. Since in this paper we work only with typed notions, we will
usually omit the qualification “typed”, and, sometimes, we will not indicate
explicitly the typing morphisms.

In the sequel we will often refer to the runs of a grammar defined as follows.

Definition 5 (runs of a grammar). Let G be a graph grammar. Then Runs(G)
contains all sequences rirs ...ry, where r; € P and G 2GR G... .24,

Example. As a running example we will consider the graph grammar M whose
start graph and productions are given in Fig. 2l It models a network with mo-
bility whose nodes are either senders (labelled S), receivers (R) or intermediary
nodes (I). Senders may send messages which can then cross connections and
should finally arrive at a receiver. However, a connection may be spontaneously
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— snd:
send message
— rcv:
receive message
— crev:
receive corrupted message
— Crossy:
message crosses connection
— CT08S82:
message gets corrupted
— Crosss:
corrupted message crosses
— crpt:
connection gets corrupted
cconn:
— create connection
10 02
cnode:
— create intermediary node
10
fail:
— intermediary node fails
10

Fig. 2. Example grammar M: message passing over possibly corrupted connections

corrupted, which causes the corruption of any message which crosses it. The
network is variable and of unbounded size as we allow the creation of a new
connection between existing intermediary nodes and the creation of a new con-
nection leading from an existing intermediary node to a new intermediary node.
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Productions (and the corresponding partial morphisms) are depicted as fol-
lows: edges that are deleted or created are drawn with solid lines, whereas edges
that are preserved are indicated with dashed lines. Nodes which are preserved
are indicated with numbers, whereas newly created nodes are not numbered.

Productions that should be observable (a notion that will be made formal in
Section M) are indicated by bold face letters.

We next define the class of grammars which will focus on in the development.

Definition 6 (semi-weighted SPO graph grammars). A grammar G is
semi-weighted if (i) the start graph Gy is injective, and (ii) for each q € P, for
any x,y in |Ry| — |Lg| if tr,(x) = tr,(y) then x =y, i.e., the right-hand side
graph Ry is injective on the “produced part” |Ry| — |Ly|.

Intuitively, conditions (i) and (ii) ensure that in a semi-weighted grammar each
item generated in a computation has a uniquely determined causal history, a
fact which is essential for the validity of Theorem

Note that grammar M of Fig. 2 is not semi-weighted (if we assume the sim-
plest type graph that contains one node and exactly one edge for every edge
label). Tt could easily be converted into a semi-weighted grammar, for instance
by creating the start graph (which is not injectively typed) step by step. How-
ever, for the sake of simplicity we do not carry out this construction in the
paper.

A grammar morphism consists of a (partial) mapping between production
names and a component specifying the (multi)relation between the type graphs.
A morphism must “preserve” the graphs underlying corresponding productions
of the two grammars as well as the start graphs. Since these conditions are
exactly the same as in [2] and they are not relevant for understanding this paper,
in the sequel we will refer to the morphisms in [2], making explicit only the new
condition regarding the labelling. The interested reader can find the details in
the full version [4].

Definition 7 (grammar morphism). Let G; (i € {1,2}) be graph grammars
such that Ay C A;. A grammar morphism f : G — Go is a morphism in
the sense of [2, Def. 15] where the component on productions, i.e., the partial
function fp: P — P», additionally satisfies, for all g1 € Py

fe(a) L iff M(qr) € As and, in this case, Ao (fp(q1)) = M (q1)-
Note that a morphism from G; to G might exist only when Ay C A;.

Definition 8 (category of graph grammars). We denote by GG the cate-
gory where objects are SPO graph grammars and arrows are grammar morphisms.
By SGG we denote the full subcategory of GG having semi-weighted graph gram-
mars as objects.

The choice of grammar morphisms and, in particular, the conditions on the la-
belling, lead to a categorical product suited for composing two grammars G; and
Go: productions with labels in A1 N A5 are forced to be executed in a synchronous
way, while the others are executed independently in the two components.
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Proposition 9 (product of graph grammars). Let G and Go be two graph
grammars. Their product object G = G1 X G in GG is defined as follows:

- T = Tl ] TQ;
— G5 = Gy WGy, with the obvious typing;
P ={(p1,p2) [ M(p1) = Aa(p2)} U{(p1,0) [ Ai(p1) & Ao}

U{(0,p2) | Aa(p2) & A1}
— 7w(p1, p2) = m1(p1) Wma(p2), where m;(0) is the empty rule ) — O;

- A=A U /12,'
— Mp1,p2) = Ni(ps), for any i € {1,2} such that p; # 0;

where, p1 and ps range over Py and Ps, respectively, and disjoint unions are

taken componentwise. If Gi,Gs are both semi-weighted grammars, then G as
defined above is semi-weighted, and it is the product of G1 and G2 in SGG.

2.2 Occurrence Grammars and Unfolding

A grammar G is safe if (i) for all H such that G5 =* H, H is injective, and
(ii) for each ¢ € P, the left- and right-hand side graphs L, and R, are injective.

In words, in a safe grammar each graph G reachable from the start graph is
injectively typed, and thus we can identify it with the corresponding subgraph
ta(|G]) of the type graph. With this identification, a production can only be
applied to the subgraph of the type graph which is the image via the typing
morphism of its left-hand side. Thus, according to its typing, we can think that
a production produces, preserves or consumes items of the type graph, and using
a net-like language, we speak of pre-set, context and post-set of a production,
correspondingly. Intuitively the type graph T stands for the places of a net,
whereas the productions P represent the transitions.

Definition 10 (pre-set, post-set and context of a production). Let G be
a graph grammar. For any production ¢ € P we define its pre-set °q, context ¢
and post-set ¢° as the following subsets of Ep U Np:

g =1r,(|Lq| = [dom(rq)l) q=tr,(ldom(rq)]) q° =tr,(|Re| — rq(ldom(ry)l)).
Symmetrically, for each item x € T we define ®x ={q€ P |x € ¢°}, z* ={q €
Plaxeq}t,x={qeP|xecq}.

Causal dependencies between productions are captured as follows.
Definition 11 (causality). The causality relation of a grammar G is the (least)

transitive relation < over Elem(G) satisfying, for any node or edge x € T, and for
productions q,q' € P,

1. if x € °q then x < q;

2. if x € q° then q < x;

3. if¢®*Nqg #0 thenqg<¢.

As usual < is the reflexive closure of <. Moreover, for x € Elem(G) we denote
by || the set of causes of x in P, namely {q € P | q < x}.

As in Petri nets with read arcs, the fact that a production application not only
consumes and produces, but also preserves a part of the state, leads to a form
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of asymmetric conflict between productions; for a thorough discussion of asym-
metric event structures see [I].

Definition 12 (asymmetric conflict). The asymmetric conflict relation of a
grammar G is the binary relation / over the set of productions, defined by:

1. ifqN* #0 thenq /' ¢';
2. if %N #0 and q # ¢ thenq / q';
3. ifq<q thenq /¢ .

Intuitively, whenever q /* ¢, ¢ can never follow ¢’ in a computation. This holds
when ¢ preserves something deleted by ¢’ (Condition 1), trivially when ¢ and ¢’
are in conflict (Condition 2) and also when ¢ < ¢’ (Condition 3). Conflicts (in
acyclic grammars) are represented by cycles of asymmetric conflict: if ¢1 /" g2 /
oo/ qn /" q1 then {q1,...,qn} will never appear in the same computation.

An occurrence grammar is an acyclic grammar which represents, in a branch-
ing structure, several possible computations beginning from its start graph and
using each production at most once. Recall that a relation R C X x X is finitary
if for any x € X, the set {y € X | R(y,x)} is finite.

Definition 13 (occurrence grammar). An occurrence grammar is a safe
grammar O = (T,Gs, P,m, A, \) such that

1. causality < is irreflexive, its reflevive closure < is a partial order, and, for
any q € P, the set |q| is finite and asymmetric conflict /" is acyclic on |q];
2. the start graph Gs is the set Min(O) of minimal elements of (Elem(0O), <)
(with the graphical structure inherited from T and typed by the inclusion);
3. any item x in T is created by at most one production in P, i.e., |°z| < 1;

A finite occurrence grammar is deterministic if relation /', the transitive clo-
sure of /", is wrreflexive. We denote by OGG the full subcategory of GG with
occurrence grammars as objects.

Note that the start graph of an occurrence grammar O is determined by Min(O).
An occurrence grammar is deterministic if it does not contain conflicts (cycles
of asymmetric conflict) so that all its productions can be executed in the same
computation. In the sequel, the productions of an occurrence grammar will often
be called events.

The notion of configuration captures the intuitive idea of (deterministic) com-
putation in an occurrence grammar.

Definition 14 (configuration). Let O = (T, P, ) be an occurrence grammar.
A configuration is a subset C C P such that (i) for any g € C it holds |q] C C
and (i) /o, the asymmetric conflict restricted to C, is acyclic and finitary.

It can be shown that, indeed, all the productions in a configuration can be
applied in a derivation exactly once in any order compatible with .

Since occurrence grammars are particular semi-weighted grammars, there is
an inclusion functor 7 : OGG — SGG. Such functor has a right adjoint.

Theorem 15. The inclusion functor T : OGG — SGG has a right adjoint,
the so-called unfolding functor U : SGG — OGG.
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As a consequence of the above result U, as a right adjoint, preserves all limits
and in particular products.

The result is a corollary of [2], which, in turn, is obtained through the explicit
definition of the unfolding U(G). Given a grammar G the unfolding construction
produces an occurrence grammar which fully describes its behaviour recording
all the possible graph items which are generated and the occurrences of pro-
ductions. The unfolding is obtained by starting from the start graph (as type
graph), applying productions in any possible way, without deleting items but
only generating new ones, and recording such production instances in the type
graph. The result is an occurrence grammar U(G) and a grammar morphism
[ UG) — G, called the folding morphism, which maps each item (instance
of production or graph item) of the unfolding to the corresponding item of the
original grammar. Because of space limitations, the construction is not formally
defined here. In Section [] we will show an example of an unfolding.

3 Interleaving Structures

Interleaving structures [3] are a semantic model which captures the behaviour
of a system as the collection of its possible runs. They are used as a simpler
intermediate model which helps in stating and proving the correctness of the
diagnosis procedure.

An interleaving structure is essentially a collection of runs (sequences of
events) satisfying suitable closure properties. Given a set F, we will denote by
E® the set of sequences over E in which each element of E occurs at most once.

Definition 16 (interleaving structures). A (labelled) interleaving structure
is a tuple T = (E, R, A, \) where E is a set of events, \: E — A is a labelling of
events and R C E® is the set of runs, satisfying: (i) R is prefiz-closed, (ii) R
contains the empty run e, and (i) every event e € E occurs in at least one run.

The category of interleaving structures, as defined below, is adapted from [3] by
changing the notion of morphisms in order to take into account the labels. This
is needed to obtain a product which expresses a suitable form of synchronised
composition.

Definition 17 (interleaving morphisms). Let Z; with i € {1,2} be inter-
leaving structures. An interleaving morphism from 7y to Iy is a partial function
0: 1 — E5 on events such that

1. A2 g Al;
2. foreach ey € Ey, 0(e1) ] iff \M(e1) € As and, in this case, A2(0(e1)) = A1(e1);
3. for every r € Ry it holds that 0*(r) € Rs.

Morphism 0 is called a projection if 0 is surjective on runs (as a function from
Ry to Ry). The category of interleaving structures and morphisms is denoted Ilv.

An occurrence grammar can be easily mapped to an interleaving structure, by
simply taking all the runs of the grammar.
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Definition 18 (interleaving structures for occurrence grammars). For

an occurrence grammar G we denote by Ilv(G) the interleaving structure which
consists of all runs of G, i.e., lw(G) = (P, Runs(G), A, \).

We next characterise the categorical product in Ilv, which turns out to be, as
in GG, the desired form of synchronised product.

Proposition 19 (product of interleaving structures). Let Z; and Zs be
two interleaving structures. Then the product object Iy X Iy is the interleaving
structure T = (E, R, A, \) defined as follows. Let

E = {(61,62) | el € El,eg S EQ, /\1(61) = )\2(62)}
U {(617*) | e] € E17>\1(61) Q /12} U {(*,62) ‘ eg € EQ,)\Q(@Q) € /11}

and let m; : E — E; be the obvious (partial) projections. Then R = {r € (E")® |
7i(r) € Ry, m5(r) € Ra}, E = {e’ € E' | e occurs in some run r € R}, A =
A1 U A and X is defined in the obvious way.

4 Diagnosis and Pruning

In this section we use the tools introduced so far in order to formalise the di-
agnosis problem. Then we show how, given a graph grammar model and an
observation for such a grammar, the diagnosis can be obtained by first taking
the product of the model and the observation, considering its unfolding and
finally pruning such unfolding in order to remove incomplete explanations. As
already mentioned, typically only a subset of the productions in the system is
observable. Hence, for this section, we fix a graph grammar G with A as the
set of labels, and a subset A" C A of observable labels; an event or production
is called observable if it has an observable label. In order to keep explanations
finite, we will only consider systems that satisfy the following observability as-
sumption (compare [I5/T1]): any infinite run must contain an infinite number of
observable productions.

In the sequel we will need to consider the runs of a system which have a number
of observable events coinciding with the number of events in the observation. For
this aim the following definition will be useful.

Definition 20 (n-runs of a grammar). Let G be a graph grammar. For a
given n € N we denote by Runs™(G) the set of all runs for which the number of
observable productions equals n.

The outcome of the diagnosis procedure is an occurrence grammar which, intu-
itively, collects all the behaviours of the grammar G modelling the system, which
are able to “explain” the observation.

An observation can be a sequence (in the case of a single observer) or a set of
sequences (in the case of multiple distributed observers) of alarms (observable
events). Here we consider, more generally, partially ordered sets of observations,
which can be conveniently modelled as deterministic occurrence grammars O.
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send cconn crev

fffff IR 2y i

Fig. 3. A graph grammar representing an observation O

Definition 21 (observation grammar). An observation grammar for a given
grammar G, with observable labels A', is a (finite) deterministic occurrence gram-
mar labelled over A'.

Given a sequence of observed events, we can easily construct an observation
grammar O having that sequence as observable behaviour. It will have a pro-
duction for each event in the sequence (with the corresponding label). Each such
production consumes a resource generated by the previous one in the sequence
(or an initial resource in the case of the first production). The same construction
applies to general partially ordered sets observations.

Ezample. In the example grammar M (see Fig. ), assume that we have the
following observation: snds cconn crcvs, i.e., we observe, in sequence, the send-
ing of a message, the creation of a connection and the reception of a corrupted
message. These three observations can be represented by a simple grammar O
(see Fig. B) with three productions, each of which either consumes an initial
resource or a resource produced by the previous production. These resources are
modeled as 0-ary edges (labelled X, Y, Z). The initial graph is depicted with
bold lines, and the left- and right-hand sides of the productions of the occurrence
grammar are indicated by a Petri-net-like notation: events are drawn with black
rectangles connected to the respective edges by dashed lines.

When unfolding the product of a grammar G with its observation O, we obtain a
grammar U = U(G x O) with a morphism 7: U/ — O, arising as the image through
the unfolding functor of the projection G x O — O (since the unfolding of an
occurrence grammar is the grammar itself). Now, as grammar morphisms are
simulations, given the morphism m: 4 — O we know that any computation in ¢/ is
mapped to a computation in O. Say that a computation in / is a full explanation
of O if it is mapped to a computation of O including all its productions. As U
can still contain events belonging only to incomplete explanations, the aim of
pruning is to remove such events.

Definition 22 (pruning). Let m:U — O be a grammar morphism from an
occurrence grammar U to an observation O. We define the pruning of w, denoted
by Pr(m), to be the grammar obtained from U by removing all events (including
their consequences) not belonging to the following set:

{g € Py |3C e Conf(U): (¢ € C A7(C)="Po)}

Discussing the efficiency of pruning algorithms is outside the scope of the paper;
for sequential observations an on-the-fly algorithm is discussed in [5].

As described above, the diagnosis is constructed by first taking the product
of G with the observation (this intuitively represents the system constrained by
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event label
sndo
crossi
cconn
crossi
crpt
Crosss
crcevs

R -0 QLo oW

Fig. 4. Running example: prefix of the unfolding of the product

the observation). This product is then unfolded to get an explicit representation
of the possible behaviours explaining the observation. Finally, a pruning phase
removes from the resulting occurrence grammar the events belonging (only) to
incomplete explanations. This is formalised in the definition below.

Definition 23 (diagnosis grammar). Let G be the grammar modelling the
system of interest and let O be an observation. Take the product G x O, the right
projection ¢ : G X O — O and consider 1 =U(p) : U(G x O) — O.

Then the occurrence grammar Pr(mw) is called the diagnosis grammar of the
model and the observation and denoted by D(G, O).

Note that since the observability assumption holds, it can easily be shown that
the diagnosis grammar is finite, whenever the observation is finite.

Ezample. We can compute the product of grammars M and O and unfold it.
For reasons of space Fig. [d] shows only a prefix of the unfolding that depicts
one possible explanation: here the message is sent (event a) and crosses the
first connection (b). Possibly concurrently a new connection between the two
intermediate nodes is created (c), which is then also crossed by the message
(d). Again in a possibly concurrent step the last connection is corrupted (e),
leading to the corruption of the message (f) and its reception by the receiver
(g). Observable events are indicated by bold face letters.

Several events of the unfolding have been left out due to space constraints,
for instance:

— Events belonging to alternative explanations: the corruption of the first con-
nection or the corruption of the newly created middle connection (or the
corruption of any non-empty subset of these connections). Alternatively it
might also have been the case that the other sender/receiver pair handles the
message, while the connection (which is not involved in any way) is created
between the two intermediate nodes.

— Events that happen concurrently but are not directly related to the failure,
such as the corruption of a connection over which no message is sent.
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Furthermore there are events belonging to prefixes of the unfolding that can-
not be extended to a full observation. For instance, the unfolding would contain
concurrent events representing sending by the right-hand sender and the creation
of a new connection leading from right to left instead of left to right. However,
this is a false trail since this would never cause the reception of a message by
the right-hand receiver. These incomplete explanations are removed from the
unfolding in the pruning phase.

Note that—due to the presence of concurrent events—the unfolding is a much
more compact representation of everything that might have happened in the
system than the set of all possible interleavings of events.

5 Correctness of the Diagnosis

We now show our main result, stating that the runs of the diagnosis grammar prop-
erly capture all those runs of the system model which explain the observation. This
is done by exploiting the coreflection result (Theorem[IH]) and by additionally tak-
ing care of the pruning phase (Definition[22)). We first need some technical results.

Lemma 24. Let G1,Gs be two occurrence grammars. Consider the product of the
two grammars and its image through the Ilv functor as shown below. Furthermore
consider the product of the interleaving structures Ilv(Gy), Ilv(Gs2). Then the
mediating morphism 6 is a projection which is total on events.

(G« ™ (G x Io(Ga) s Iu(Gs)
6

Ilv(Ql X gg)

To lighten the notation, hereafter, given an interleaving structure Z we write \*(I)
for A*(Ryp). Recall that, given f : Ay — Aa, f* : A} — A5 denotes the (non-strict)
extension of f to sequences. Then f~1 : P(A3) — P(A}) is its inverse.

Lemma 25. Let Gi,Go be two occurrence grammars and let fi: Ay U Ay — A;
(i € {1,2}) be the obvious partial inclusions. Then it holds that

N (Iw(Gr % G2)) = i (M (Ilw(G1))) N f5 (A3 (1v(G2))).-

The next proposition shows that considering the product of the original grammar
G and of the observation O, taking its unfolding and the corresponding labelled
runs, we obtain exactly the runs of G compatible with the observation.

Proposition 26. Let G be a grammar and O an observation, where A is the set
of labels of G and A" C A the set of labels of O. Furthermore let f: A — A’ be
the obvious partial inclusion. Then it holds that:

N (I (UG x O))) = X (Runs(G)) N f~1(N* (Runs(0))).

We can conclude that the described diagnosis procedure is complete, i.e., given
an observation of size n, the runs of the diagnosis grammar D(G, Q) with n
observable events are in 1-1 correspondence with those runs of G that provide
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Fig. 5. Spurious runs in a diagnosis grammar

a full explanation of the observation. As a preliminary result, on the basis of
Proposition one could have shown that the same holds replacing the diag-
nosis grammar with U4(G x O), i.e., the unpruned unfolding. The result below
additionally shows that no valid explanation is lost during the pruning phase.

Theorem 27 (correctness of the diagnosis). With the notation of Proposi-
tion [20 it holds that:

N (Runs"(D(G,0))) = X*(Runs(G)) N f~H(\* (Runs™(0))).

That is, the mazimal interleavings of the diagnosis grammar (seen as label se-
quences) are exactly the runs of the model which explain the full observation.

Observe that, due to the nondeterministic nature of the diagnosis grammar,
events which are kept in the pruning phase as they are part of some full ex-
planation of the observation, can also occur in a different configuration. As a
consequence, although all inessential events have been removed, the diagnosis
grammar can still contain spurious configurations which cannot be extended to
full explanations. As an example, consider the graph grammar G in Fig. Bl given
in a Petri-net-like notation. Assume we observe three unordered events a, b,
c. Then the unfolding of the product basically corresponds to G itself. In the
pruning phase nothing is removed. However there is a configuration (indicated
by the dashed closed line) that cannot be further extended to an explanation.

6 Conclusion

In this paper we formalised event-based diagnosis for systems with variable
topologies, modelled as graph transformation systems. In particular we have
shown how to exploit the coreflection result for the unfolding of graph grammars
in order to show the correctness of a diagnosis procedure generating partially
ordered explanations for a given observation.

We are confident that the approach presented in the paper, although de-
veloped for transformation systems over hypergraphs, can be generalised to the
more abstract setting of adhesive categories. In particular we are currently work-
ing on a generalization of the unfolding procedure that works for sSPO-rewriting
in (suitable variations of) adhesive categories [I2]. This would allow one to have
a kind of parametric framework which can be used to instantiate the results of
this paper to more general rewriting theories.
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We are also interested in distributed diagnosis where every observer separately

computes possible explanations of local observations that however have to be
synchronized. In [3] we already considered distributed unfolding of Petri nets;
for diagnosis however, the non-trivial interaction of distribution and pruning has
to be taken into account. Distribution will require the use of pullbacks of graph
morphisms, in addition to products.
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Abstract. We develop a theory of sorted bigraphical reactive systems.

Every application of bigraphs in the literature has required an ex-
tension, a sorting, of pure bigraphs. In turn, every such application has
required a redevelopment of the theory of pure bigraphical reactive sys-
tems for the sorting at hand. Here we present a general construction of
sortings. The constructed sortings always sustain the behavioural theory
of pure bigraphs (in a precise sense), thus obviating the need to rede-
velop that theory for each new application. As an example, we recover
Milner’s local bigraphs as a sorting on pure bigraphs.

Technically, we give our construction for ordinary reactive systems,
then lift it to bigraphical reactive systems. As such, we give also a con-
struction of sortings for ordinary reactive systems. This construction is
an improvement over previous attempts in that it produces smaller and
much more natural sortings, as witnessed by our recovery of local bi-
graphs as a sorting.

1 Introduction

Bigraphical reactive systems is a framework proposed by Milner and others
[121BL4] as a unifying theory of process models and as a tool for reasoning about
ubiquitous computing. For process models, it has been shown that Petri-nets [5],
CCS [1], various m-calculi [4L[6L[7], the fusion calculus [§], mobile ambients [6],
and Homer [9] can all be understood as bigraphical reactive systems (although
transition semantics are usually captured only approximately). Moreover, Milner
recently used bigraphs as a vehicle for studying confluence, using the A-calculus
as an example [Bl[I0]. For ubiquitous computing, bigraphical models were inves-
tigated in [IT].

A bigraphical reactive system consists of a category of bigraphs and a reaction
relation on those bigraphs; we can think of the bigraphs as terms modulo struc-
tural congruence and the reaction relation as term rewrite rules. The benefit of
working within bigraphical reactive systems comes from their rich behavioural
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theory [ILA4L2,[6LT2,13,[14] which (a) induces a labelled transition system auto-
matically for any reaction relation and (b) guarantees that bisimulation on that
transition system is a congruence.

A category of bigraphs is formed according to a single-sorted signature, which
defines the kinds of nodes found in bigraphs of that category. Single-sorted signa-
tures are usually insufficient when we define programming languages or algebraic
models: We need to constrain the combination of operators, so we need richer
notions of sorting. Indeed, every one of [1L2IBALEL6LTOII0[TT] construct a richer
sorting to fit the framework of bigraphs to the problem at hand.

Alas, the behavioural theory of bigraphs applies only to single-sorted (or pure)
bigraphs, not to arbitrarily-sorted extensions. Hence, also every one of [IL[2[3]
AL [5116, 70, TOL 1] must re-develop substantial parts of the behavioural theory.
Worse, although some sortings are easy to construct [I26], others require either
hard work [I1] or ingenuity [4BLI0] to achieve conceptually simple effects.

Up until now, it has been an open question what kinds of extensions would
admit such a redevelopment. In this paper we provide a large class of extensions
for which such a redevelopment is possible. Moreover, we give a method for
automatically constructing sortings for such extensions.

The key observation is that most sortings in the literature exists solely to get
rid of bigraphs that are meaningless for the application at hand. That is, most
sortings exists solely to impose a predicate on the morphisms in the category
of pure bigraphs. We give a method to automatically construct a well-behaved
sorting for any decomposable such predicate. Here, a predicate P is decompos-
able iff it is true at every identity and P(go f) implies P(g) and P(f); all but one
of the above-mentioned applications fall into this class. In particular, we prove
that Milner’s local bigraphs [10] arise as a sorting of pure bigraphs.

Thus, by identifying a large class of predicates for which we can construct well-
behaved sortings, we make it easier to work with bigraphical reactive systems
and we push back the limit for what we can hope to achieve with them.

Overview of the technical development. We ask and answer the following
two questions:

1. Which sortings sustain the behavioural theory of bigraphs?
2. How do we construct such a sorting for a given problem domain?

We answer Question [Tl by giving a sufficient condition for a sorting of a reactive
system to sustain the behavioural theory of the well-sorted parts of the original
system. We then lift both this result and previous work on sortings for reac-
tive systems [IB[6] to the present setting of bigraphical reactive systems. We
answer Question 2] by giving a new family of sortings, closure sortings, all of
which sustain the behavioural theory. In particular, we show how Milner’s local
bigraphs [I0LB] arise as a special case of the closure sorting.

In more detail: Question[Il Jensen [6] found a sufficient condition, safety, for
a small class of sortings for bigraphs to preserve congruence properties. In [15]
we moved that condition to general sortings of reactive systems.
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In the present paper we complement that result with a sufficient condition for
a sorting to preserve and reflect reaction and transition semantics for any well-
sort of reactive system. We say that sorting with that property “has semantic
correspondence.” Altogether, in the setting of reactive systems we now have
sufficient conditions for a sorting to reflect congruence properties and operational
semantics; this is what we mean by “sustaining the behavioural theory”. We then
proceed to lift these conditions to bigraphical reactive systems which, despite the
name, are not an instance of ordinary reactive systems. Moreover, we argue that
in general, to construct a well-behaved sorting of a bigraphical reactive system,
it is sufficient to construct a well-behaved sorting of the underlying reactive
system.

In more detail: Question[2l As part of the safety condition mentioned above,
it is required that if a decomposable context has a sorting, then the sorting
can be decomposed correspondingly. In particular, the “has a sorting” predicate
P on the pure category is decomposable, i.e., P(f o g) implies P(f) and P(g).
Thinking in terms of sorted algebra or programming languages this is a very
natural condition — a refinement of a sorting should not constrain the way a
well-sorted term can be decomposed.

In [15] we discovered that banning bigraphs containing particular “bad” sub-
bigraphs corresponds exactly to giving a decomposable predicate. This insight
gave rise to an answer to Question [2 albeit only for reactive systems: We gave,
for any predicate P on the morphisms of a category, a sorting called the predicate
sorting. The predicate sorting sustains the theory of reactive systems.

In practice, however, the predicate sorting turns out to provide far more sorts
than did the sortings found in an ad hoc way for the applications in [I},2[3]
AL 6EL6L 7 OLTOLII). In the present paper, we construct a new family of sortings,
the closure sortings. Like the predicate sortings, closure sortings sustain the
behavioural theory of both bigraphs and reactive systems. Unlike the predicate
sortings, closure sortings give sorts much closer to what we find in the literature.
As a (spectacular!) example, we show that Milner’s Local bigraphs [10,[3] are
recovered in a closure sorting, by taking Milner’s scoping condition as a predicate
on bigraphs.

Outline. In Section 2] we revisit Leifer and Milner’s classic Reactive Systems
[I2[T13], a precursor to bigraphs. In Section Bl we recall the definition of a sorting
of a reactive system and recall our previous generalisation of Jensen’s safety
condition. In Section Fl we give a general condition for a sorting of a reactive
system to preserve dynamics up to a predicate (Theorem[Il), partially answering
Question 1. In Section [§ we give the closure sorting (Definition [I2), partially
answering Question 2] above (Theorem []). In Section [@] we remark on lifting
these partial answers to the setting of bigraphical reactive systems, thus arriving
at complete answers to both questions. Finally, in Section [ as an extended
example, we recover local bigraphs as a full sub-sorting of a closure sorting
(Theorem [3)).
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For want of space, proofs have been omitted from this extended abstract; they
can be found in [16].

2 Reactive Systems

In this section, we recall Milner and Leifer’s Reactive Systems [I7I3[12]. These
systems form the conceptual basis of bigraphical reactive systems. Except for
the running example, this section contains no original work.

Let C' be a category, and let R, be an object of C'. We think of morphisms
with domain R, as agents or processes and all other morphisms as contexts. A
reaction rule (I,r) is a cospan of agents with common domain R.; intuitively,
and 7 are the left- and right-hand sides of a rewrite rule. A set R of reaction
rules induces a reaction relation, —, obtained by closing reaction rules under
contexts:

a—biff 3f € C;3(l,r) €ER.a= fol,b= for. (1)

Altogether, these components constitute a reactive system.

Definition 1 (Reactive system). A reactive system over a category C' com-
prises a distinguished object Re and a set R of reaction rules; the reaction rules
give rise to a reaction relation by () above. We identify a reactive system with
its reaction rules, writing R for both.

In this definition we have omitted the notion of activity usually associated with
reactive systems. Activity can be recovered as a sorting both in the case of
reactive systems [16] and in the case of bigraphical reactive systems [6].

Ezxample 1. Here is a small process language.
P,Q:=0]als[(P|Q) (2)

These are the nil process 0, atomic processes a and s, and parallel composition
of processes. As usual, we consider processes up to a structural congruence com-
prising the commutative monoid laws for | and 0. Clearly, the set of processes
is isomorphic to the free, commutative monoid over {a,s}; that is, a category
with a single object, terms up to structural congruence as morphisms, compo-
sition f o g = f|g, and identity 0. (In this case, there is no distinction between
agents and contexts: all morphisms are both.) Call this category C. We intend a
to model a normal process and s to model two processes in a synchronized state.
Here are the reaction rules:

(ala, s ) “two processes synchronize,” (3a)

(s ,ala) “processes drop synchronization.” (3b)

Here are two reactions, using first rule [3al then BB} ajals —— s|s — s]ala.
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Leifer and Milner give a method for deriving labeled transitions for any reac-
tive system. If the underlying category has sufficient relative pushouts (RPOs),
then the bisimulation on those labeled transitions is a congruence. To construct
labeled transitions, we take as labels minimal contexts enabling reaction. The
notion of idem-pushout (IPOs) captures minimalit.

Definition 2. For a reactive system R over a category C, we define the transi-
tion relation by f —Z h iff there exists a context i and a reaction rule (I,7) € R
s.t. the following diagram commutes, and the square is an IPO.

9
i il N\ (4)
l T

Ezample 2. C is isomorphic to the category of multisets over {a, s} (with multiset
union as composition). Thus C has pushouts, given by multiset subtraction, and
thus RPOs. The pushout of multisets simply adds what is missing: The pushout
of a and ala is a and 0, the pushout of a and s is s and a. Because IPOs are
precisely the pushouts in this category, we find transitions for an agent a by
taking the pushout of @ and either left-hand side of the two rules.

a—2»s by rule ([Bal) (5)
a—>»alala by rule (Bh) (6)

There are no transitions from a with label ala. A label can only add what is
missing, and the agent a is only one “a” short of the left-hand side a|a of rule (3al).

As mentioned, the bisimulation on such derived transition systems is a congru-
ence whenever the underlying category has RPOs [I3[12].

Proposition 1 ([12]). Let R be a reactive system on a category C. If C' has
RPOs, then the bisimulation on the derived transitions is a congruence.

3 Sortings

In this section, we recall the notion of sorting [I5] for categories. As in the
previous section, this section contains nothing new but the running example.

Definition 3 (Sorting). A sorting of a category C is a functor F : X — C
that is faithful and surjective on objects.

We shall consistently confuse a sorting functor F' with its domain: We write
F — C, and we speak interchangeably of F' as a category and as a functor.

! For brevity, we omit the definitions of both RPOs and IPOs.
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Ezample 3. Suppose we want to restrict our process language such that at most
two processes are synchronized at any time, i.e., no process can contain a subterm
s|s. We cannot just stipulate that there are no such terms, because the compo-
sition of s and s would then be undefined. Instead, we define a sorting F — C
that refines the single homset of C into three.

The category F has two objects, 0 and 1. The homsets F(0,0) and F(1, 1) are
identical, comprising morphisms of C that do not contain an s; (0, 1) comprises
morphisms with at most one s. Here is a sketch of F.

maybe s
Co——1D
no s nos

Composition is defined as in C; it is easy to check that this composition is well-
defined on our refined homsets.

Usually when we construct a sorting F' — C', we will want to apply Proposition[I]
to the category F'. Hence, we want sortings that allow us to infer the existence
of RPOs in F' from the existence of RPOs in C'. The following notion of transfer
helps us do that.

Definition 4 (Transfer of RPOs). A sorting F — C transfers RPOs iff when-
ever the image of a square s in F has an RPO, then that RPO has an F-preimage
that is an RPO for s.

Jensen gives a sufficient condition, safety, for a sorting to transfer RPOs [6]; we
generalized that condition in [I5] (see also [I6]; again for brevity, we omit the
definition here).

Proposition 2 ([6l15]). Let FF — C be a safe sorting. Then F transfers RPOs,
and, if C" has RPOs then so does F'.

4 Semantic Correspondence

In ExampleBlabove we used the sorting H — C' to get rid of morphisms not sat-
isfying the predicate “contain at most one s”. Thus, that sorting is a realization
of a predicate on the morphisms of C. Of the sortings in [TL2L3L4L5.6L7LOLTOTT],
only the one in [7] is not a realization of a predicate.

However, not every sorting realizing a predicate is equally interesting; we must
require also that the sorted category supports the same reactive systems as the
original one, at least when we restrict our attention to the “good” morphisms of
the original category. This semantic correspondence is part of what we mean by
“sustaining the behavioural theory”. In this section, towards answering Ques-
tion [I we give a sufficient condition for a sorting of a reactive system to admit
such semantic correspondence.

This result generalizes our previous [I5], where we proved that a particular
sorting has semantic correspondenceﬁ. As in that paper, we will consider only

2 Although in that paper, we used the somewhat inaccurate term “preserves seman-
tics” rather than the present “has semantic correspondence”.
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predicates P that are decomposable, that is, that are true at every identity and
have P(f o g) implies P(f) and P(g). This restriction is not very severe; for
free structures, decomposable predicates are precisely those that prohibit terms
containing some given set of subterms [15].

To formalize the notion of “semantic correspondence”, we need the notion of
reflection of a reactive system.

Definition 5 (Reflection of a reactive system). Let F' — C be a sorting,
and let R be a reactive system on C. For a preimage Re of Re, the reflection of
R at Re is R, where

R={(f.9)|32.f.9: Re =z A(F(f), F(g)) € R}. (7)
We can now define semantic correspondence precisely.

Definition 6 (Correspondence of reactions, transitions). Let ' — C be a
sorting, let R, S be reactive systems on F,C, respectively, and let P be a decom-
posable predicate on C'. The sorting F' — C' has correspondence of P-transitions
for R, S iff whenever f,g,h are morphisms of C with P(go f) and P(h), then

f—2>h if Elf,g,iz.fi»}} where ®
F(fA):f7F(g):g’F(il):h

We define correspondence of P-reactions similarly.

Note that despite F' faithful, f 54, h are not necessarily unique.
Before we can define the general notion of semantic correspondence, we need
first a notion of a reactive system respecting a predicate.

Definition 7 (P-respecting reactive system). Let R be a reactive system
and let P be a predicate on R’s underlying category. We say that R is a P-
respecting reactive system iff every rule (I,7) € R has both P(l) and P(r).

We lift the correspondence from a property of reactive systems to a property
of sortings: A sorting F' — C has semantic correspondence iff any P-respecting
reactive system on C' has a reflection in F' with which it is in semantic corre-
spondence.

Definition 8 (Semantic correspondence). We say that a sorting F — C
has semantic correspondence up to P iff for any P-respecting reactive system R
on C, there exists a reflection R of R at some Re such that F has correspondence
of P-reactions and P-transitions for R, R.

Theorem [Tl below gives a sufficient condition for a sorting to have semantic cor-
respondence. This condition depends on the notion of “weak joint opfibration”,
which was introduced in [I5]. Intuitively, a weak joint opfibration is a functor
which has most general lifts of every cospan in its domain. The following notion
of “jointly opcartesian” captures such most general lifts.
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Definition 9 (Jointly opcartesian). Let F' — C be a functor. A cospan f,g
in C' 1is said to be jointly opcartesian iff whenever f',g' is a cospan, f, [’ is a
span, and g,g’ is a span (see the diagram below, left side) with F(f') = ko F(f)
and F(g') = ko F(g) (see the diagram below, right side), then there exists a
unique lift k of k s.t. f' =ko f and g’ =ko f'.

E(f')

Ezxample 4. In the sorting F — C of Example [B| the cospan a,a has a jointly
opcartesian lift a : 0 — 0 «— 0 : a; the cospan s,a has a jointly opcartesian
lifts:0 — 1«—0:a.

Armed with jointly opcartesian lifts, we define weak joint opfibrations.

Definition 10 (Weak joint opfibration [15]). 4 functor F : X — C is a
weak joint opfibration iff whenever F(f), F(g) form a cospan in C, then there
exists a jointly opcartesian pair f,§ with F(f) = F(f) and F(g) = F(g).
Finally, getting back to our sufficient condition for a sorting to have semantic
respondents, we now need only the following auxiliary definition.

Definition 11. Let F' — C' be a sorting, let © be an object of F', and let P be a
predicate on C'. We say F reflects P at x if every morphism f : F(z) — ¢ with
P(f) has a lift at x.

Theorem 1. Let ' — C be a sorting, let P be a decomposable predicate on C,
let R be a reactive system on C, and let Re be an F-preimage of R.. Then (a)
the reactions of the reflection of R at Re correspond to the P-reactions of R
if (i) the image of F is P, (ii) F reflects P at R, and (i) F is a weak joint
opfibration. Moreover, (b) the transitions of the reflection of R at Re corresponds
to the P-transitions of R if also F transfers and preserves RPOs. In this case,
F' has semantic correspondence up to P.

Between them, Theorem [I] above and Proposition [ recalled in the preceding
section answer Question 1. The former gives us a sufficient condition for a sorting
to admits the necessary operational semantics; the latter gives as a sufficient
condition for a sorting to reflect congruence properties. Technically, this answer
applies only to sortings a reactive systems, however, it is straightforward to lift
the answer to the case of bigraphical reactive systems; more on such in Section [Gl

5 Closure Sortings

In this section, we answer Question 2 We define, for each decomposable predi-
cate P, a Closure sorting realizing P. Every closure sorting transfers RPOs and



226 L. Birkedal, S. Debois, and T. Hildebrandt

has semantic correspondence up to P. We define closure sortings in terms of cat-
egories and reactive systems here, but in Section [6] we remark on lifting them
to bigraphs.

Suppose we want to construct a sorting realizing a decomposable predicate P
on the morphisms of a category C'. The basic problem here is that we may have
morphisms f : z — y and ¢ : y — z which satisfy P individually but not when
composed, i.e., P(f) and P(g), but =P(g o f). At each preimage of y, we must
choose whether to admit f or g. We make this choice explicit in the closure
sorting by taking as pre-images for an object y pairs (F, G) of sets of morphisms
such that every g € G has domain y and can be composed with every f € F,
that is, f has codomain y and P(go f). This approach leads to too many objects
in the sorted category, so we further insist that (F, G) be mazimal, that is, that
adding morphisms to either F' or G would violate f € F,g € G = P(go f).

To formalize maximality, first define g L f iff P(g o f). Then define, for
any ¢ € C', operators A and V by

AF={g:c—x|gLF anyx e C} ©)

VG={f:y—c|GLf anyyeC},
where, e.g., g L F is lifted pointwiseﬁ. We can now define that (F, G). is mazimal
iff AF =G and VG = F.

Definition 12 (Closure sorting). Let C be a category, and let P be a de-
composable predicate on C. The closure sorting €(P) — C has objects (F,G).
where ¢ is an object of C' and F,G are sets of morphisms of C' s.t. every f € F
and g € G has cod(f) = ¢ = dom(g) and P(g o f). Moreover, (F,G). must
be mazimal. €(P) has morphisms k : (F,G), — (H,J)q those k : ¢ — d in C
satisfying

fEF = kofeHandjeJ = jokeG. (10)

It is fairly easy to establish that A and Vv form a Galois connection: AF O G
iff ¥ C VG@. Thus AV and VA are indeed closure operators: AVAF = AF
and VAVG = VG. (Hence the name “closure sorting”.) We can use these
closure operators to “fill up” a pair (F,G). that is not maximal, taking ei-
ther (VG, AVG). or (VAF, AF).. This realization is crucial in establishing that
the fibres of a closure sorting are lattices and, in turn, that every closure sorting
satisfies the premises of Proposition 2] and Theorem [l

Lemma 1. Let P be a decomposable predicate on C. Then €(P) (1) is safe, (2)
is a weak joint opfibration, and (3) lifts P-agents at every object ¢ of C.

By Proposition 2l and Theorem [II, every closure sorting transfers RPOs and has
semantic correspondence.

Theorem 2. Let C' be a category with RPOs, and let P be a decomposable pred-
icate on C. Then €(P) has RPOs, transfers RPOs, and has semantic correspon-
dence up to P.

3 The operators A, V are related to the BiLog [18] adjuncts to composition.
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Ezxample 5. The sorting F — C of Example B is indeed a closure sorting for
the predicate “contains at most one s”; we recover the objects 0 and 1 as 0 =
(va{0}, A{0}) and 1 = (v{0}, Av{0}). By Theorem [2, F has RPOs and has
semantic correspondence up to that predicate.

The closure sorting answers Question 2 “how do we construct a sorting given
some problem domain” by virtue of Theorem [2I Technically, the answer applies
only to reactive system, but again, it is straightforwardly lifted to the setting
bigraphical reactive systems; we discussed this lifting in more detail in the next
section.

6 Bigraphical Reactive Systems

As mentioned in the introduction, bigraphical reactive systems are not instances
of ordinary reactive systems. Because categories of bigraphs do not contain rel-
ative pushouts, Milner, Leifer, and Jensen introduced supported pre-categories
3.

Intuitively, the supported pre-category of pure bigraphs adds a notion of iden-
tity of sub-terms; the totality of identities in some term is called its support,
hence “supported”. For the notion of support to make sense, composition of
bigraphs with overlapping support is left undefined, hence “pre-category”.

For each supported pre-category S we obtain a category [S] by considering
equal morphisms which differ only in the particular identities chosen for their
support. The support quotient functor ng : S — [S] takes each supported term
to such a support equivalence class. The category of abstract bigraphs arise as
the quotient [S] of the supported pre-category S, the concrete bigraphs.

This solution, using supported pre-categories, is widely regarded as being
overly ad hoc. Following a suggestion by Leifer [13], Sassone and Sobocinski
[19,20] investigated using instead first two-categories and later bi-categories as
foundations for reactive systems. Unfortunately, comfortable as their results may
be, no one has as yet formalised bigraphs in one of these more general settings.
Hence, we stick with the present formalisation in supported pre-categories, at
least for the present paper.

Fortunately, lifting Jensen’s previous work and the results of the preceding
sections to the setting of supported pre-categories pose no real difficulties, it
only requires a lot of footwork. For want of space, we omit that footwork here;
the interested reader is referred to [I6]. We do, however, make the following
comments.

A sorting on pure abstract bigraphs induces a sorting on the corresponding
concrete bigraphs, found by taking the pullback of that sorting along the support
quotient.

Fr— S

JJ l"s (11)

s
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Here we have concrete bigraphs S, abstract bigraphs [S]; ns : S — [S] is the
support quotient. We are given a sorting F' — [S], and we find the corresponding
sorting F* — S simply by taking the pullback (in the category of supported pre-
categories) of F' — [S] along 7.

It turns out that if the original sorting functor satisfies the sufficient conditions
we have seen so far, then the induced sorting functor will sustain the behavioural
theory. That is, in this case, the induced sorting will preserve congruence proper-
ties and enjoy semantic correspondence. Moreover, there is essentially a bijection
between the sortings of a supported pre-category (S in the above diagram) and the
sortings of its support quotient ([S] in the above diagram). Hence, for practical work
with bigraphical models, it is sufficient to consider sortings of abstract bigraphs.

Readers who find all this a bit hand-wavy are again referred to [16], where they
will find formalisation. In particular, Proposition 2, Theorem [I, and Theorem ]
of the present paper are stated and proved in the bigraphical setting there as [16]
Theorem 5.26, Theorem 5.29, and Theorem 5.31]. The above-mentioned bijection
theorem is [16l, Theorem 5.21].

Altogether, by lifting in this manner the result of the preceding sections,
we fully answer the two questions posed in the introduction: we have sufficient
conditions for a sorting to preserve congruence properties and enjoy semantic
correspondence, and we have a construction, the closure sorting, for constructing
sortings satisfying these conditions.

We proceed to demonstrate the viability of the closure sortings by recovering
Milner’s local bigraphs as a particular closure sorting.

7 Local Bigraphs and Closure Sortings

In the setting of bigraphical reactive systems we have binding bigraphs [4] as a
natural extension of pure bigraphs [IL4]; moreover, we have local bigraphs [103]
as a natural extension of binding bigraphs. It has been suspected [21] that local
bigraphs represent the end of this evolutionary ladder. In this section, we clarify
what this evolution is and demonstrate that the closure sorting for a predicate
derived from the scope rule is its natural endpoint. In the process, we prove that
local bigraphs can, in a sense to be made precise, be replaced by the closure
sorting for this predicate.

We do not reiterate the definition of pure and local bigraphs here. Refer to
one of [IL4] for the definition of pure bigraphs; to one of [I8[I1] for intuition
and examples of pure bigraphs; to [4] for the definition of binding bigraphs; and
to [10,[3] for the definition of local bigraphs.

Binding bigraphs partition the ports of a signature into the binding ports and
the free ports. The intuition of binding ports is that [, p.68]:

“all points linked to a binding port of a node u lie inside u.”

Although Milner and Jensen use the word “points” and later clarify that these
may be names as well as ports, binding bigraphs are surely but a means of re-
stricting pure bigraphs to those that only peer a binding port with ports beneath
it. This condition, called the scope condition, is easily seen to be decomposable.
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Definition 13 (Scope predicate). Let X be a binding signature. The Scope
predicate for X' is a predicate Py, on the morphisms of B(U(X)), that is, on
the pure bigraphs over U(X). For a bigraph [ of B(U(X)), we define Px(f) iff
whenever a binding port p on a node n is in a link, then any other port p’ in
that link is on a node that has n as an ancestor.

Binding ports are intended to model binders in term languages, e.g., the binder
k in the input prefix z(k).P of the m-calculus [4[6]. (The introduction of binding
ports also enables a more expressive definition of parametric reaction rules. We
shall not discuss this application here).

The progression from binding to local bigraphs is one including more and
more ways to decompose bigraphs satisfying the scope predicate Px given above.
The closure sorting for Ps is an endpoint of this progression, as it contains by
definition every possible such decomposition. We discuss this progression in some
detail because so reveals, we believe, the essence of binding and local bigraph.
The discussion will be somewhat technical, however, so feel free to skip ahead
to the paragraph titled “Replaceability”.

To make sure that the scope condition is preserved by composition, binding
bigraphs augment objects with locations of names. Each name x in an object
(m, X) is either global or located at a specific place i € m. A binding bigraph
is then permitted to link only appropriately located ports or inner names to
located outer names or binding ports. (When we say that something is “linked
to a binding port” we actually mean peered with that binding port. Because no
link can contain two binding ports, it is sound to identify an edge with a binding
port linked to that edge).

Ascribing only a single place to each located name does not account for all
possible decompositions of a bigraph satisfying the scope condition. For instance,
the following two pure bigraphs both satisfy the scope condition, as does their
composition. However, we can assign no location to = that will make f a valid
binding bigraph.

f:@2{z}) = (1,0) = /ok@)(—o | —1)
g: (0’0) - (2’ {.73}) = hx ‘ hx

To remedy this deficiency, [3] introduces local bigraphs. These assign to each
name z of an interface (m, X) a subset m’ C m of places, instead of just a single
place i € m. The global names of binding bigraphs correspond to everywhere
located names.

Local bigraphs still do not capture every possible decomposition of pure bi-
graphs satisfying the scope condition. To wit, consider the following two bi-
graphs.

f : (L{mvy}) - (]-7@) = /‘Tvy'_o (12)
g: (170)) - (1’ {x,y}) = k(a:)(hy) (13)
The interfaces of local bigraphs are simply not capable of expressing that in g,

the name z can be free, as long as any context can only link it to names within
the scope of the control k(,), such as the name y in this example.



230 L. Birkedal, S. Debois, and T. Hildebrandt

The closure sorting for the scope condition includes exactly this kind of ad-
ditional interfaces, and thus allows this decomposition. For the application of
local bigraphs in [I0], encoding of the lambda calculus as a bigraphical reactive
system, this extra flexibility is not exploited: For any term or reaction rule con-
taining binders, the bound names will not appear in the interface. However, as
we will make precise below, the extra flexibility is not harmful.

Replaceability. The closure sorting for the scope predicate is also a viable
substitute for local bigraphs in the following precise sense. There exists a full
embedding ¢ : B(X) — €(Pyx) of local bigraphs into the closure sorting for Px.
This embedding witnesses B(X') being a sub-sorting of €(Py) in the sense that
it makes the following diagram commute.

4’€P2

N/

Moreover, this embedding both preserves and reflects bisimilarity for any re-
active system R on B(X) and its image R in €(Pyx). Indeed, ¢ preserves and
reflects transitions, and the morphisms in the image of ¢ has no transitions
outside of that image. In this sense, the closure sorting €(Py) is a reasonable
substitute for local bigraphs.

Theorem 3. Let X be a binding signature, let Py be the Scope predicate on
B(X), and let R be a reactive system on €(Px). Suppose [ is an agent of R
in B(X). There is a transition 1(f) —2— K’ in €(Px) if and only if there is a
transition f —2» h in B(X) and both 1(g) = ¢' and v(h) = K. It follows that
for agents f,g of B(X) we have f ~ g if and only if o(f) ~ ¢(g).

It follows that local bigraphs sustain the behavioural theory of pure bigraphs.
Milner proved as much by hand [I0.3]; now, we get the same result for free.

Corollary 1. Let X be a binding signature. For any supported reactive system
on B(XY), bisimilarity on the supported transitions is a congruence.

However, we also expand on Milner’s results, because Theorem [ gives us that
local bigraphs have semantic correspondence up to Psy.

Corollary 2. Let X' be a binding signature. Then the sorting B(X) — B(U (X))
respects supported P s -reactions and -transitions.

The proof of Theorem B hinges on the following characterisation of €(P 5 ), which
is interesting in its own right in so far as it tells us exactly what is missing from
the interfaces of local bigraphs to allow all decompositions.

Lemma 2. Let X' be a binding signature, let €(Pyx) be the closure sorting for
the scope predicate Py, and let (m,X) be an object of B(X). Let I'(m,X) =
PHO,...,m—1})+P(X) be the set comprising subsets of places and subsets of
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names of the object (m,X). We call maps p : X — I'(m,X) s.t. p(x) € P(X)
implies x € p(x) generating maps for (m, X).

The fibre of €(Px) — B(U(X)) over (0, X) is isomorphic to the partial order
that has only one object. The fibre of €(Px) over (m, X) for m > 0 is isomorphic
to the partial order over generating maps for (m, X), ordered pointwise by p(x) C
o(z) if and only if cither (a) p(x) C o(z) C PO, ..., m—1), (b) o(x) C p(x) C
P(X), or (¢) p(x) CPHO,...,m—1}) and o(z) C P(X).

The generating maps p : X — I'(m, X) cover exactly the decomposition in (I3),
with the intuition that if p(x) € P(X) then z is a name that occurs in a binder
that may be safely linked to names in p(x).

We recover the interfaces of local bigraphs as the generating maps p : X —
P{0,...,m — 1}) that take every name to a left inject, that is, that assigns
locations to names.

We have now shown how local bigraphs arise as a special case closure sorting.
In [T6] it was shown how Milner’s homomorphic sorting [I] also arise as a special
case on the closure sorting.

8 Conclusion and Future Work

First, we have given a sufficient condition for a sorting to reflect reactive and
transition semantics of well-sorted terms. Second, we have extended the theory
of sortings for reactive systems with a new construction of sortings for decom-
posable predicates, the closure sorting. Third, we have sketched a generalisation
of the theory of sortings for reactive systems to the setting of supported pre-
categories. Finally, we proved that local bigraphs arise naturally as a sub-sorting
of the closure sorting obtained from the scope condition. Besides alleviating the
need for redeveloping the behavioural theory for local bigraphs, it supports local
bigraphs as the natural extension of bigraphs with local names. We conjecture
that the sortings [1L[2,[BLA4L5L0L0OLI0LIT] can all be obtained as closure sortings.
(Of the sortings mentioned in the introduction, this list leaves out only the
edge-sortings of [7], which does not appear to approximate predicates).

We see two main avenues of future work. One is to investigate sortings in other
frameworks, in particular within graph rewriting [22,23] and the 2-categorical
approach to reactive systems [20,[19]. Another is to investigate the algebraic
properties of sortings and if the closure sorting is somehow universal among
sortings that capture a decomposable predicate and respect the behavioural
theory.
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Abstract. We present an algorithm for partial order reduction in the context of
a countable universe of deterministic actions, of which finitely many are enabled
at any given state. This means that the algorithm is suited for a setting in which
resources, such as processes or objects, are dynamically created and destroyed,
without an a priori bound. The algorithm relies on abstract enabling and disabling
relations among actions, rather than associated sets of concurrent processes. It
works by selecting so-called probe sets at every state, and backtracking in case
the probe is later discovered to have missed some possible continuation.

We show that this improves the potential reduction with respect to persistent
sets. We then instantiate the framework by assuming that states are essentially
sets of entities (out of a countable universe) and actions test, delete and create
such entities. Typical examples of systems that can be captured in this way are
Petri nets and (more generally) graph transformation systems. We show that all
the steps of the algorithm, including the estimation of the missed actions, can be
effectively implemented for this setting.

1 Introduction

Explicit state model checking is, by now, a well-established technique for verifying
concurrent systems. A strong recent trend is the extension of results to software systems.
Software systems have, besides the problems encountered in the traditional concurrent
automata, the additional problem of unpredictable dynamics, for instance in the size of
the data structures, the depth of recursion and the number of threads.

Typically, the number of components in concurrent software systems is fairly large,
and the actions performed by those components, individually or together (in case of
synchronization), can be interleaved in many different ways. This is the main cause
of the well-known state space explosion problem model checkers have to cope with.
A popular way of tackling this problem is by using so-called partial order reduction.
The basic idea is that, in a concurrent model of system behaviour based on interleaving
semantics, different orderings of independent actions, e.g., steps taken by concurrent
components, can be treated as equivalent, in which case not all possible orderings need
to be explored.

In the literature, a number of algorithms have been proposed based on this technique;
see, e.g. [@,,@,,]. These are all based upon variations of two core techniques:

* This work has been carried out in the context of the GROOVE project funded by the Dutch
NWO (project number 612.000.314).

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 233 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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persistent (or stubborn) sets [@,] and sleep sets [@]. In their original version, these
techniques are based on two important assumptions:

1. The number of actions is finite and a priori known.
2. The system consists of a set of concurrent processes; the orderings that are pruned
away all stem from interleavings of actions from distinct processes.

Due to the dynamic nature of software, the domain of (reference) variables, the identity
of method frames and the number of threads are all impossible to establish beforehand;
therefore, the number of (potential) actions is unbounded, meaning that assumption 1
is no longer valid. This has been observed before by others, giving rise to the devel-
opment of dynamic partial order reduction; e.g., [E,é]. As for assumption 2, there are
types of formalism that do not rely on a pre-defined set of parallel processes but which
do have a clear notion of independent actions. Our own interest, for example, is to
model check graph transformation systems (cf. [ﬂ,m]); here, not only is the size of the
generated graphs unbounded (and so assumption 1 fails) but also there is no general
way to interpret such systems as sets of concurrent processes, and so assumption 2 fails
as well.

In this paper, we present a new technique for partial order reduction, called probe
sets, which is different from persistent sets and sleep sets. Rather than on concurrent
processes, we rely on abstract enabling and disabling relations among actions, which
we assume to be given somehow. Like persistent sets, probe sets are subsets of enabled
actions satisfying particular local (in)dependence conditions. Like the existing dynamic
partial order reduction techniques, probe sets are optimistic, in that they underestimate
the paths that have actually to be explored to find all relevant behaviour. The technique
is therefore complemented by a procedure for identifying missed actions.

We show that probe set reduction preserves all traces of the full transition system
system modulo the permutation of independent actions. Moreover, we show that the
probe set technique is capable of reducing systems in which there are no non-trivial
persistent sets, and so existing techniques are bound to fail.

However, the critical part is the missed action analysis. In principle, it is possible to
miss an action whose very existence is unknown. To show that the detection of such
missed actions is nevertheless feasible, we further refine our setting by assuming that
actions work by manipulating (reading, creating and deleting) entities, in a rule-based
fashion. For instance, in graph transformation, the entities are graph nodes and edges.
Thus, the actions are essentially rule applications. Missed actions can then be conserv-
atively predicted by overestimating the applicable rules.

The paper is structured as follows. In Section Pl we introduce an abstract frame-
work for enabling and disabling relations among actions in a transition system. In
Section [3] we define missed actions and probe sets, give a first version of the algo-
rithm and establish the correctness criterion. Section ] then discusses how to identify
missed actions and construct probe sets, and gives the definitive version of the algo-
rithm. All developments are illustrated on the basis of a running example introduced
in Section [2l Section [ contains an evaluation and discussion of related and future
work.
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2 Enabling, Disabling and Reduction

Throughout this paper, we assume a countable universe of actions Act, ranged over by
a, b, ..., with two binary relations, an irreflexive relation > and a reflexive relation «:

Stimulation: « > b indicates that ¢ stimulates b;
Disabling: a <« b indicates that a disables b.

The intuition is that a stimulates b if the effect of a fulfills part of the precondition of
b that was not fulfilled before (meaning that b cannot occur directly before a), whereas
it disables b if it violates part of b’s precondition (meaning that b cannot occur directly
after a). If b neither is stimulated by a nor disables a then it is independent of a (meaning
that it might occur concurrently with ). In the theory of event structures (e.g., [IEI]),
> roughly corresponds to a notion of (direct) cause and « to asymmetric conflict (e.g.,
[E]; see also [Ia] for a systematic investigation of event relations)ﬂ Fig. [ shows an
example.

$1 232 ZEO yl y2 yO
do [x+y<3] -> < > <
x 1= (x+1)%3; | 4> -
or [x+y<3] —-> 2> <4 >
vy oi= (y+1)%3; Yt <« <>
od 2l - <«
W > > o«
(a) ()

Fig. 1. A non-deterministic process (a), its transition system (b) and the stimulus and disabling
relations (c). Action z* [y*] assigns i to « [y], with pre-condition = + 3 < 3.

We also use words, or sequences of actions, denoted v, w € Act®. The empty word
is denoted . The set of actions in w is denoted A,,. With respect to stimulation and
disabling, not all words are possible computations. To make this precise, we define a
derived influence relation over words:

v~ w o e da€Ay,be Ay ia>bVawb.

(where a » b is equivalentto b € a.) v ~ w is pronounced “v influences w.” Influence
can be positive or negative. For instance, in Fig.[ll -2 ~» y'-y? due to 2 » y? and
xlyl ~ 2242 due to 2! > 22, whereas ! and y'-y? do not influence one another.

Definition 1 (word feasibility). A word w is feasible if

— for all sub-words a-v-b of w, if o €4 bthenIc € A, :a>c> b
— for all sub-words vi-vy of w, vo ~ vy implies v ~ V2.

! This analogy is not perfect, since in contrast to actions, events can occur only once.
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The intuition is that infeasible words do not represent possible computations. For in-
stance, if a <« b, for the action b to occur after a, at least one action in between must
have “re-enabled” b; and if vs occurs directly after v1, but v; does not influence vo, then
v might as well have occurred before vy ; but this also rules out that vy influences v .

For many purposes, words are interpreted up to permutation of independent actions.
We define this as a binary relation over words.

Definition 2 (equality up to permutation of independent actions). ~ C Act* x Act”
is the smallest transitive relation such that v-a-b-w ~ v-b-a-w if a % b.

Some properties of this equivalence, such as the relation with feasibility, are expressed
in the following proposition.

Proposition 3

1. Ifwvis feasible and v ~ w, then w is feasible;
2. ~is symmetric over the set of feasible words.
3. vawi ~v-ws if and only if wi ~ we.

It should be noted that, over feasible words, the setup now corresponds to that of
(Mazurkiewicz) traces, which have a long tradition; see, e.g., [|I|,]. The main differ-
ence is that our underlying notion of influence, built up as it is from stimulation and
disabling, is more involved than the symmetric binary dependency relation that is com-
monly used in this context — hence for instance the need here to restrict to feasible
words before ~ is symmetric.

We also define two prefix relations over words, the usual “hard” one (=), which
expresses that one word is equal to the first part of another, and a “weak” prefix () up
to permutation of independent actions. It is not difficult to see that, over feasible words,
both relations are partial orders.

v=w & Juvu=w (D)
v 3w & Juvu = w. 2)

2.1 Transition Systems

We deal with transition systems labelled by Act. As usual, transitions are triples of
source state, label and target state, denoted ¢ % ¢'. We use g9 % ¢pa1 With w =
ao - - - a, as an abbreviation of g 2% ¢ 2% --- 22, g, 1. Formally:

Definition 4. A rransition system is a tuple S = (Q,—, ) such that . € Q and — C
Q X Act x Q, with the additional constraints that for all q, q1, q2 € Q:

w

— All traces are feasible; i.e., 1 Y5 q implies w is feasible'

— The system is deterministic up to independence; i.e., ¢ X% g1 and ¢ Y25 g2 with
wy >~ wo implies q1 = qs.

— All out-degrees are finite; i.e., enabled(q) = {a | 3¢ % ¢'} is a finite set.

The second condition implies (among other things) that the actions in Act are fine-
grained enough to deduce the successor state of a transition entirely from its source state
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and label. Although this is clearly a restriction, it can always be achieved by including
enough information into the actions. Some more notation:

grw & 3¢ ¢ ¢

gTw = ¢ suchthatq 2 ¢ .
q F w expresses that g enables w, and ¢ T w is q after w, i.e., the state reached from
q after w has been performed. Clearly, ¢ T w is defined (uniquely, due to determinism)
iff ¢ - w. In addition to determinism modulo independence, the notions of stimulation

and disabling have more implications on the transitions of a transition system. These
implications are identified in the following definition.

Definition 5 (dependency consistency and completeness). A fransition system S is
called dependency consistent if it satisfies the following properties for all ¢ € Q:

qFa N a>b=q¥Fb 3)
qFa N a 4b= q¥ ab. 4)

S is called dependency complete if it satisfies:

qFab N appb=qkFb (5)
gFa N gFb AN adb= qF ab. (6)

Dependency consistency and completeness are illustrated in Fig.

(amb) 4 (aab) g (ab) 4 (adb) 4
oS AN
° *. .\,(b o\bA Y .\\b °
3) (4). (5). (6).

Fig. 2. The consistency and completeness properties of Def.[Sl The (negated) dashed arrows are
implied by the others, under the given dependency relations.

The following property states an important consequence of dependency complete-
ness, namely that weak prefixes of traces are themselves also traces. (Note that this
does not hold in general, since weak prefixes allow reshuffling of independent actions).

Proposition 6. If S is a dependency complete transition system, then q & w implies
qgbwvforallq € Qandv 3 w.

The aim of this paper is to reduce a dependency complete transition system to a smaller
transition system (having fewer states and transitions), which is no longer dependency
complete but from which the original transition system can be reconstructed by com-
pleting it w.r.t. (3) and (@). We now define this notion of reduction formally.
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Fig. 3. An incorrect (a) and a correct (b) reduction of the transition system in Fig. [ The fat
nodes and arrows are the states and transitions of the reduced system.

Definition 7 (reduction). Let R, S be two dependency consistent transition systems.
We say that R reduces S if Qr C Qs, Tr C Ts, Lr = ts, and for all w € Act”

tsFsw = FveAct":w v A trtgro.

We will often characterise a reduced transition system only through its set of states @ r.

For example, Fig. 8] shows two reductions of the transition system in Fig. [Tl one
invalid (a) and one valid (b). In (@), among others the trace x!-2%-2Y is lost.

It follows from Proposition [6] that the reduction of a dependency complete transition
system is essentially lossless: if R reduces S and S is complete, then the reachable
part of S can be reconstructed from R up to isomorphism. In particular, it immediately
follows that deadlock states are preserved by reduction:

Proposition 8. If R, S are dependency consistent transition systems such that S is de-
pendency complete and R reduces S, then for any reachable deadlock state ¢ € Qg
(i.e., such that Va € Act : q ¥ a) it holds that ¢ € Qg.

2.2 Entity-Based System Specifications

Above we have introduced a very abstract notion of actions and dependencies. We will
now show a way to instantiate this framework. In the following, Ent is a countable
universe of entities, ranged over by e, ey, €', . ..

Definition 9. An action a is said to be Ent-based if there are associated finite disjoint

sets
— R, C Ent, the set of entities read by a;
— N, C Ent, the set of entities forbidden by a;
— D, C Ent, the set of entities deleted by a;
— C, C Ent, the set of entities created by a.

The set of Ent-based actions is denoted Act[Ent]. For Ent-based actions a, b we define

ar>b s CoN(RyUDy) #0V Dy (CpUNy) #£ 0 (7
a4b s DaN(RyUDy) A0V CynN(CypUNy) £ 0D 8)
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Since Ent and Act may both be infinite, we have to impose some restrictions to make
sure that our models are effectively computable. For this purpose we make the following
important assumption:

Enabling is finite. For every finite set E C Ent, the set of potentialle applicable ac-
tions {a € Act | R, U D, C E} is finite.

A transition system S is called Ent-based if A C Act[Ent] and for every ¢ € Q there is
an associated finite set £, C Ent, such that £, = E, implies ¢ = ¢'.

Definition 10 (Entity-based transition systems). A transition system S is called Ent-
based if all transitions are labelled by Ent-based actions, and for all q € Q:

— There is a finite set I/, C Ent, such that £, = Ey implies ¢ = q;
— Foralla € Act[Ent], ¢ aiff (Ra U Dgy) C Eqand (No U Cy) N Ey = 0;
- Foralla € enabled(q), q 1 a is determined by Eq1 o = (Eq \ Dg) U Cl,.

It can be shown that these three conditions on the associated events, together with the
assumption that enabling is computable, actually imply feasibility, determinism and
finite out-degrees. The following (relatively straightforward) proposition states that this
setup guarantees some further nice properties.

Proposition 11. Every Ent-based transition system is dependency complete and con-
sistent, and has only feasible words as traces.

Models whose behaviour can be captured by entity-based transition systems include:
Turing machines (the entities are symbols at positions of the tape), Petri nets (the entities
are tokens), term and graph rewrite systems (the entities are suitably represented sub-
terms and graph elements, respectively). Computability of enabling is guaranteed by
the rule-based nature of these models: all of them proceed by attempting to instantiate
a finite set of rules on the given finite set of entities, and this always results in a finite,
computable set of rule applications, which constitute the actions.

For instance, the transition system of Fig. [Tlis obtained (ad hoc) by using entities
€r>0s €x>1, €y>0 and ey~ 1, setting F, = () and defining the actions as follows:

a R, N, D, C, a R, N, D, C,

z! €x>0 Z/1 €y>0 )
z? €x>0 €y>0 €x>1 Z/2 €y>0 €x>0 Ey>1

? €y>1  €x>0,Czx>1 yo €x>1 €y>0,€y>1

3 Missed Actions and Probe Sets

All static partial order reduction algorithms explore subsets of enabled transitions in
such a way that they guarantee a priori not to rule out any relevant execution path of
the system. Dynamic partial order reduction algorithms, such as e.g. [Ij], on the other
hand, potentially “miss” certain relevant execution paths. These missed paths then have
to be added at a later stage. The resulting reduction may be more effective, but additional
resources (i.e. time and memory) are needed for the analysis of missed execution paths.
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For instance, in the reduced system of Fig.[3(a), the transitions are chosen such that all
actions that run the danger of becoming disabled are explored. Nevertheless, actions 2°
and y° are missed because they have never become enabled.

Our dynamic partial order reduction algorithm selects the transitions to be explored
on the basis of so-called probe sets. We will now introduce the necessary concepts.

3.1 Missed Actions

We define a vector in a transition system as a tuple consisting of a state and a trace
leaving that state. Vectors are used especially to characterise their farget states, in such a
way that not only the target state itself is uniquely identified (because of the determinism
of the transition system) but also the causal history leading up to that state.

Definition 12 (vector). A vector (q,w) of a transition system S consists of a state
q € Q and a word w such that q + w.

Missed actions are actions that would have become enabled along an explored execu-
tion path if the actions in the path had been explored in a different order. To formalise
this, we define the (weak) difference between words, which is the word that has to be
concatenated to one to get the other (modulo independence), as well as the prime cause
within w of a given action a, denoted | ,w, which is the smallest weak prefix of w that
includes all actions that influence a, directly or indirectly:

w—v = u suchthatv-u ~ w
low := v suchthatw —vbra AV Zw: (w—2v" % a = vI3).

Clearly, w — v exists if and only if v = w; in fact, as a consequence of Proposition[3.3}
it is then uniquely defined up to ~. The prime cause | ,w, on the other hand, is always
defined; the definition itself ensures that it is unique up to ~. A representative of |, w
can in fact easily be constructed from w by removing all actions, starting from the tail
and working towards the front, that do not influence either a or any of the actions not
removed. For instance, in Fig.[Mlwe have 2'-y'-3% — y' = 2!y whereas z'-y'-y? — 2
is undefined; furthermore, | 22'-y' = y.

Definition 13 (missed action). Ler (¢, w) be a vector. We say that an action a is missed
along (¢, w) if ¢ ¥ w-a but q - v-a for some v 3 w. The missed action is characterised
by | qv-a rather than just a; i.e., we include the prime cause. A missed action is said to
be fresh in (¢, w) if w = w’-b and a is not a missed action in (q, w').

The set of fresh missed actions along (g, w) is denoted fma(q, w). It is not difficult to
see that v-a € fma(g, w) implies w = w’-b such that b ~ a; otherwise a would already
have been missed in (g, w’).

A typical example of a missed action is (y'-y?) € fma(e,x'-22-y') in Fig. [k here
L ¥ xta?yty? but e - yty? with y! < b2y Note that indeed y* > y2.

3.2 Probe Sets

The most important parameter of any partial order reduction is the selection of a (proper)
subset of enabled actions to be explored. For this purpose, we define so-called probe
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Algorithm 1. Probe set based partial order reduction, first version

1: let Q < 0; // result set of states, initialised to the empty set
2: let C «— {(ts,e)}; /I set of continuations, initialised to the start state
3: while C' # 0 do // continue until there is nothing left to do

4:  choose (q,w) € C; /l arbitrary choice of next continuation

50 letC — C\{(qw)}s

6: ifqgTw ¢ Sthen // testif we saw this state before

7: let Q — QU {qTw}; //ifnot, add it to the result set

8: for all v-m € fma(q,w) do // identify the fresh missed actions
9: let Q — QU {qTv" | v 2 v}; //add intermediate states
10: let C — CU{(q1vm,e)}; //add a continuation
11: end for
12: choose p € Py w; Il choose a probe set for this continuation
13: let C — CU{(¢1pla),wa—p(a))|ac dom(p)}; /I add next continuations
14:  endif

15: end while

sets, based on the disabling among the actions enabled at a certain state (given as the
target state ¢ T w of a vector (g, w)). Furthermore, with every action in a probe set, we
associate a part of the causal history that can be discharged when exploring that action.
(Thus, our probe sets are actually partial functions).

Definition 14 (probe set). For a given vector (q,w), a probe set is a partial function
p: enabled(q T w) — Act”™ mapping actions enabled in q | w onto words, such that the
following conditions hold:

1. Forall a € dom(p) and b € enabled(qTw), b 4 a implies b € dom(p);
2. Foralla € dom(p) and b € enabled(q T w), p(a) Z lyw implies b € dom(p);
3. Foralla € dom(p), p(a) 3 law.

We use Py, to denote the set of all probe sets for a vector (g, w). We say that an action
a is in the probe set p if a € dom(p). The first condition states that probe sets are
closed under inverse disabling. The second and third conditions govern the discharge of
the causal history: the fragment that can be discharged must be contained in the prime
cause of any action not in the probe set (Clause [2)) and of a itself (Clause [3). Of these,
Clause[2is the most involved: if we discharge any action that does not contribute to (the
cause of) some b, then we must probe b as well, so that missed actions stimulated by b
can still be identified. Section[d.3] gives some guidelines on how to select probe sets.

Algorithm [[] gives a first version of the reduction algorithm. In Fig. @] we apply this
algorithm to the example system of Fig. [Il obtaining the reduced system in Fig. B(b).
The first column shows the value of C' at the beginning of the loop; the second col-
umn represents the choice of continuation; the third is the resulting set of fresh missed
actions; the fourth column gives the increase in the result set (); and the final column
shows the choice of probe set.

3.3 Correctness

In order to have a correct reduction of a transition system, we must select sufficiently
many probe sets and take care of the missing actions. Let us define this formally.
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iteration
1

0~ O Uk W N

Fig. 4. Step-by-step execution of Algorithm[T]on the example of Fig.[Il

Definition 15 (probing). Ler S be a transition system. A probing for S is a K -indexed
set P = {pqﬂ,,}(q w)eK where

1. K is a set of vectors of S such that (1,¢) € K;

2. Forall (q,w) € K, pg. is a probe set such that (¢ 1 pg.w(a), w-a — pgw(a)) € K
forall a € dom(pg ).

3. forall (q,w) € K and all v-a € fma(q,w), there is a word u = w — v such that
(¢ Tv-a,u) € K and u + a.

We write (q,w) 1 p(a) for the vector (¢ pqw(a), w-a —pgw(a)) in Clause 2 P is
called fair if for all (¢, w) € K there is a function ng ,,: enabled(q 1 w)—IN, assigning
a natural number to all actions enabled in q | w, such that for all a € enabled(q T w),
either a € dom(pgw), OF N(gw) 1 pp) (@) < Ngw(a) for some b € dom(p).

Clause [2| guarantees that, from a given probe set, all regular explored successors (of
actions in the probe set) are indeed also probed; Clause [3] takes care of the missed
actions. Fairness ensures that every enabled action will eventually be included in a
probe set. In Section[£3] we will show how to guarantee fairness.

The following is the core result of this paper, on which the correctness of the algo-
rithm depends. It states that every fair probing gives rise to a correct reduction. The
proof can be found in the appendix.

Theorem 16. If P is a fair probing of a transition system S, then the transition system
R characterized by Qr = {qTw | (¢, w) € dom(P)} reduces S.

If we investigate Algorithm [T]in this light, it becomes clear that this is not yet cor-
rect. The total collection of vectors and probe sets produced by the algorithm give
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rise to a correct probing in the sense of Def. [[3l (where the u of Clause [3]is always
set to ), and also generates a probing; however, this probing is not fair. As a result,
Algorithm [T] suffers from the so-called “ignoring problem” well-known from other
partial order reductions.

4 The Algorithm

In this section, we put the finishing touch on the algorithm: ensuring fairness, identi-
fying missed actions, and constructing probe sets. For this, we take the entity-based
setting from Section 2.2

4.1 Identifying Missed Actions

As we have discussed in Section[3] finding the missed actions fma(q, v) by investigating
all weak prefixes of v negates the benefits of the partial order reduction. In the the entity-
based setting of Section[2.2] however, a more efficient way of identifying missed actions
can be defined on the basis of an over-approximation. We define the over-approximation
of the target state of a vector (¢, w), denoted ¢ftw, as the union of all entities that have
appeared along that vector, and the weak enabling of an action a by a set of entities F,
denoted E I a, by only checking for the presence of read and deleted entities and not
the absence of forbidden and created entities.

ghw = EqUUaeAw C,
Elra e (R,UD,) CE

This gives rise to the set of potentially missed actions, which is a superset of the set of
fresh missed actions.

Definition 17 (potentially missed actions). Ler (¢, w-b) be a vector. Then, a € Act is
a potentially missed action if either b « a, or the following conditions hold:

1. a is weakly but not strongly enabled: gy w IF a and q T w ¥ a,
2. a was somewhere disabled: 3c € A, : c € a;
3. ais freshly enabled: b > a.

We will use pma(g,v) to denote the set of potentially missed actions in the vector
(g,v). It is not difficult to see that pma(q,v) 2 fma(q,v) for arbitrary vectors (g, v).
However, even for a given a € pma(g,v) it is not trivial to establish whether it is really
missed, since this still involves checking if there exists some v = v with ¢ Tv' + a,
and we have little prior information about v’. In particular, it might be that v is smaller
than the prime cause |,v. For instance, if E, = {1}, C, = {2}, D, = {1,2} and
R, = {1,2} then g ¥ v-a with v = b-¢-b, and | ,v = v; nevertheless, there is a prefix
v 2 vsuch that ¢ - v'-a, viz. v/ = b.

In some cases, however, the latter question is much easier to answer; namely, if the
prime cause |,v is the only possible candidate for such a v’. The prime cause can
be computed efficiently by traversing backwards over v and removing all actions not
(transitively) influencing a.
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Definition 18 (reversing actions). Two entity-based actions a, b are reversing if C; N
Dy # 0 or D, NCy # (. A word w is said to be reversing free if no two actions
a,b € Ay, are reversing.

We also use rev, (w) = {b € A, | a,bare reversing} to denote the set of actions in a
word w that are reversing with respect to a. Reversing freedom means that no action
(partially) undoes the effect of another. For instance, in the example above b and ¢
are reversing due to C, N D, = {1}, so v is not reversing free. The following result
now states that for reversing free vectors, we can efficiently determine the fresh missed
actions.

Proposition 19. Ler (q,v) is a vector with v reversing free.

1. For any action a, ¢ = v"-a with v’ = v implies v' = | 0.
2. fma(q,v) = {a € pma(q,v) | ¢+ lav-a}.

4.2 Ensuring Fairness

To ensure that the probing we construct is fair, we will keep track of the “age” of the
enabled actions. That is, if an action is not probed, its age will increase in the next
round, and probe sets are required to include at least one action whose age is maximal.
This is captured by a partial function o: Act — IN. To manipulate these, we define

a® A = {(a,a(a) +1)|a€ dom(a)} U{(a,0) ]| a € A\ dom(c)}
06 A = {(a.0() |a g A}
maxa = {a € dom(a) | Vb € dom(a) : a(a) > a(b)}

A satisfies a 1< a = 0 or ANmax(a) # 0.

So, a@® A initialises the age of the actions in A to zero, and increases all other ages;a© A
removes the actions in A from «; max « is the set of oldest actions; and A satisfies the
fairness criterion if it contains at least one oldest action, or « is empty.

4.3 Constructing Probe Sets

When constructing probe sets, there is a trade-off between the size of the probe set and
the length of the vectors. On the one hand, we aim at minimising the size of the probe
sets; on the other hand, we also want to minimise the size of the causal history. For
example, probe sets consisting of pairs (a,¢) only (for which the second condition of
Def. [[4 is fulfilled vacuously, and the third trivially) are typically small, but then no
causal history can be discharged. Another extreme case is when a probe set consists of
pairs (a, | qw). In this case, the maximal amount of causal history is discharged that is
still consistent with the third condition of Def.[I4] but the probe set domain is likely to
equal the set of enabled actions, resulting in no reduction at all.

The probe sets py ., We construct will furthermore ensure that the vectors of the new
continuation points are reversing free. Therefore, for every p, ., we additionally require
that for all @ € dom(pg,w) : reva(w) € Ap(,). Since rev, (w) C A|, 4, this does not
conflict with Def. [T
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Algorithm 2. Probe set based partial order reduction algorithm, definitive version.
1: let Q «— 0;
2: let C « {(vs,&,0)}; 1/ age function initially empty
3: while C' # 0 do

4:  choose (q,w,a) € C;

50 letC — C\{(q,w,a))};

6: ifqglw ¢ S then

7: let Q@ — QU {qTw};

8: for all v-m € fma(q,w) do // calculated according to Proposition[I92

9: let @ — QU {q1v | v/ <o)

10: let C — CU{(qTvm,e,0)};

11: end for

12: choose p € Py ., such that dom(p) satisfies o, and Va € dom(p) : reva(w) C Ap(ay:
/] choose a fair probe set, and ensure reversing freedom

13: let @ < a @ enabled(q T w) © dom(p); !/ update the age function

14: let C — CU{(¢1pla),wa—p(a),a)|ac dom(p)};

15:  endif

16: end while

An interesting probe set pg ., could be constructed such that p ., satisfies the condi-
tion on disabling actions and furthermore p, ,,(a) = |,w except for one action, say a’,
which is mapped to the empty vector, i.e. p, . (a’) = €. This action o’ then ensures that
no further action needs to be included in the probe set. The selection of this action a’
can be based on the length of its prime cause within w.

There is a wide range of similar heuristics that use different criteria for selecting the
first action from which to construct the probe set or for extending the causal history to
be discharged. Depending on the nature of the transition system to be reduced, specific
heuristics might result in more reduction. This is a matter of future experimentation.

Algorithm[Z]now shows the definitive version of the algorithm. The differences with
the original version are commented. Correctness is proved using Theorem[I6l The proof
relies on the fact that the algorithm produces a fair probing, in the sense of Def.

Theorem 20. For a transition system S, AlgorithmZlproduces a set of states Q C Qg
characterising a reduction of S.

For our running example of Figs.[[land@] there are several observations to be made.

— The probe sets we constructed in Fig.[d(on an ad hoc basis) are reversing free. Note
that (in terms of (Q)) 2 reverses z! and x2; likewise, y° reverses y' and 2.

— The run in Fig. @is not fair: after the first step, the age of y' becomes 1 and hence
y' should be chosen rather than 2. This suggests that our method of enforcing
fairness is too rigid, since the ignoring problem does not actually occur here.

5 Conclusion

Summary. We have proposed a new algorithm for dynamic partial order reduction with
the following features:
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— It can reduce systems that have no non-trivial persistent sets (and so traditional
methods do not have an effect).

— It is based on abstract enabling and disabling relations, rather than on concurrent
processes. This makes it suitable for, e.g., graph transformation systems.

— It uses a universe of actions that does not need to be finite or completely known
from the beginning; rather, by adopting an entity-based model, enabled and missed
actions can be computed on the fly. This makes it suitable for dynamic systems,
such as software.

— It can deal with cyclic state spaces.

We have proved the algorithm correct (in a rather strong sense) and shown it on a small
running example. However, an implementation is as yet missing.

Related Work. Traditional partial order reduction (see e.g. [@,]) is based on stati-
cally determined dependency relations, e.g. for constructing persistent sets. More re-
cently, dynamic partial order reduction techniques have been developed that compute
dependency relations on-the-fly. In 121, for example, partial order reduction is achieved
by computing persistent sets dynamically. This technique performs a stateless search,
which is the key problem of applying it to cyclic state spaces. In 151, Gueta et al. in-
troduce a Cartesian partial order reduction algorithm which is based on reducing the
number of context switches and is shown also to work in the presence of cycles. Both
approaches are based on processes or threads performing read and/or write operations
on local and/or shared variables. The setting we propose is more general in the sense
that actions are able to create or delete entities that can be used as communication
objects. Therefore, our algorithm is better suited for systems in which resources are
dynamically created or destroyed without an a priori bound.

Future Work. As yet, there is no implementation of probe sets. Now that the theoreti-
cal correctness of the approach is settled, the first step is to implement it and perform
experiments. We plan to integrate the algorithm in the Groove tool set [IE], which will
then enable partial order reduction in the context of graph transformations. The ac-
tual reduction results need to be compared with other algorithms, by performing some
benchmarks; see, e.g., [B].

In the course of experimentation, there are several parameters by which to tune the
method. One of them is obviously the choice of probe sets; a discussion of the possible
variation points was already given in Section @l However, the main issue, which will
eventually determine the success of the method, is the cost of backtracking necessary
for repairing missed actions, in combination with the precision of our (over-)estimation
of those missed actions. If the over-estimation is much too large, then the effect of the
partial order reduction may be effectively negated.

To improve this precision, analogous to the over-approximation of an exploration
path, an under-approximation can be used for decreasing the number of potentially
missed actions. Actions that create or forbid entities that are in the under-approximation
can never be missed actions and do not have to be considered. Essentially, also including
this under-approximation means we are introducing a three-valued logic for determin-
ing the presence of entities.
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Other issues to be investigated are the effect of heuristics such as discussed in

Section [£3] alternative ways to ensure fairness, and also the combination of our al-
gorithm with the sleep set technique [@].

Acknowledgment. We want to thank Wouter Kuijper for contributing to this work in its
early stages, through many discussions and by providing a useful motivating example.
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Abstract. In the context of probabilistic automata, time efficient algo-
rithms for probabilistic simulations have been proposed lately. The space
complexity thereof is quadratic in the size of the transition relation, thus
space requirements often become the practical bottleneck. In this pa-
per, we exploit ideas from [3] to arrive at a space-efficient algorithm
for computing probabilistic simulations based on partition refinement.
Experimental evidence is given that not only the space-efficiency is im-
proved drastically. The experiments often require orders of magnitude
less time.

1 Introduction

Probabilistic automata (PAs) are a central model for concurrent systems exhibit-
ing random phenomena. Not uncommon for concurrent system models, their ver-
ification often faces state space explosion problems. Probabilistic simulation [12]
has been introduced to compare the stepwise behaviour of states in probabilis-
tic automata. As in the non-probabilistic setting [9], the simulation preorder is
especially important in compositional verification and model checking on prob-
abilistic current systems.

In the non-probabilistic setting, a decision algorithm for the simulation pre-
order has been proposed in [7] with complexity O(mn) where n denotes the
number of states and m denotes the number of transitions of labelled graphs.
The space complexity is O(n?) due to the need of saving the simulation rela-
tions. Since space could become the bottleneck in many applications [4], a space
efficient algorithm has been introduced by Bustan and Grumberg [3]. With n,
denoting the number of simulation equivalence classes, the resulting space com-
plexity is O(n2 + nlogn,), which can be considered optimal: the first part is
needed to save the simulation preorder over the simulation equivalence classes,
and the second part is needed to save to which simulation equivalence class
a state belongs. The corresponding time complexity obtained is rather exces-
sive: O(n?n2(n2 +m)). Tan and Cleaveland [I3] combined the techniques in [7]
with the bisimulation minimisation algorithm [I0], and achieved a better time
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search Center SFB/TR 14 AVACS and by the European Commission under the IST
framework 7 project QUASIMODO.
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complexity O(mlogn + mn..), where n. denotes the number of bisimulation
equivalence classes. The corresponding space complexity O(m + n?2).

Gentilini et al. [6] incorporated the efficient algorithm of [7] into the partition
refinement scheme and achieved a better time complexity O(mn?2) while keeping
the optimal space complexity O(n2+nlogn,). This is achieved by characterising
a simulation relation by a partition pair, which consists of a partition of the set
of states and a relation over the partition. Then, the simulation problem can
be reduced to a generalised coarsest partition problem (GCPP), which consists
of determining the coarsest stable partition pair. The algorithm starts with the
coarsest partition pair and refines both the partition and the relation over the
partition according to stability conditions. In [I1], an algorithm has been pro-
posed with time complexity O(mn,) and space complexity O(nn,). Recently,
van Glabbeek and Ploeger [I4] have shown that the proofs in [6] were flawed,
but have provided a fix for the main result.

In the probabilistic setting, Baier et al. [I] introduced a polynomial decision
algorithm for simulation preorder with time complexity O((mn®+m?n3)/logn)
and space complexity O(m?), by tailoring a network flow algorithm to the prob-
lem, embedded in an iterative refinement loop. Drastic improvements are possible
by observing that the networks on which the maximum flows are calculated, are
very similar across iterations of the refinement loop [I7UI6]. By adaptation of
the parametric maximum flow algorithm [5] to solve the maximum flows for the
arising sequences of similar networks, an algorithm with overall time complexity
O(m?n) and space complexity O(m?) has been introduced.

In this paper, we first discuss the smallest quotient automata induced by
simulation preorder for PAs. Then, we discuss how to incorporate the partition
refinement scheme into the algorithm for deciding simulation preorder. As in
the non-probabilistic setting, we show first that simulation relations can also
be characterised by partition pairs, thus the problem can be reduced to GCPP.
Since in PAs, states have in general non-trivial distributions instead of single
state as successors, a new proof technique is needed for the partition refinement
scheme: In the non-probabilistic setting, edges have no labels and predecessor-
based method can be used to refine the partition. This can not be extended to
the probabilistic setting in an obvious way, since in PAs, states have successor
distributions equipped with action labels. We propose a graph based analysis
to refine the partition for PAs. As in [6], the relation over the partition is re-
fined according to stability conditions. We arrive at an algorithm with space
complexity O(n? + nlogn,). Since PAs subsume labelled graphs, this can be
considered as optimal. We get, however, a rather excessive time complexity of
O(mne + m?2n? + m2n?2) where m.. denotes the number of transitions in the
bisimulation quotient. Similar to algorithms for deciding simulation preorder for
PAs [16], one can use parametric maximum flow techniques to improve the time
complexity. However, more memory is then needed due to the storage of the
networks and the maximum flow values of the corresponding networks across
iterations. We show combined with parametric maximum flow techniques, our
algorithm uses time O(mn, +m2n2) and space O(m2 + nlogn,).
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We have implemented both the space-efficient and time-efficient variants of
the partition refinement based algorithm. Experimental results show that the
space-efficient algorithm is very effective in time and memory. Comparing to the
original algorithm, not only the space-efficiency is improved drastically, often
orders of magnitude less time are required. As in [2], both regular and random
experiments show that the parametric maximum flow based implementation does
not perform better in general.

This paper is organised as follows. After recalling some definitions in Sec-
tion 21 we show in Section [3] that every probabilistic automaton has a quotient
automaton which is the smallest in size, and this quotient automaton can be
obtained by the simulation preorder. In Section Fl we show that simulation re-
lations can also be characterised by partition pairs. Using this, we develop a
partition refinement based algorithm for computing the simulation preorder in
Section Bl Finally, we report experimental results in Section [G] and conclude the
paper in Section [1l All proofs and more examples can be found in [I5].

2 Preliminaries

Let AP be a fixed, finite set of atomic propositions. Let X, Y be finite sets. For
J X — R, let f(A) denote >, f(z) forall AC X. If f: X xY — R is
a two-dimensional function, let f(z, A) denote > 4 f(z,y) for all z € X and
ACY, and f(A,y) denote > ., f(z,y) for ally € Y and A C X. For a finite
set S, a distribution px on S is a function p : S — [0, 1] satisfying the condition
w(S) < 1. The support of p is defined by Supp(u) = {s | p(s) > 0}, and the size
of u is defined by |u| = |Supp(p)|. Let Dist(S) denote the set of distributions
over the set S. We recall the definition of probabilistic automata [12]:

Definition 1. A probabilistic automaton (PA) is a tuple M = (S, so, Act, P, L)
where S is a finite set of states, sqg € S is the initial state, Act is a finite set of
actions, P C S x Act x Dist(S) is a finite set, called the probabilistic transition
matriz, and L : S — 247 is a labelling function.

For (s, a, 1) € P, we use s = p as a shorthand notation, and call y an a-successor
distribution of s. Let Act(s) = {a | 3u : s = u} denote the set of actions
enabled at state s. For a set of states B C S, let Act(B) = UsepAct(s). For
s € S and a € Act(s), let Stepsa(s) = {u € Dist(S) | s = p} and Steps(s) =
Uacact(s)Stepsa(s). A state s is reachable from so, if there exists a sequence
(50,05 110)s - - -5 (Sk—1, Wk—1, ftr—1), Sk With s, = s, and s; = p1; and p(si11) > 0
fori=0,...,k— 1.

Simulation Relations. Simulation requires that every a-successor distribution
of one state has a corresponding a-successor distribution of the other state. The
correspondence of distributions is naturally defined with the concept of weight
functions [8].

Definition 2. Let u € Dist(S), ' € Dist(S’) and R C SxS". A weight function
for (u, ') with respect to R is a function A : S x S" — [0,1] such that (i)
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A(s,s’) > 0 implies (s,s') € R, (ii) u(s) = A(s,S") for s € S and (i) p'(s’) =
A(S,s") for s € 5.

For (s,s') € R we write also s R s’. We write u Cg p if there exists a weight
function for (u, p’) with respect to R. Obviously, for all R C R’, u Cg 1/ implies
that u Cp p'. We recall first the definition of simulation relation [I2] inside one
PA:

Definition 3. Let M = (S, s, Act,P, L) be a PA. The relation R C S x S is
a simulation over M iff for all s1,s2 with s1 R sy it holds that: L(s1) = L(s2)
and if 1 iy w1 then there exists a transition s iy o with 1 Cr po. We write
s1 3 S2 iff there exists a simulation R over M such that s; R s3.

We say also that s simulates s1 in M iff 57 = s5. The preorder 3 is the coarsest
simulation relation over M. If s 3 s’ and s’ 3 s, we say that they are simulation
equivalent, and write s ~ s’. The notion of simulation relations can be lifted to
the automata level.

Definition 4. Let M = (S1, s1, Act1,P1, L1) and Ms = (Sa, s9, Acty, Po, Lo)
be two PAs with disjoint set of states. We say that R C S1 X Sa is a simulation
over My x My iff (s1,s2) € R and for all s,s" with s R s' it holds that: L(s) =
L(s') and if s % pu then there exists a transition s' % p' with u Cr p'. We write
M1 3 Ms iff there exists a simulation R over My X Ms such that s1 R sa.

If My 2 Mo and My 3 My, we say that they are simulation equivalent, and
write My ~ M.

Partitions. A partition of S is a set X' which consists of pairwise disjoint subsets
of S such that S = Upcx B. The elements of a partition are also referred to as
blocks. A partition X' is finer than X if for each block Q € X there exists a
unique block Q' € X’ such that Q C Q’. If X is finer than X’, the parent block
of B € X with respect to X, denoted by Par s (B), is defined as the unique block
B’ € ¥’ with B C B'. For s € S, let [s]x denote the unique block in X' containing
state s. If X' is clear from the context, we write simply [s]. For a distribution
p € Dist(S) and a partition X' over S, we define the induced lifted distribution
with respect to X, denoted as lift s;(u) € Dist(X), by: lift 5(u)(B) = > c g 1(5).

For a given PA M = (S, sg, Act, P, L), a partition X' over S is called consistent
with respect to the labelling function L, if for all B € X and for all s,s" € B it
holds that L(s) = L(s’). Intuitively, if X' is consistent with respect to L, states
in the same block have same labels. Recall s < s’ implies that L(s) = L(s’). In
this paper we consider only partitions which are consistent with respect to L.
For consistent partition X and B € X, we write L(B) to denote the label of B.

The partition X over S induces an equivalence relation =y defined by: s =5
s'iff [s] = [¢']. If R is an equivalence relation, we let S/g denote the set of
equivalence classes, which can also be considered a partition of S. Let Ig =
{(s,s) | s € S} denotes the identity relation. For an arbitrary relation R with
Is C R, let R* denote the transitive closure of it, which is a preorder. It induces
an equivalence relation =g« defined by: s =g« & if sR*s’ and s'R*s. As a
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shorthand notation, we let S/~ denote the corresponding set of equivalence
classes S/=,..

The Quotient Automata. Let M = (S, sg, Act,P, L) be a PA, and consider
the partition X over S. For notational convenience, we use u € Dist(S) to denote
a distribution over S, and 75, € Dist(X) to denote a lifted distribution over the
partition X. If the partition Y is clear from the context, we use 7 instead of 7x.
For a set B C S, we write

— B % 7y if there exists s € B and s = p with 75 = lift 5-(1),
— B»5 wy if for all s € B there exists s p with s = lift = (u).

The 3-quotient automaton IM /5 is the tuple (X, By, Act,P3, L") where By
is the unique block containing the initial state sg, and the transition matrix is
defined by: P53 = {(B,a,7x) | B € ¥ A B % 75}, and the labelling function
is defined by L'(B) = L(B). Note that L'(B) is well defined because we have
assumed that the partition X' is consistent with respect to L. If no confusion
arises, we use B both as a state in the J-quotient automaton, and as a set of
states in M.

We introduce some notations for the 3-quotient automaton. For s € X and
a € Act(s), let Stepss o(s) = {m € Dist(X) | s S p A7 = lifto(p)}, and for
B € X let Stepss o(B) = UsepStepss o($).

The V-quotient automaton VM /5 is defined similarly: it is the tuple (X, By,
Act, Py, L") where the transition matrix is defined by: Py = {(B,«a,7x) | B €

SABS '}, and By, L’ as defined for the 3-quotient automaton.

3 The Minimal Quotient Automaton

For a given PA M = (5, sg, Act, P, L), in this section we show that there exists
a PA M’ which is simulation equivalent with M, and M’ is the smallest in size.

In the non-probabilistic setting [3], the notion of little brothers is introduced
which states that state s; is a little brother of sy if they have a common prede-
cessor sz, and sg simulates s; but not the other way around. We lift this notion
to PAs:

Definition 5. Let s € S be a state, and let o € Act(s) be an enabled action out
of s. For two distributions p, i’ € Stepsa(s), we say that p is a little brother of
' if it holds that p C< p' and p' L< pu.

By eliminating the little brothers from each state s € S in a PA we get a
simulation equivalent PA:

Lemma 1. Let M be a PA, and let M’ be the PA obtained from M by elimi-
nating little brothers. Then, M ~ M’.

Recall that the preorder = on S induces an equivalence relation ~. The follow-
ing lemma states that M and its V-quotient automaton with respect to ~ are
simulation equivalent.
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Lemma 2. Given a PA M, the equivalence relation ~ over M induces a par-
tition of S defined by: ¥ = {{s' | s € SAs~s'}|se S}t Then, VM/5 and
M are simulation equivalent: VM /5 ~ M.

Note that the V-quotient automaton can be obtained from the 3-quotient automata
by eliminating little brothers in it. Combining Lemma[land the above lemma, we
have that M, its V-quotient automaton, and its 3-quotient automaton are pairwise
simulation equivalent. For the PA M = (S, so, Act, P, L), we let n = |S| denote
the number of the states, and m = > .o > c act(s) 2opesteps. (s) [H] denote the
size of the transitions. The following lemma states that the V-quotient automaton
of M is the smallest one among those PAs which are simulation equivalent to M.

Lemma 3. Let M = (S, sg, Act, P, L) be a PA in which all states are reachable
from sg. Let M" = (S’, s(, Act, P’ L") be any other PA which is simulation equiv-
alent with M. Let X denote the partition of S induced by ~. Moreover, let mx, nx
be the size of transitions and states of VM /s, m',n’ be the size of transitions and
states of M’ respectively. Then, it holds that ny, < n’ andmy <m/.

In the above lemma, we require that all states in the PA are reachable from the ini-
tial state. Note this is not a real restriction. As in the non-probabilistic setting [3],
by pruning the unreachable states of M we get a PA which is simulation equivalent
to M. Thus, to construct the minimal quotient automaton for M, we can elimi-
nate the unreachable states, compute the simulation preorder, and then delete the
little brothers. The dominating part is to decide the simulation preorder.

4 Simulation Characterised by Partition Pairs

In the non-probabilistic setting, the simulation preorder for unlabelled graph is
characterised by partition pairs [36] which consist of a partition of the state
space and a binary relation over the partition. Then, a partition refinement ap-
proach is introduced based on partition pairs. In this section, we adapt the notion
of partition pairs to PAs, and then we show that we can characterise simulation
relations for PAs by partition pairs. This is the basis for the partition refinement
approach which will be introduced in the next section. In the remainder of this
section, we fix a PA M = (S, sg, Act, P, L).

We say that the pair (B, B’) € X x X respects the labelling function L if
L(B) = L(B’). Now we give the definition of partition pairs.

Definition 6 (Partition Pair). A partition pair over S is a pair (X, I') where
) is a partition of S, and I' C X x X is a reflexive relation over X satisfying
the condition: all pair (B, B") € I' respects the labelling function L.

We also call I the partition relation. Let 7" denote the set of all partition pairs
over S. For (¥, I') € T and B, B’ € X, we also write also BI'B" if (B,B’) € I'.
A partition pair induces a binary relation on S as follows:

Definition 7 (Induced Relation). The partition pair (X,I") € T induces the
binary relation on S by: Zx. = {(s,s') | [s]'[s']}.
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Let (X, 1), (X", I") € Y. If ¥ if finer than X', and Z(x rCZ (s, vy holds, we
say that I" is finer than I''. Now we introduce a partial order on 1

Definition 8 (Partial Order). We define an order x C T x T as follows:
(X, 1) x (X', 1) if X is finer than X’ and I is finer than I".

If (X, 1) x (X', ") we say (X, I') is finer than (X, I'"). Obviously the defined re-
lation is a partial order: x satisfies the reflexivity, antisymmetry and transitivity
conditions. Now we introduce the stability of partition pairs.

Definition 9 (Stable Partition Pairs). 4 partition pair (¥, I') € T is stable
if for each BI'B' and B = 7, there exists B’ = 7' such that 7s Cp ls.

Let T, denote the set of all stable partition pairs, and let 775, € Y5, be the set
of stable partition pairs in which the partition relation is a preorder. We show

that a stable partition pair induces a simulation relation.

Theorem 1 (Induced Simulation Relation). Let (¥, I") € T, be a stable
partition pair. Then, the induced relation Z s ry is a simulation relation.

In the following we give the definition that a set of states is stable with respect
to a partition pair:

Definition 10. Let (¥,I) be a partition pair and let B € X. Assume that
Q C B. We say that Q is stable with respect to (X, I if Q = wx implies that

«
there exists Q — m, such that s Cp 7.

Assume that X’ is a refinement of Y. Then, we say that X’ is stable with respect
to (X, I) if each B € X' is stable with respect to (X, I).

Simulations € Stable Partition Pairs. We define a function which estab-
lishes connections between simulation relations and stable partition pairs. Recall
that Is = {(s,s) | s € S} denotes the identity relation over S. We consider the
set Z:={R C S x S| Is C R} of relations containing the identity relation. We
define the function H : & — 1 by: H(R) = (S/r~,r) where I'g is defined by:
BI'grB' if sR*s' for all s € B and s’ € B’. For R € =, H(R) is a partition pair
where the partition is induced by =g+, and BI'gr B’ if states in B’ are reachable
from states in B in the transitive closure R*. If R is a simulation relation, sR*s’
implies that L(s) = L(s") which implies that I'g respects the labelling function.
The following lemma states that for a preorder and a simulation relation, the

image of it is an element of 15,

Lemma 4. Assume R € = is a preorder and a simulation relation. Then,
H(R) €T

sta -

Let < C = be the set consisting of R € = which is a preorder and a simulation
relation. We show that the function obtained from H with restricted domain 5=

and co-domain 175,,, is bijective.

Lemma 5. Let the function h : 5= — Y3, defined by: h(R) = H(R) if R € 5%.
Then, h is bijective.
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Recall that = is a preorder, and is the largest simulation relation. We use
(X°,I'°) to denote the partition pair ~(Z). Thus, 3 can be obtained via com-
puting (X°, I'°). In the following lemma we show that (X°, I'°) is the unique,
maximal element of 15, :

Theorem 2 (Unique, Maximal Element). The partition pair (X°,I°) is
the unique, maximal element of 13,

Thus, to determine the simulation preorder =3, it is sufficient to compute the par-
tition pair (X°, I'°). As in [6] we refer to it as the generalised coarsest partition
problem (GCPP).

5 Solving the GCPP

Let M = (S,s0,Act,P,L) be a PA. In this section we propose an algorithm
for solving the GCPP, i.e., computing the partition pair (¥'°, I'*) based on the
partition refinement strategy. The idea is that we start with the partition pair
(X0, Ip) which is coarser than (X°, I'®), and refine it with respect to the stability
conditions. The Algorithm SIMQUO is presented in Algorithm [Il As an initial
partition pair we take Xy = {{s’ € S| L(s) = L(s') N Act(s) = Act(s')} | s € S}.
Intuitively, states with the same set of labels and enabled actions are put in
the the same initial block. By construction Y is consistent with respect to L.
The initial partition relation is defined by: I'y = {(B,B’) € Xy x Xy | L(B) =
L(B’") N Act(B) C Act(B')}. Obviously, Iy respects the labelling function L. It
is easy to see that for partition pair (X;, I';) which is finer than (X, Ip), X is
consistent with respect to L, and I respects L as well.

In lines BHIH of the algorithm, a finite sequence of partition pairs (X;, I';) with
1=0,1,...,1is generated. We will show that it satisfies the following properties:

— I is acyclic for : = 0,1,...,1,

— (X, I}) is coarser than (X° ') for i = 0,1,...,1,

- <2i+17Fi+1> is finer than <Eza[|z> for i = O, 17 [N .7l — 1,
— (X, ) = (X°, T°).

The core task consists of how to refine the partition pair (X, I';) satisfying the
above conditions.

In the non-probabilistic setting, a space-efficient algorithm [6] is proposed for
a directed graph G = (V, E). A refinement operatoill] was used to generate the
partition pair (X; 1, I;41) from (X;, ;) satisfying all of the properties mentioned
above. The refinement of blocks works as follows. For each block B € X; let
E~Y(B)={s eV |3s € B.(s,s') € E} denote the set of predecessors of states
in B. Then, using B’ as a splitter, B is split into two part: B; = B NE~(B’) and
Bs = B\ B;. The predecessor based method for splitting blocks, however, can

! The refinement operator must guarantee that the refined partition relation ;1 must
be acyclic. Recently, van Glabbeek and Ploeger [14] have shown that the operator
in [6] was flawed, and provided a non-trivial fix for the operator.
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Algorithm 1. SIMQUO(M): Quotient algorithm to decide (X°, I'®) over M

1: 20

2: Yo={{s" €S| L(s) = L(s") A Act(s) = Act(s")} | s € S}

3: Iy« {(B,B') € Xy x Xy | L(B) = L(B") A Act(B) C Act(B’)}

4: repeat

5 Xig1— 0, Iigqr < 0

for all B e Y; do

Yit1 — Y1 U SF’LIT(B7 Ez)

Tiyn — {(@Q,Q) € Zis1 x Yiy1 | Pars,(Q) # Pars,(Q') A (Pars,(Q),
Pars,(Q") € I or Pars,(Q) = Pars,(Q’) A Reach(Q,Q’)}
9:  Construct the 3-quotient automaton IM/x

i1

10: repeat

11: for all (Q,Q’) € I';4+1 do

12: if not (VQ > my,,, = 3Q >k, Ams,, Cr,, 7%, ) then
13: L — L \ {(Q,Q')}

14:  until ;1 does not change

15: 1+ +

16: until <Ei+1,FZ'+1> = <EZ,FZ>

not be applied to the probabilistic setting. The reason is that in PAs states have
successor distributions instead of a single successor state. Moreover, the checking
of the correspondence between distributions used for simulation involves weight
functions which require additional attention. In the following we first propose a
graph based analysis to refine the partition (lines BHT). Then, we discuss how to
refine the partition relation (lines BHIH]).

Refinement of the Partition. Consider the partition pair (X, I;) € T with
(X°, ') x (X, I;). The refinement operator SPLIT consists of finding a finer par-
tition X; 41 which is stable with respect to (X;, I'*). For B € X;, SPLIT(B, X;) =
{Q1,...,Qy} is a partition over B such that for all Q; it should hold: if Q; = 7,

there exists @Q; 2 71'/21, such that 7y, Cr» 71'/21, (cf. Definition [I0)). To construct
this partition, we start with the following partition of B: Vg = {{s’ € S | Va €
Act(s). Stepsy, ,(s) = Stepsy, ,(s')} | s € S}. Note that Vg is finer than the
partition for B we are searching for. We construct now a graph Gg = (Vg, Ep)
for the block B, in which for Q,Q’ € Vg, we add the edge (Q, Q) € Ep if the
following condition holds:

Vs, € Stepss, o(Q). 3l € Stepsy, o(Q). mx, Cr, %, M

Note the condition 7y, Cr, 7% could be checked via maximum flow compu-
tations [I]. We obtain the partition SPLIT(B,Y;) by constructing the maz-
imal strongly connected components (SCCs) of Gp. Let SpLIT(B,Y;) denote
the partition for B obtained by contracting the SCCs of Gp: SPLIT(B, X;) =
{UxecX | C is an SCC of Gp}. Moreover, as in Algorithm SIMQUO, let X; ;1 =
Upex, SPLIT(B, 2;). The following lemma shows that the obtained partition
Yit1 is coarser than X°.
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Lemma 6. For all i >0, X; 11 is finer than X;, and X° is finer than X;.

The following lemma shows that, for acyclic I;, the partition X4 is stable with
respect to (X, I'F):

Lemma 7. Assume that I'; is a acyclic. For alli > 0, X;1 is stable with respect
to (X, 7).

Refinement of the Partition Relations. Similar to the refinement of parti-
tions, at the end of iteration i, we want to get the partition relation I, which
is finer than I7, but still coarser than I'°. At line B the partition relation I
is initialised such that it contains (Q, Q) if

— either @, Q" have different parent blocks B # B’ with B = Pary,(Q) and
B’ = Pary,(Q') such that (B, B’) € I; holds,

— or they have same parent block B and the SCC for Q' can be reached by the
SCC for @ in Gp. This constraint is abbreviated by Reach(Q, Q") (line ).

To get a coarser partition relation, we want to remove from ;41 those pairs
(B, B') satistying the condition: no state in B can be simulated by any state in
B’. Conversely, we want to keep those pairs (B, B’) satisfying the condition that
there exists at least a state in B which can be simulated by an arbitrary state in
B’. This condition, however, depends on the concrete transitions of state s € B.
To be able to work completely on the quotient automaton IM /5, |, we consider
the weakness of the above condition:

i1

@ ;o g ’
VB — TEip1 = iB" — US> AT B, T (2)

Again, the condition 7x,,, Cr,, 7%, could be checked via maximum flow
computations [I]. Note the similarity to Condition[I} we consider only transitions

of the form B> 7y, from B (line [2 in SIMQUO).

i+1
Lemma 8. For all i >0, ;1 is finer than I, and I'° is finer than I;.

Correctness. In this section we show the correctness of the algorithm SiMQuo.
By Lemmata [ and [§ we see that the partition pair (¥;1+1, [;+1) obtained in the
algorithm is finer than (X, I53), and coarser than (3¢, I'®). The following lemma
shows that the partition relation I; is acyclic:

Lemma 9 (Acyclicity). For alli > 0, the partition relation I is acyclic.

Proof. We prove by induction on ¢. In the first iteration the statement holds:
since the inclusion relation C is transitive, no cycles except self loop exist in
Iy. Now consider iteration ¢. By induction hypothesis assume that the partition
relation I'; at the beginning of iteration i is acyclic. We shall show that 514
is acyclic until the end of i-te iteration. Consider the initial value of I, at
line 8 at iteration i. Note at this position we may still assume that I’; is acyclic
by induction hypothesis. This implies that during the initialisation of ;11 only
sub-blocks from some same parent block B € X; can form cycles of length
n > 1. Assume such a cycle is formed from B: Q11341Q20541 ..., Qnli41Q1 - ..
with n > 1. Since Q11;4+1Q2 implies that Reach(Q1,Q2) and the reachability is
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transitive, we get that @1, ..., Q, must belong to the same SCC in Gp which is
a contradiction. Thus, I541 is acyclic after initialisation. Since afterwards pairs
will only be removed from I, it remains acyclic.

Theorem 3 (Correctness). Assume that SIMQUO terminates at iteration ,
then, <EO,FO> = <2la[‘l>-

Proof. By termination we have that (X, I7) = (X431, [}4+1). By Lemma [ the
partition relation I, is acyclic. Applying Lemma [l we have that X, is stable
with respect to (X, I}*) which implies that X is stable with respect to (X, I}").
We prove first that the partition pair (X, I}*) is stable. Let (B, B’) € I}, and
B % m with m; € Dist(%)). Since X, is stable with respect to (X, I}*), there
must exist 7] € Dist(X)) with B = 7 such that m; Crs 7). Since (B, B') € I},
there is a sequence Bi,...,B, such that B1I;BsI. ..B,, with B = B and
B, = B’ and n > 2. X} is stable with respect to (X}, I}*) implies that the
block B; is stable with respect to (X, I;}*) for all ¢ = 1,...,n. Moreover, pairs
in I satisfy Condition 2l Thus there exists distributions m;, 7, € Dist(X)) for
i =1,...,nand such that it holds B; = 7;, B; Nl w}, and: m Crr m Ty m Crr
™ Cn ... Ty Cry m).. Thus we have that m Cry 7/, which implies that the
partition pair (X, I}*) is stable. By Lemma 2 we have that (X, I7*) x (X°, I'°).
By Lemmata[@land[§we have that (X°, I'®)x (X, I7). Hence, (X°, I'°) = (X, I}).

Complexity. The following lemma shows that the number of iterations of the
algorithm SIMQUO is linear in | X°|:

Lemma 10. Assume that SIMQUO terminates at iteration I, then, I € O(|X°]).

For the complexity analysis, we introduce some notations. As before, given
M = (8,50, Act,P, L), we let n,m denote the number of states and transi-
tions respectively. We let Y. denote the partition induced by the bisimulation
relation ~, and let n. and m. denote the number of states and transitions of
the El—quotientﬁ automaton IM /5 . Let n, and m, denote the number of states
and transitions of the quotient automaton IM/ ..

Theorem 4 (Complexity). Given a PA M, the algorithm SIMQUO has time
4 2

complezity O(mne + m2ni +m2n?2), and space complexity O(n2 + nlogns).

The space complexity can be considered optimal: the O(n?2) part is needed to
save the partition relations, and the O(nlogn,) part is needed to save to which
simulation equivalence class a state belongs. The worst case time complexity in
each iteration is in the order of O(m+m2n? +m?2n?). Together with Lemma [IT]
we get a rather excessive time complexity. We consider an iteration i of the
algorithm SIMQUO. In the inside repeat loop of this iteration, the weight function
condition 7x,,, Cr,., 7r’21+1 (see Condition l) can be checked via solving a

2 In fact, the 3-quotient automaton and the V-quotient automaton with respect to the
bisimulation relation ~ coincide.
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maximum flow problem over a network constructed out of 7x,, , 7T/Ei+1 and
I;+1. Observe that the networks on which the maximum flows are calculated
in the inside repeat loop are very similar. Similar to algorithms in PAs [I6], we
could apply parametric maximum flow techniques (PMFs) to improve the time
complexity: instead of recompute the maximum we could reuse the maximum
computed in the last iteration. The penalty is that more memory is needed due
to the need to store the networks and flows of it across iterations.

Theorem 5 (Complexity with PMFs). Using PMFs, the algorithm SIMQUO

has time complexity O(mne +m?2n2), and space complexity is O(m?2 +nlogn.).

6 Experimental Results

In this section, we evaluate our new partition refinement based algorithm. De-
pending whether PMF's are used in the algorithm, we have implemented both the
space-efficient and time-efficient variants of the partition refinement based algo-
rithm. We compare the results to previous algorithms in [IJT6]. All experiments
were run on a Linux machine with an AMD Athlon(tm) XP 2600+ processor at
2 GHz equipped with 2GB of RAM.

Dining Cryptographers. Consider the dining cryptographer models taken
from the PRISM web-site. In [2], various optimisations are proposed for com-
puting probabilistic simulation. We take the most space efficient configuration
(0000) and refer to it as the Original algorithm in the sequel. Note that other
configurations use more memory, and are at most faster by a factor of two, thus
are not considered here. We compare it to our new partition refinement based
algorithm: the configuration QuoPMF for the algorithm using PMFs and the
configuration Quotient for the algorithm without using PMFs.

In Table [ experiments are shown: in the upper part only one state label
is considered, in the middle part uniform distribution of two different labels is
considered, in the lower part we have uniform distribution of three different la-
bels. For 6 cryptographers and one or two labels, the configuration Original runs
out of memory; this is denoted by —. The number of the simulation equivalence
classes is given in row #Dblocks, and the number of iterations of the refinement
loops for the configurations Quotient and QuoPMF is given in row #refinement.

As expected, in the configuration Original the memory is indeed the bottleneck,
while the partition refinement based algorithm uses significant less memory. More
surprisingly is that partition refinement based algorithm often requires orders of
magnitude less time, especially for small number of labels. The reason is that for
this case study the simulation quotient automaton has much less states than the
original automaton. Moreover, in the quotient automaton, most of the transitions
fall into the same lifted distributions, thus making the maximum flow computa-
tion cheaper. Another observation is that the number of different labels affect the
performance of all of the configurations, but in a different way. For the configura-
tion Original more labels indicate that the initial relation is smaller thus always
less time and memory are needed. For both Quotient and QuoPMF more labels
give a finer initial partition, which means also a large quotient automaton during
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Table 1. Time and memory used for Dining Cryptographers

Cryptographers 3 4 5 6 3 4 5 6

States 381 2166 11851 63064 381 2166 11851 63064

Transitions 780 5725 38778 246827 780 5725 38778 246827
Time (s) Memory (MB)

Original 0.52 20.36 987.40 - 0.95 27.41 763.09 -

Quotient 0.03 0.76  19.52 533.40 0.02 0.11 0.71 4.35

QuoPMF 0.03 0.73 18.93 528.00 0.02 0.14 0.89 5.25

#blocks 10 24 54 116
F#refinement 3 3 3 3
Original 0.13  4.67 266.04 - 021 4.68 104.46

Quotient 0.05  0.93 18.53 394.80 0.02 0.12 0.93 7.07
QuoPMF 0.05 0.96 19.46 420.60 0.02 0.21 2.42 26.02
#blocks 63 247 955 3377
F#refinement 4 4 4 4
Original 0.07 2.42 150.74 13649.30 0.14 2.69 58.92 1414.57
Quotient 0.06 2.31 60.01 1185.16 0.02 0.18 2.32 22.67
QuoPMF 0.07 3.04 81.14 1536.78 0.03 0.41 10.75 124.53
#blocks 96 554 2597 8766
F#refinement 3 4 4 5

the refinement loops. For this example the running time for one or two labels are
almost the same, whereas with three labels more time is needed.

It is notable that the QuoPMF configuration does not perform well at all,
even though it has better theoretical complexity in time. This observation is the
same as we have observed in [2]: the corner cases (number of iterations in the
inside repeat-loop is bounded by n2) which blow up the worst case complexity
are rare in practice.

Self Stabilising Algorithm. We now consider the self stabilising algorithm
due to Israeli and Jalfon, also taken from the PRISM web-site. As the previous
case study, in the upper, middle and lower part of the table we have one, two
and three different uniformly distributed labels respectively. For 13 processes
and one label, the configuration QuoPMF runs out of memory which is denoted
by —. For this case study, we observe that the simulation quotient automaton
has almost the same number of states as the original one. Thus, Original is the
fastest configuration. Another observation is that the configuration Quotient
needs almost the same amount of memory for three different number of labels.
Recall that the space complexity of the configuration Quotient is O(n2+n logns).
In this case study the number of blocks differs only slightly for different number of
labels, thus almost the same amount of memory is needed for this configuration.

Random Models. Most of the real models have a sparse structure: the number
of successor distributions and the size of each distribution are small. Now we con-
sider randomly generated PAs in which we can also observe how the algorithms
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Table 2. Time and memory used for the self stabilising algorithm

Processes 10 11 12 13 10 11 12 13

States 1023 2047 4095 8191 1023 2047 4095 8191

Transitions 8960 19712 43008 93184 8960 19712 43008 93184
Time (s) Memory (MB)

Original 11.35 53.66 259.18 1095.96 5.88  20.10 91.26 362.11

Quotient 20.25 138.60 470.84 2440.83  0.36 1.24 4.50 17.04

QuoPMF 28.17 177.54 655.09 — 9340 375.47 1747.35 -
#blocks 974 1987 4024 8107
#refinement 6 6 7 7

Original  1.73 8.68 37.63 199.31 0.92 3.34 12.42 47.25
Quotient 10.60 52.60 234.96 1248.30 0.38 1.29 4.63 17.35
QuoPMF 14.57 73.06 325.82 1704.87 17.93 80.14 338.45 1379.45

#blocks 1019 2042 4090 8185

#refinement 5 6 6 7

Original  0.61 2.47  13.56 66.62 0.47 1.42 5.28 18.38
Quotient 10.36  39.02 260.09 900.99 0.38 1.29 4.62 17.35
QuoPMF 14.29 54.34 360.63 1235.27 2.24 1197 28.93  142.68

#blocks 1015 2042 4085 8185

#refinement 6 5 8 6

Table 3. Random models with various maximal distribution size D

D 5 7 9 11 13 15 17 19
Transitions 1927 2717 3121 3818 4040 4711 5704 6389
Time (s)

Original 0.50 1.10 1.80 3.19 3.76 6.04 10.26 14.12
Quotient 0.58 0.56 0.56 0.60 0.63 0.64 0.72 0.78
QuoPMF 0.54 0.54 0.52 0.59 0.60 0.60 0.70 0.74

#refinement 4 3 3 3 3 3 3 3
Memory (kB)

Original 138.23 137.58 108.18 132.85 115.10 131.88 145.19 144.30
Quotient  37.89 47.69 5291 61.44 64.68 7258 84.99 93.22
QuoPMF 263.77 179.51 128.60 144.11 107.94 83.46 110.10 106.02

behave for dense models. We consider random model with 200 states, in which
there are two actions |Act| = 2, the size of each a-successor distribution in the
model is uniform distributed between {2,..., D}, and the number of successor
distributions for each state is uniform distributed between {1,..., MS}. Ounly
one state label is considered.

In Table Bl we set MS = 2 and consider various values of D. Because of the
large distribution size, in all of these random models the simulation quotient
automaton is the same as the corresponding original automaton, thus there is
no reduction at all. Even in this extreme case, the partition refinement based
methods reduce the memory by approximately 30%. Because of the large size of
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Table 4. Random models with various maximal number of successor distributions MS

MS 10 15 20 25 30 35 40 45
Transitions 3732 5283 7432 9250 11217 12659 13800 16170
Time (s)

Original 2.62 6.40 25.49 26.18 29.92 18.63 23.35 13.30
Quotient 1.15 2.97 6.82 4.88 4.44 2.83 4.67 2.45
QuoPMF 1.26 3.56 7.68 4.98 4.51 2.82 4.74 2.52

#blocks 200 200 200 13 22 9 11 5

#refinement 4 5 9 6 4 3 4 2
Memory (kB)

Original ~ 348.79 437.73 501.16 567.91 575.46 628.32 633.17 670.90
Quotient 61.07 81.00 108.54 121.71 147.15 165.33 180.14 210.29
QuoPMF 1063.00 1663.16 2831.99 149.80 184.65 171.88 190.35 211.19

distributions, the corresponding maximum flow computations become more ex-
pensive for the configuration Original. In the partition refinement based approach
the maximum flow computations are carried in the quotient automaton in each
iteration, which saves considerable time. Thus the partition refinement based
methods are faster, and scale much better than the configuration Original. Com-
paring with the configuration Quotient, the parametric maximum flow based
method (configuration QuoPMF) uses more memory, and has only negligible
time advantages. In Table [l we fix the maximal size of distribution to D = 5,
and consider various values of MS. With the increase of MS, it is more prob-
able that states are simulation equivalent, which means also that the num-
ber of blocks tends to be smaller for large MS. Also for this kind of dense
models, we observe that significant time and space advantages are achieved.
Again, the PMF-based method does not perform better in time, and uses more
memory.

7 Conclusions

In this paper we proposed a partition refinement based algorithm for deciding
simulation preorders. The space complexity of our algorithm is as good as the
best one for the non-probabilistic setting, which is a special case of this setting.
We discussed how to reduce the time complexity further by exploiting parametric
maximum flow algorithms. Our implementation of the space-efficient and time-
efficient variants of the algorithm has given experimental evidence, comparing
to the original algorithm, not only the space-efficiency is improved drastically.
Often the computation time is decreased by orders of magnitude.

Acknowledgements. Thanks to Jonathan Bogdoll for helping us with the imple-
mentation, to Holger Hermanns, Joost-Pieter Katoen, and Frits W. Vaandrager
for providing many valuable pointers to the literature.
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Abstract. Abstraction is a key technique to combat the state space
explosion problem in model checking probabilistic systems. In this pa-
per we present new ways to abstract Discrete Time Markov Chains
(DTMCs), Markov Decision Processes (MDPs), and Continuous Time
Markov Chains (CTMCs). The main advantage of our abstractions is
that they result in abstract models that are purely probabilistic, which
maybe more amenable to automatic analysis than models with both non-
deterministic and probabilistic steps that typically arise from previously
known abstraction techniques. A key technical tool, developed in this
paper, is the construction of least upper bounds for any collection of
probability measures. This upper bound construction may be of inde-
pendent interest that could be useful in the abstract interpretation and
static analysis of probabilistic programs.

1 Introduction

Abstraction is an important technique to combat state space explosion, wherein
a smaller, abstract model that conservatively approximates the behaviors of the
original (concrete) system is verified/model checked. Typically abstractions are
constructed on the basis of an equivalence relation (of finite index) on the set of
(concrete) states of the system. The abstract model has as states the equivalence
classes (i.e., it collapses all equivalent states into one), and each abstract state
has transitions corresponding to the transitions of each of the concrete states in
the equivalence class. Thus, the abstract model has both nondeterministic and
(if the concrete system is probabilistic) probabilistic behavior.

In this paper, we present new methods to abstract probabilistic systems mod-
eled by Discrete Time Markov Chains (DTMC), Markov Decision Processes
(MDP), and Continuous Time Markov Chains (CTMC). The main feature of
our constructions is that the resulting abstract models are purely probabilistic in
that they do not have any nondeterministic choices. Since analyzing models that
have both nondeterministic and probabilistic behavior is more challenging than
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analyzing models that are purely probabilistic, we believe that this may make our
abstractions more amenable to automated analysis; the comparative tractability
of model-checking systems without non-determinism is further detailed later in
this section.

Starting from the work of Saheb-Djahromi [I9], and further developed by
Jones [I1]], orders on measures on special spaces (Borel sets generated by Scott
open sets of a cpo) have been used in defining the semantics of probabilistic pro-
grams. Ordering between probability measures also play a central role in defining
the notion of simulation for probabilistic systems. For a probabilistic model, a
transition can be viewed as specifying a probability measure on successor states.
One transition then simulates another if the probability measures they specify
are related by the ordering on measures. In this manner, simulation and bisimu-
lation relations were first defined for DTMCs and MDPs [12], and subsequently
extended to CTMCs [3]. Therefore, in all these settings, a set of transitions is
abstracted by a transition if it is an upper bound for the probability measures
specified by the set of transitions being abstracted.

The key technical tool that we develop in this paper is a new construction
of least upper bounds for arbitrary sets of probability measures. We show that
in general, measures (even over simple finite spaces) do not have least upper
bounds. We therefore look for a class of measurable spaces for which the existence
of least upper bounds is guaranteed for arbitrary sets of measures. Since the
ordering relation on measures is induced from the underlying partial order on
the space over which the measures are considered, we identify conditions on
the underlying partial order that are sufficient to prove the existence of least
upper bounds — intuitively, these conditions correspond to requiring the Hasse
diagram of the partial order to have a “tree-like” structure. Furthermore, we
show that these conditions provide an exact characterization of the measurable
spaces of our interest — for any partial order not satisfying these conditions,
we can construct two measures that do not have a least upper bound. Finally,
for this class of tree-like partial orders, we provide a natural construction that
is proven to yield a well-defined measure that is a least upper bound.

These upper bound constructions are used to define abstractions as follows.
As before, the abstract model is defined using an equivalence relation on the
concrete states. The abstract states form a tree-like partial order with the min-
imal elements consisting of the equivalence classes of the given relation. The
transition out of an abstract state is constructed as the least upper bound of
the transitions from each of the concrete states it “abstracts”. Since each upper
bound is a single measure yielding a single outgoing transition, the resulting ab-
stract model does not have any nondeterminism. This intuitive idea is presented
and proved formally in the context of DTMCs, MDPs and CTMCs.

A few salient features of our abstract models bear highlighting. First, the fact
that least upper bounds are used in the construction implies that for a particular
equivalence relation on concrete states and partial order on the abstract states,
the abstract model constructed is finer than (i.e., can be simulated by) any purely
probabilistic models that can serve as an abstraction. Thus, for verification
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purposes, our model is the most precise purely probabilistic abstraction on a cho-
sen state space. Second, the set of abstract states is not completely determined
by the equivalence classes of the relation on concrete states; there is freedom in
the choice of states that are above the equivalence classes in the partial order.
However, for any such choice that respects the “tree-like” requirement on the un-
derlying partial order, the resulting model will be exponentially smaller than the
existing proposals of [8I13]. Furthermore, we show that there are instances where
we can get more precise results than the abstraction schemes of [8I13] while using
significantly fewer states (see Example]). Third, the abstract models we construct
are purely probabilistic which makes model checking easier. Additionally, these
abstractions can potentially be verified using statistical techniques which do not
work when there is nondeterminism [24J23|2T]. Finally, CTMC models with non-
determinism, called CTMDP, are known to be difficult to analyze [2]. Specifically,
the measure of time-bounded reachability can only be computed approximately
through an iterative process; therefore, there is only an approximate algorithm
for model-checking CTMDPs against CSL. On the other hand, there is a theoret-
ically exact solution to the corresponding model-checking problem for CTMCs by
reduction to the first order theory of reals [IJ.

Related Work. Abstractions have been extensively studied in the context of
probabilistic systems. General issues and definitions of good abstractions are
presented in [T2J9TOITT]. Specific proposals for families of abstract models in-
clude Markov Decision Processes [T12I5/6], systems with interval ranges for tran-
sition probabilities [I2IT7IRIT3], abstract interpretations [16], 2-player stochastic
games [I4], and expectation transformers [I5]. Recently, theorem-prover based
algorithms for constructing abstractions of probabilistic systems based on predi-
cates have been presented [22]. All the above proposals construct models that ex-
hibit both nondeterministic and probabilistic behavior. The abstraction method
presented in this paper construct purely probabilistic models.

2 Least Upper Bounds for Probability Measures

This section presents our construction of least upper bounds for probability mea-
sures. Section 2] recalls the relevant definitions and results from measure the-
ory. Section presents the ordering relation on measures. Finally, Section
presents the least upper bound construction on measures. Due to space consid-
erations, many of the proofs are deferred to [4] for the interested reader.

2.1 Measures

A measurable space (X,Y) is a set X together with a family of subsets,
XY, of X, called a o-field or o-algebra, that contains () and is closed under
complementation and countable union. The members of a o-field are called the
measurable subsets of X. Examples of o-fields are {), X} and P(X) (the
powerset of X). We will sometimes abuse notation and refer to the measurable
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space (X, X) by X or by X, when the o-field or set, is clear from the context.
The intersection of an arbitrary collection of o-fields on a set X is again a o-field,
and so given any B C P(X) there is a least o-field containing B, which is called
the o-field generated by B.

A positive measure p on a measurable space (X, Y) is a function from ¥
to [0, 0] such that p is countably additive, i.e., if {A;|i € I} is a countable
family of pairwise disjoint measurable sets then p(lU;c; A4i) = > ;e 1(4i). In
particular, if I = (), we have u(f) = 0. A measurable space equipped with a
measure is called a measure space. The total weight of a measure p on
measurable space X is u(X). A probability measure is a positive measure
of total weight 1. We denote the collection of all probability measures on X by
M1 (X).

2.2 A Partial Order on Measures

In order to define an ordering on probability measures we need to consider mea-
surable spaces that are equipped with an ordering relation. An ordered measur-
able space (X, X, C) is a set X equipped with a o-field X and a preorder on X [
C such that (X, X)) is a measurable space. A (probability) measure on (X, X, C)
is a (probability) measure on (X, X'). Finally, recall that a set U C X is upward
closed if for every x € U and y € X with  C y we have that y € U. The order-
ing relation on the underlying set is lifted to an ordering relation on probability
measures as follows.

Definition 1. Let X = (X, X, C) be an ordered measurable space. For any prob-
ability measures p,v on X, define p < v iff for every upward closed set U € X,
w(U) < v(U).

Our definition of the ordering relation is formulated so as to be applicable to
any general measurable space. For probability distributions over finite spaces,
it is equivalent to a definition of lifting of preorders to probability measures
using weight functions as considered in [I2] for defining simulations. Indeed,
Definition [I] can be seen to be identical to the presentation of the simulation
relation in [7J20] where this equivalence has been observed as well.

Recall that a set D C X is downward closed if for every y € D and z € X
with x C y we have that © € D. The ordering relation on probability measures
can be dually cast in terms of downward closed sets which is useful in the proofs
of our construction.

Proposition 1. Let X = (X, X, C) be an ordered measurable space. For any
probability measures p,v on X, we have that p < v iff for every downward
closed set D € X, (D) > v(D).

In general, Definition [I] yields a preorder that is not necessarily a partial order.
We identify a special but broad class of ordered measurable spaces for which the

! Recall that preorder on a set X is a binary relation CC X x X such that C is
reflexive and transitive.
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Fig. 1. Hasse Diagram of T'. Arrows directed from smaller element to larger element.

ordering relation is a partial order. The spaces we consider are those which are
generated by some collection of downward closed sets.

Definition 2. An ordered measurable space (X, X, C) is order-respecting if there
exists D C P(X) such that every D € D is downward closed (with respect to C)
and X' is generated by D.

Ezample 1. For any finite set A, the space (P(A4), P(P(A)), C) is order-respecting
since it is generated by all the downward closed sets of (P(A), C). One special case
of such a space that we will make use of in our examples is where T' = P({0,1})
whose Hasse diagram is shown in Figure [} we will denote the elements of T' by
1 =0,1={0},r ={1},and T = {0,1}. Then T = (T, P(T),C) is an order-
respecting measurable space. Finally, for any cpo (X, C), the Borel measurable
space (X, B(X),C) is order-respecting since every Scott-closed set is downward
closed.

Theorem 1. For any ordered measurable space X = (X, X, C), the relation <
is a preorder on M=1(X). The relation < is additionally a partial order (anti-
symmetric) if X is order-respecting.

Ezample 2. Recall the space T = (T, P(T), C) defined in Example [l Consider
the probability measure A, where [ has probability 1, and all the rest have prob-
ability 0. Similarly, 7 is the measure where T has probability 1, and the rest
0, and in p, r gets probability 1, and the others 0. Now one can easily see that
A < 7and p < 7. However A £ pand p £ .

2.3 Construction of Least Upper Bounds

Least upper bound constructions for elements in a partial order play a crucial role
in defining the semantics of languages as well as in abstract interpretation. As we
shall show later in this paper, least upper bounds of probabilistic measures can
also be used to define abstract models of probabilistic systems. Unfortunately,
however, probability measures over arbitrary measurable spaces do not necessarily
have least upper bounds; this is demonstrated in the following example.

Ezample 3. Consider the space T defined in Example[Il Let p be the probability
measure that assigns probability % to L and [/, and 0 to everything else. Let v
be such that it assigns % to L and r, 0 to everything else. The measure 7 that
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assigns . to T and L is an upper bound of both x and v. In addition, p that
assigns g to [ and r, and 0 to everything else, is also an upper bound. However
7 and p are incomparable. Moreover, any lower bound of 7 and p must assign a
probability at least % to L and probability 0 to T, and so cannot be an upper
bound of g and v. Thus, p and v do not have a least upper bound.

We therefore identify a special class of ordered measurable spaces over which
probability measures admit least upper bounds. Although our results apply to
general measurable spaces, for ease of understanding, the main presentation here
is restricted to finite spaces. For the rest of the section, fix an ordered measurable
space X = (X, P(X),C), where (X,C) is a finite partial order. For any element
a € X, we use D, to denote the downward-closed set {b|b = a}. We begin by
defining a tree-like partial order; intuitively, these are partial orders whose Hasse
diagram resembles a tree (rooted at its greatest element).

Definition 3. A partial order (X,C) is said to be tree-like if and only if (i) X
has a greatest element T, and (#) for any two elements a,b € X if Dy N Dy # 0
then either D, C Dy or Dy, C D,.

We can show that over spaces whose underlying ordering is tree-like, any set of
probability measures has a least upper bound. This construction is detailed in
Theorem [2] and its proof below.

Theorem 2. Let X = (X, P(X), L) be an ordered measurable space where (X, C)
is tree-like. For any I' C M—1(X), there is a probability measure V (I") such that
V (I") is the least upper bound of I'.

Proof. Recall that for a set S C X, its set of maximal elements maximal(.S) is
defined as {a € S|Vbe S.a C b = a = b}. For any downward closed set D, we
have that D = U, emaximal(p)Da- From condition (ii) of Definition] if a, b are two
distinct maximal elements of a downward closed set D then D, N Dy, = () and the
sets comprising the union are pairwise disjoint. For any measure p, we therefore
have that u(D) = }_ ,cnaximal(p) #(Da) for any downward closed set D.

Define the function v on downward closed subsets of X as follows. For a
downward closed set of the form D,, where a € X, take v(D,) = inf,cr u(Da),
and for any downward closed set D take v(D) = 3 aximal(p) ¥(Da). We will
define the least upper bound measure V(I") by specifying its value pointwise on
each element of X. Observe that for any a € X, the set D, \{a} is also downward
closed. We therefore define V(I")({a}) = v(Dgy) — v(D, \ {a}), for any a € X.

Observe that v(D) < inf,cr (D). We therefore have that V(I")({a}) > 0. For
any downward closed set D, we can see that V (I")(D) = v(D). Thus, V(I")(X) =
V(I')(Dt)=v(D7)=1inf,cr p(D7) =1, and so V(I") is a probability measure
on X.

For any downward closed set D, we have that V(I')(D) = v(D) and v(D) <
inf,,c r u(D) which allows us to conclude that V (I") is an upper bound of I". Now
consider any measure 7 that is an upper bound of I". Then, 7(D) < u(D) for any
measure p € I" and all downward closed sets D. In particular, for any element a €
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X, 7(Dy) <inf,ecr (D) = v(D,) = V(I')(D,). Thus, for any downward closed
set D, we have that 7(D) = ZQEmaximal(D) T(D,) < ZQEmaximal(D) V(') (D,) =
V(I')(D). Hence, V(I') < 7, which concludes the proof. O

We conclude this section, by showing that if we consider any ordered measurable
space that is not tree-like, there are measures that do not have least upper bounds.
Thus, the tree-like condition is an ezact(necessary and sufficient) characterization
of spaces that admit least upper bounds of arbitrary sets of probability measures.

Theorem 3. Let X = (X,P(X),C) be an ordered measurable space, where
(X, E) is a partial order that is not tree-like. Then there are probability measures
w and v such that p and v do not have a least upper bound.

Proof. First consider the case when X does not have a greatest element. Then
there are two maximal elements, say a and b. Let p be the measure that assigns
measure 1 to a and 0 to everything else, and let v be the measure that assigns
1 to b and 0 to everything else. Clearly, u and v do not have an upper bound.
Next consider the case when X does have a greatest element T; the proof in
this case essentially follows from generalizing Example Bl If X' is a space as in
the theorem then since (X, C) is not tree-like, there are two elements a,b € X
such that D, N Dy # 0, D, \ Dy # 0, and Dy \ D, # 0. Let ¢ € D, N Dy. Consider
the measure 4 to be such that p({c}) = 3, p({a}) = 1, and is equal to 0 on all
other elements. Define the measure v to be such that v({c}) = 3, v({b}) = 3,
and is equal to 0 on all other elements. As in Example B we can show that pu
and v have two incomparable minimal upper bounds. a

Remark 1. All the results presented in the section can be extended to ordered
measure spaces X = (X, P(X),C) when X is a countable set; see [4].

3 Abstracting DTMCs and MDPs

In this section we outline how our upper bound construction can be used to
abstract MDPs and DTMCs using DTMCs. We begin by recalling the definitions
of these models along with the notion of simulation and logic preservation in
Section Bl before presenting our proposal in Section .2

3.1 Preliminaries

We recall 3-valued PCTL and its discrete time models. In 3-valued logic, a
formula can evaluate to either true (T), false (L), or indefinite (?); let Bg =
{L,?, T}. The formulas of PCTL are built up over a finite set of atomic propo-
sitions AP and are inductively defined as follows.

pu=true|a| | A @ | Pup(Xp) | PuploU o)

where a € AP, e {<,<,>,>}, and p € [0, 1].
The models of these formulas are interpreted over Markov Decision Processes,
formally defined as follows. Let @ be a finite set of states and let Q = (Q, P(Q))
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be a measure space. A Markov Decision Process (MDP) M is a tuple (Q, —, L),
where —C Q x M—1(Q) (non-empty and finite), and L : (Q x AP) — B3 is a
labeling function that assigns a value in Bs to each atomic proposition in each
state. We will say ¢ — p to mean (g, u) €—. A Discrete Time Markov Chain
(DTMC) is an MDP with the restriction that for each state g there is exactly
one probability measure p such that ¢ — p. The 3-valued semantics of PCTL
associates a truth value in B3 for each formula ¢ in a state g of the MDP; we
denote this by [q, ®Jam. We skip the formal semantics in the interests of space
and the reader is referred to [§]

Theorem 4 (Fecher-Leucker-Wolf [8]). Given an MDP M, and a PCTL
formula ¢, the value of [q, p]|m for each state q, can be computed in time poly-
nomial in |M| and linear in ||, where |M| and |¢| denote the sizes of M and
p, respectively.

Simulation for MDPs, originally presented in [I2] and adapted to the 3-valued
semantics in [8], is defined as follows. A preorder CC @ x @ is said to be a
simulation iff whenever ¢; C g2 the following conditions hold.

— If L(g2,a) = T or L then L(q1,a) = L(g2,a) for every proposition a € AP,
— If ¢¢ — p1 then there exists puo such that ¢go — po and p; < uo, where
w1 and po are viewed as probability measures over the ordered measurable

space (Q,P(Q),E).

We say q1 = go iff there is a simulation C such that ¢ T ¢o. A state ¢; in an
MDP (Q1,—1, L1) is simulated by a state go in MDP (Q2, —2, L) iff there is a
simulation C on the direct sum of the two MDP’s (defined in the natural way)
such that (¢1,0) C (go, 1).

Remark 2. The ordering on probability measures used in simulation definition
presented in [I2I8] is defined using weight functions. However, the definition
presented here is equivalent, as has been also observed in [7/20].

Finally, there is a close correspondence between simulation and the satisfaction
of PCTL formulas according to the 3-valued interpretation.

Theorem 5 (Fecher-Leucker-Wolf [8]). Consider q,q' states of MDP M
such that ¢ = ¢'. For any formula ¢, if [¢', ]m #7 then [q, o]m = ¢, p]m B

3.2 Abstraction by DTMCs

Abstraction, followed by progressive refinement, is one way to construct a small
model that either proves the correctness of the system or demonstrates its failure
to do so. Typically, the abstract model is defined with the help of an equivalence
relation on the states of the system. Informally, the construction proceeds as

2 In [8] PCTL semantics for MDPs is not given; however, this is very similar to the
semantics for AMCs which is given explicitly.

3 This theorem is presented only for AMC. But its generalization to MDPs can be
obtained from the main observations given in [8]. See [4].
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follows. For an MDP/DTMC M = (Q, —, L) and equivalence relation = on @,
the abstraction is the MDP A = (Q.4, — 4, L 4), where Q4 = {[¢]=|q € Q} is the
set of equivalence classes of @ under =, and [¢]= has a transition corresponding
to each ¢’ — p for ¢’ € [q]=.

However, as argued by Fecher-Leucker-Wolf [8], model checking A directly
may not be feasible because it has large number of transitions and therefore a
large size. It maybe beneficial to construct a further abstraction of A and an-
alyze the further abstraction. In what follows, we have an MDP, which maybe
obtained as outlined above, that we would like to (further) abstract; for the rest
of this section let us fix this MDP to be A = (Q.4, — 4, L 4). We will first present
the Fecher-Leucker-Wolf proposal, then ours, and compare the approaches, dis-
cussing their relative merits.

Fecher et al. suggest that a set of transitions be approximated by intervals that
bound the probability of transitioning from one state to the next, according to
any of the non-deterministic choices present in A. The resulting abstract model,
which they call an Abstract Markov Chain (AMC) is formally defined as follows.

Definition 4. The Abstract Markov Chain (AMC) associated with A is formally
the tuple M = (Q ., —¢, —u, La), where Qaq = Q4 is the set of states, and
L = Ly is the labeling function on states. The lower bound transition —; and
upper bound transition —,, are both functions of type Qam — (Qr — [0,1]), and
are defined as follows:

q = piff Vg € Qm. p(q') = ming ., v({q'})
q—u i iff Ve € Qum. pu(q') = maxq— ., v({q'})

Semantically, the AMC M is interpreted as an MDP having from each state q
any transition ¢ — v, where v is a probability measure that respects the bounds
defined by —¢ and —,,. More precisely, if ¢ —¢ pe and q — 1y then py < v <
by, where < is to be interpreted as pointwise ordering on functions.

Fecher et al. demonstrate that the AMC M (defined above) does indeed simulate
A, and using Theorem [ the model checking results of M can be reflected to A.
The main advantage of M over A is that M can be model checked in time that
is a polynomial in 2/9Mml = 21Q4l: model checking A may take time more than
polynomial in 2/94l, depending on the number of transitions out of each state q.

We suggest using the upper bound construction, presented in Section Z3] to
construct purely probabilistic abstract models that do not have any nondeter-
minism. Let (X,C) be a tree-like partial order. Recall that the set of minimal
elements of X, denoted by minimal(X), is given by minimal(X) = {z € X |Vy €
X.yCz = xz=y}

Definition 5. Consider the MDP A = (Qa,—a,La). Let (Q,C) be a tree-like
partial order, such that minimal(Q) = Q4. Let Q@ = (Q,P(Q),C) be the ordered
measurable space over Q. Define the DTMC D = (Qp,—p, Lp), where

_Q'D:Q7
— Forqe Qp,let Iy ={p|3¢d € Qa. ¢ T qandq —4 p}. Now, ¢ —p
V(Iy), and
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— For g € Qp and a € AP, if for any q1,q2 € Q4 with ¢ T ¢ and g2 C ¢,
we have L(q1,a) = L(q2,a) then L(q,a) = L(q1,a). Otherwise L(q,a) =7

Proposition 2. The DTMC D simulates the MDP A, where A and D are as
given in Definition [A.

Proof. Consider the relation Rc over the states of the disjoint union of A
and D, defined as Rc = {((4,0),(¢,0)) |4 € Qa} U {((¢1),(¢" 1)) | ¢ " €
Qp,qd T ¢"TU{((¢,0),(¢,1)|qg€ Qa,q¢ € Qp,q T ¢'}. From the definition
of D, definition of simulation and the fact that V is the least upper bound op-
erator, it can be shown that R is a simulation. O

The minimality of our upper bound construction actually allows to conclude
that D is as good as any DTMC abstraction can be on a given state space. This
is stated precisely in the next proposition.

Proposition 3. Let A = (Qa,—.4,LA) be an MDP and (Q,C) be a tree-like
partial order, such that minimal(Q) = Q4. Consider the DTMC D = (Qp, —p,
Lp), as given in Definition[d If D' = (Qp, —'p, Lp) is a DTMC such that the
relation Rc defined in the proof of Proposition[d is a simulation of A by D’ then
D' simulates D also.

Comparison with Abstract Markov Chains. Observe that any tree-like partial
order (@, C) such that minimal(Q) = Q4 is of size at most O(|Q 4|); thus, in
the worst case the time to model check D is exponentially smaller than the time
to model check M. Further, we have freedom to pick the partial order (Q,C).
The following proposition says that adding more elements to the partial order
on the abstract states does indeed result in a refinement.

Proposition 4. Let A= (Qa,—4,L.) be an MDP and (Q1,C1) and (Q2,C2)
be tree-like partial orders such that Q1 C Q2, Co N(Q1 X Q1) =C1, and Q4 =
minimal(Q1) = minimal(Q2). Let Dy be a DTMC over (Q1,Z1) and Dy a DTMC
over (Q2,C2) as in Definition[. Then, Dy simulates Ds.

Thus, one could potentially identify the appropriate tree-like partial order to be
used for the abstract DTMC through a process of abstraction-refinement.

Finally, we can demonstrate that even though the DTMC D is exponentially
more succinct than the AMC M, there are examples where model checking D
can give a more precise answer than M.

Ezample 4. Consider an MDP A shown in Figure 2 where state 1 has two tran-
sitions one shown as solid edges and the other as dashed edges; transitions out
of other states are not shown since they will not play a role. Suppose the atomic
proposition a is T in {1,2} and L in {3,4}, and the proposition b is T in {1, 3}
and L in {2,4}. The formula ¢ = Pes (Xa) evaluates to T in state 1.

The AMC M as defined in Deﬁn1t1on A is bhOWH in Figure Bl Now, because
the distribution v, given by v({1}) = 5, v({2}) = 1, v({3}) = 0, and v({4}) =0
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Fig. 2. Example MDP A

5 /T\G
A A

Fig. 4. Hasse diagram of partial order =~ Fig. 5. Transition out of 1 in DTMC D

satisfies the bound constraints out of 1 but violates the property ¢, ¢ evaluates
to ? in state 1 of M.

Now consider the tree-like partial order shown in Figure[ arrows in the figure
point from the smaller element to the larger one. If we construct the DTMC D
over this partial order as in Definition [Bl the transition out of state 1 will be as
shown in Figure[dl Observe also that proposition a is T in {1,2,5}, 1 in {3,4,6}
and 7 in state T; and proposition b is T in {1,3}, L in {2,4} and ? in {5,6, T }.
Now ¢ evaluates to T in state 1, because the measure of paths out of 1 that
satisfy X—a is }1. Thus, by Theorem Bl M is not simulated by D. It is useful
to observe that the upper bound managed to capture the constraint that the
probability of transitioning to either 3 or 4 from 1 is at least }1. Constraints of
this kind that relate to the probability of transitioning to a set of states, cannot
be captured by the interval constraints of an AMC, but can be captured by
upper bounds on appropriate partial orders.

4 Abstracting CTMCs

We now outline how our upper bound construction gives us a way to abstract
CTMC by other CTMCs. We begin with recalling the definitions of CTMCs,
simulation and logical preservation, before presenting our abstraction scheme.
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4.1 Preliminaries

The formulas of CSL are built up over a finite set of atomic propositions AP
and are inductively defined as follows.

pu=true|a|—¢|pAp|PupleU @)

where a € AP, e {<,<,>,>}, p €[0,1], and t a positive real number.

The 3-valued semantics of CSL is defined over Continuous Time Markov
Chains (CTMC), where in each state every atomic proposition gets a truth
value in Bj. Formally, let ) be a finite set of states and let Q = (Q,P(Q))
be a measure space. A (uniform) CTMC B Misa tuple (Q,—, L, E), where
—:Q = M=1(Q), L: (QxAP) — Bs is a labeling function that assigns a value
in B to each atomic proposition in each state, and £ € R>¢ is the exit rate
from any state. We will say ¢ — p to mean (¢, u) €—. Due to lack of space the
formal semantics of the CTMC is skipped; the reader is referred to [I8].

CSL’s 3-valued semantics associates a truth value in B3 for each formula ¢
in a state ¢ of the CTMC; we denote this by [¢, ¢]a. The formal semantics is
skipped and can be found in [I3]. The model checking algorithm presented in [1]
for the 2-valued semantics, can be adapted to the 3-valued case.

Simulation for uniform CTMCs, originally presented in [3], has been adapted
to the 3-valued setting in [13] and is defined in exactly the same way as simulation
in a DTMC; since the exit rate is uniform, it does not play a role. Once again,
we say ¢p is simulated by g2, denoted as q; < qq, iff there is a simulation C such
that g1 £ ¢2. Once again, there is a close correspondence between simulation
and the satisfaction of CSL formulas according to the 3-valued interpretation.

Theorem 6 (Katoen-Klink-Leucker-Wolf [13]). Consider any states q,q’
of CTMC M such that ¢ = q'. For any formula ¢, if [¢', o] m #7 then [q, p]m =

[ plnm-

4.2 Abstracting Based on Upper Bounds

Abstraction can, once again, be accomplished by collapsing concrete states into
a single abstract state on the basis of an equivalence relation on concrete states.
The transition rates out of a single state can either be approximated by intervals
giving upper and lower bounds, as suggested in [I3], or by upper bound measures
as we propose. Here we first present the proposal of Abstract CTMCs, where
transition rates are approximated by intervals, before presenting our proposal.
We conclude with a comparison of the two approaches.

Definition 6. Consider a CTMC M = (Qrm, —m, Lam, Eam) with an equiva-
lence relation = on Qaq. An Abstract CTMC (ACTMC) [13] that abstracts M
is a tuple A = (Qa,—0, —u, La, Ea), where

— Qa=1{lq]|q € Qm} is the set of equivalence classes of =,
— Ea=Enm,

4 We only look at uniform CTMCs here; in general, any CTMC can be transformed
in a uniform one that is weakly bisimilar to the original CTMC.
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- IffO’l” all q1,92 € [Q7 M(Q17a) - LM(QQaa) then L.A([Q]aa) - LM(Qaa)
Otherwise, L A([q],a) =7,
— =0 Qa— (Qu— 071]) where

[q] = p iff Viga] € Qa p(lq1]) = min v([q1])

q'€lg] A ¢'—av
— Similarly, —,: Q4 — (Qa — [0,1]) where

lq] —u p iff V1] € Qa p(lq1]) = max  v([q1])

q'€lg) N ¢'—av

Semantically, at a state [q|, the ACTMC can make a transition according to any
transition rates that satisfy the lower and upper bounds defined by —¢ and —,
respectively.

Katoen et al. demonstrate that the ACTMC A (defined above) does indeed sim-
ulate M, and using Theorem [f] the model checking results of A can be reflected
to M. The measure of paths reaching a set of states within a time bound ¢ can
be approximated using ideas from [2], and this can be used to answer model
checking question for the ACTMC (actually, the path measures can only be
calculated upto an error).

Like in Section .21 we will now show how the upper bound construction
can be used to construct (standard) CTMC models that abstract the concrete
system. Before presenting this construction, it is useful to define how to lift a
measure on a set with an equivalence relation =, to a measure on the equivalence
classes of =.

Definition 7. Given a measure p on (Q,P(Q)) and equivalence = on Q, the
lifting of p (denoted by [u]) to the set of equivalence classes of Q is defined as

W {lal}) = n{d |4 = q})-

Definition 8. Let M = (Qr, —m, Ly, Eam) be a CTMC with an equivalence
relation = on Qaq. Let (Q,C) be a tree-like partial order with T, such that
minimal(Q) = {[q] | ¢ € Qm}. Let Q = (Q,P(Q),C) be the ordered measurable
space over Q. Define the CTMC C = (Q¢, —c¢, Lc, Ec), where

- QC = Q7

— Ec = EM7

— ForqeQc,let I'y ={[] | 3¢ € Qa. [d] T q and ¢ — .4 p}. Now, ¢ —¢
V(I,), and

— Ifforallqi, g2 € Qua suchthat[q1] T qandlq2] T q, Lym(qi,a) = Lap(ge,a)
then Le(q,a) = Ly (q1,a). Otherwise, Le(q,a) =?

Once again, from the properties of least upper bounds, and definition of simula-
tion, we can state and prove results analogous to Propositions 2 and Bl That is
the CTMC C does indeed abstract M and it is the best possible on a given state
space; the formal statements and proofs are skipped in the interests of space.
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Comparison with Abstract CTMCs. All the points made when comparing the
DTMC abstraction with the AMC abstraction scheme, also apply here. That is,
the size of C is exponentially smaller than the size of the ACTMC A. Moreover,
we can choose the tree-like partial order used in the construction of C through
a process of abstraction refinement. And finally, Example [4] can be modified to
demonstrate that there are situations where the CTMC C gives a more precise
result than the ACTMC A. However, in the context of CTMCs there is one
further advantage. ACTMCs can only be model checked approximately, while
CTMOCs can be model checked exactly. While it is not clear how significant this
might be in practice, from a theoretical point of view, it is definitely appealing.

5 Conclusions

Our main technical contribution is the construction of least upper bounds for
probability measures on measure spaces equipped with a partial order. We have
developed an exact characterization of underlying orderings for which the in-
duced ordering on probability measures admits the existence of least upper
bounds, and provided a natural construction for defining them. We showed how
these upper bound constructions can be used to abstract DTMCs, MDPs, and
CTMCs by models that are purely probabilistic. In some situations, our abstract
models yield more precise model checking results than previous proposals for ab-
straction. Finally, we believe that the absence of nondeterminism in the abstract
models we construct might make their model-checking more feasible.

In terms of future work, it would be important to evaluate how these abstrac-
tion techniques perform in practice. In particular, the technique of identifying the
right tree-like state space for the abstract models using abstraction-refinement
needs to be examined further.
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Abstract. This paper proposes a novel abstraction technique based on Erlang’s
method of stages for continuous-time Markov chains (CTMCs). As abstract mod-
els Erlang-k interval processes are proposed where state residence times are gov-
erned by Poisson processes and transition probabilities are specified by intervals.
We provide a three-valued semantics of CSL (Continuous Stochastic Logic) for
Erlang-k interval processes, and show that both affirmative and negative verifica-
tion results are preserved by our abstraction. The feasibility of our technique is
demonstrated by a quantitative analysis of an enzyme-catalyzed substrate conver-
sion, a well-known case study from biochemistry.

1 Introduction

This paper is concerned with a novel abstraction technique for timed probabilistic sys-
tems, in particular continuous-time Markov chains, CTMCs for short. These models are
omnipresent in performance and dependability analysis, as well as in areas such as sys-
tems biology. In recent years, they have been the subject of study in concurrency theory
and model checking. CTMCs are a prominent operational model for stochastic process
algebras and have a rich theory of behavioral (both linear-time and branching-time)
equivalences, see, e.g., [426]. Efficient numerical, as well as simulative verification al-
gorithms have been developed and have become an integral part of dedicated
probabilistic model checkers such as PRISM and act as backend to widely accepted
performance analysis tools like GreatSPN and the PEPA Workbench.

Put in a nutshell, CTMCs are transition systems whose transitions are equipped with
discrete probabilities and state residence times are determined by negative exponen-
tial distributions. Like transition systems, they suffer from the state-space explosion
problem. To overcome this problem, several abstraction-based approaches have recently
been proposed. Symmetry reduction [20]], bisimulation minimization [16], and advances
in quotienting algorithms for simulation pre-orders [28]] show encouraging experimen-
tal results. Tailored abstraction techniques for regular infinite-state CTMCs have been
reported [22]], as well as bounding techniques that approximate CTMCs by ones hav-
ing a special structure allowing closed-form solutions [21]. Predicate abstraction tech-
niques have been extended to (among others) CTMCs [14]]. There is a wide range of
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related work on abstraction of discrete-time probabilistic models such as MDPs, see
e.g., [OI8I19]]. Due to the special treatment of state residence times, these techniques are
not readily applicable to the continuous-time setting.

This paper generalizes and improves upon our three-valued abstraction technique
for CTMCs [[17]. We adopt a three-valued semantics, i.e., an interpretation in which a
logical formula evaluates to either true, false, or indefinite. In this setting, abstraction
preserves a simulation relation on CTMCs and is conservative for both positive and
negative verification results. If the verification of the abstract model yields an indefinite
answer, the validity in the concrete model is unknown. In order to avoid the grouping
of states with distinct residence time distributions, the CTMC is uniformized prior to
abstraction. This yields a weak bisimilar CTMC [4] in which all states have identical
residence time distributions. Transition probabilities of single transitions are abstracted
by intervals, yielding continuous-time variants of interval DTMCs [[10124].

This, however, may yield rather coarse abstractions (see below). This paper sug-
gests to overcome this inaccuracy. The crux of our approach is to collapse transition
sequences of a given fixed length k, say. Our technique in is obtained if k=1. This
paper presents the theory of this abstraction technique, shows its correctness, and shows
its application by a quantitative analysis of an enzyme-catalyzed substrate conversion,
a well-known case study from biochemistry [3]].

Let us illustrate the main idea of the abstraction by means
of an example. Consider the CTMC shown on the right
(top). Intuitively, a CTMC can be considered as a transition
system whose transitions are labeled with transition prob-
abilities. Moreover, a CTMC comes with an exit rate iden-
tifying the residence times of the states (one, say), which
is exponentially distributed. The essence of CTMC model
checking is to compute the probability to reach a certain set Fig. 1.
of goal states within a given deadline [3].

A rather common approach to abstraction is to partition the state space into classes,
e.g., let us group states sg, s1, and s, into the abstract state Ag, and u into A,. The
probability to move from A, to A, by a single transition is either 0, ;, or 1, as the
respective (time-abstract) probability to move to u in one transition is 0, 1, and é The
approach in yields the interval [0, 1] for the transition from A to A,,. This is not
very specific. A more narrow interval is obtained when considering two consecutive
transitions. Then, the probability from A, to A, is 1 or i. Using intervals, this yields
the two-state abstract structure depicted above (bottom).

Put in a nutshell, the abstraction technique proposed in this paper is to generalize this
approach towards considering transition sequences of a given length £ > 0, say. State
residence times are, however, then no longer exponentially distributed, but Erlang-%
distributed. Moreover, taking each time & steps at once complicates the exact calculation
of time-bounded reachability probabilities: Let us consider first the case that n is the
number of transitions taken in the concrete system to reach a certain goal state. Let ¢
and j be suchthatn = ¢-k+jand j € {0, ..., k—1}. Clearly, the number of transitions
in the abstract system corresponds exactly to a multiple of the number of transitions in
the concrete system, only if the remainder j equals 0. As this is generally not the case,
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(d)

Fig. 2. Reaching goals in stages of length k&

we restrict to computing lower and upper bounds for the probability of reaching a set
of goal states. Let us be more precise: Consider the tree of state sequences as shown
in Fig. Let the black nodes denote the set of goal states. Taking the right branch,
5 transitions are needed to reach a goal state. For £ = 3, this implies that 2 abstract
transitions lead to a goal state. However, as 2 - 3 = 6, computing with 2 transitions and
Erlang-3 distributed residence times will not give the exact probability for reaching a
goal state, but, as we show, a lower bound. Intuitively, the probability for reaching a goal
state in Fig. is computed. For an upper bound, one might first consider all states
from the fourth state on in the right branch as goal states. This would give a rather coarse
upper bound. We follow instead the idea depicted in Fig. We consider 2 transitions
for reaching the goal state, however, use the Erlang-3 distribution for assessing the first
transition, but use the Erlang-1 distribution for assessing the last transition of a sequence
of transitions. That is, we compute the reachability probability for the goal states as
depicted in Fig. Technically, it is beneficial to understand the situation as depicted
in Fig. i.e., to first consider one transition with Erlang-1 distribution and then to
consider a sequence of transitions which are Erlang-£ distributed.

Outline of the paper. Section[)gives some necessary background. We introduce Erlang-
k interval processes in Section[3which serve as abstract model for CTMCs in Section[dl
In Section[3] we focus on reachability analysis of Erlang-k interval processes and utilize
it for model checking in Section [6l The feasibility of our approach is demonstrated in
Section[Z]by a case study from biology and Section[§]concludes the paper. A full version
with detailed proofs can be found in [18]].

2 Preliminaries

Let X be a finite set. For Y, Y’ C X and function f : X x X — Rlet f(Y,Y") :=
> yevayey: f(y,y) (for singleton sets, brackets may be omitted). The function f(z,-)
is given by &’ — f(z,2") for all x € X. Function f is a distribution on X iff f : X —
[0,1] and f(X) := > .x f(x) = 1. The set of all distributions on X is denoted by
distr(X). Let AP be a fixed, finite set of atomic propositions and By := {L, T} the
two-valued truth domain.
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Continuous-time Markov chains. A (uniform) CTMC C is a tuple (S, P, \, L, so) with
a finite non-empty set of states .5, a transition probability function P : S x S — [0, 1]
such that P(s,S) = 1 forall s € S, an exit rate A € R~(, a labeling function L :
S x AP — Bs, and an initial state s € S. This definition deviates from the literature as
i) we assume a uniform exit rate and ii) we separate the discrete-time behavior specified
by P and the residence times determined by A. Restriction i) is harmless, as every (non-
uniform) CTMC can be transformed into a weak bisimilar, uniform CTMC by adding
self-loops [25]]. For ii), note that P (s, s")(1—e**) equals the probability to reach s’ from
s in one step and within time interval [0, ¢). Thus, the above formulation is equivalent
to the standard one. The expected state residence time is 1/)\. Let P*(s, s’) denote the
time-abstract probability to enter state s’ after k steps while starting from s, which is
obtained by taking the kth-power of P (understood as a transition probability matrix).

We recall some standard definitions for Markov chains [11123]. An infinite path o is
a sequence sqg tg s1t1 ... with s; € S, P(s;,8;41) > 0 and t; € Ry fori € N. The
time stamps ¢; denote the residence time in state s;. Let 0@t denote the state of a path o
occupied at time ¢, i.e. 0@t = s; with 4 the smallest index such that ¢ < Z _otj- The
set of all (infinite) paths in C is denoted by Path¢. Let Pr be the probability measure on
sets of paths that results from the standard cylinder set construction.

Poisson processes. Let (N;):>o be a counting process and let the corresponding interar-
rival times be independent and identically exponentially distributed with parameter A >
0. Then (N;)¢>¢ is a Poisson process and the number k of arrivals in time interval [0, ¢)
is Poisson distributed, i.e., P(N; = k) = e~ (\t)* /k!. The time until k arrivals have
occurred is Erlang-k distributed, i.e., F x(t) := P(T < 1t) =1 — Zk 01 e"\t(m

where T}, is the time instant of the k-th arrival in (IV;);>¢. Consequently, the probablhty
that (Ny);>o is in the range {k,k + 1,...,k+ ¢ — 1}, £ > 1 is given by

ik, 0) = P(Tp <t < Thoyg) = SFHT A OO

!
ACTMCC = (S,P, )\, L, s9) can be represented as a discrete-time Markov chain with
transition probabilities P where the times are implicitly driven by a Poisson process
with parameter ), i.e., the probability to reach state s’ from s within [0, ¢) is:

Z?io Pi(s,s/) —xt (At)? .

7!

This relationship can be used for an efficient transient analysis of CTMCs and is known
as uniformization. A truncation point of the infinite sum can be calculated such that the
approximation error is less than an a priori defined error bound [23]].

Continuous Stochastic Logic. CSL extends PCTL [12] by equipping the until-
operator with a time bound. Its syntax is given by:

pu=true|a|p A | ¢ | PupleUlp)

where I € {[0,1),[0,¢],[0,00) | t € Rso}, >t € {<,<,>,>},pe[0,1]anda € AP.
The formal semantics of CSL is given in Table[[l CSL model checking [3] is performed
inductively on the structure of ¢ like for CTL model checking. Checking time-bounded
until-formulas boils down to computing time-bounded reachability probabilities. These
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Table 1. Semantics of CSL

[true](s) =T [al(s) = L(s,a)

[o1 A p2](s) = [eal(s) M [p2](s) [=el(s) = ([l (s))°
[Poasn(ortd!2)](s) = T, iff Pr({o € Path{" | [pxld" p2] () = T})pap
[t p2] (o) = T,iff 3t € I : ([p2](c@t) = T A V' €[0,t) : [er](c@t') = T)

probabilities can be obtained by a reduction to transient analysis yielding a time com-
plexity in O(|S|>At) where ¢ is the time bound.

Three-valued domain. Let By := {1, 7, T} be the complete lattice with ordering
1 < 7?7 < T, meet (M) and join (L)) as expected, and complementation -“ such that T
and | are complementary to each other and 7 ¢ =7 . When a formula evaluates to | or
T, the result is definitely true or false respectively, otherwise it is indefinite.

3 Erlang-k Interval Processes

Erlang-k interval processes are determined by two ingredients: a discrete probabilistic
process with intervals of transition probabilities (like in [10/24]) and a Poisson process.
The former process determines the probabilistic branching whereas residence times are
governed by the latter. More precisely, the state residence time is the time until j further
arrivals occur according to the Poisson process where j € {1,. .., k} is nondeterminis-
tically chosen. Thus, the residence times are Erlang-j distributed.

Definition 1 (Erlang-£ interval process). An Erlang-k interval process is a tuple £ =
(S, P, Py, Nk, L,so), with S and sy € S as before, and P, P, : S x S — [0,1],
transition probability bounds such that for all s € S: Pi(s,S) <1 < P,(s,5), A €
R0, a parameter of the associated Poisson process, k € N¥, and L : S x AP — Bs.

An Erlang-1 interval process is an abstract continuous-time Markov chain (ACTMC)
[17). If additionally all intervals are singletons, the process is equivalent to a CTMC
with P; = P, = P. The set of transition probability functions for £ is:

Te:={P:5x5—1[0,1]|Vse S: P(s,5) =1,
Vs, ' € St Pi(s,s') <P(s,s) <Pyu(s,s)}

Let Tg(s) := {P(s,-) | P € T¢} be the set of distributions in s.

Paths in Erlang-k interval processes. A path o in £ is an infinite sequence sgtosity - . -
with s; € S, t; € Rsq for which there exists Po, Py, ... € T¢ such that P;(s;, s,11) >
0 for all ¢ € N. A path fragment £ is a prefix of a path that ends in a state denoted & .
The set of all path fragments £ (untimed path fragments) in £ is denoted by Pathf;
(uPathf,, respectively) whereas the set of paths is denoted by Pathe.

We depict Erlang-k interval processes by drawing the state-transition graph of the
discrete part, i.e., the associated interval DTMC with transitions labeled by [P;(s, s’),
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P.(s,s")] (see, e.g., Fig. B). The Poisson process that determines the residence times,
as well as the marking of the initial state are omitted.

Normalization. Erlang-k interval process £ is called delimited, if every possible se-
lection of a transition probability in a state can be extended to a distribution [17],
i.e., if for any s,s' € S and p € [P;(s,s),Py(s,s")], we have pu(s") = p for some
i € Te(s). An Erlang-k interval process £ can be normalized into a delimited one
norm(€) such that T,y = Te. Formally, norm(£) = (S, P, P, \E, L, s0) with
forall s,s’ € S:

Pi(s,s") = max{P(s,s'),1 —P,(s,S\{s'})} and

Pu(s,s') = min{P,(s,s'),1 —Pi(s,S\ {s'})}.

Example 1. The Erlang-k interval process in Fig.[3l left, is delimited. Selecting }1 for
the transition from s to uy yields a non-delimited process (Fig. Bl middle). Applying
normalization results in the Erlang-k interval process shown in Fig. 3] right.

An Erlang-k interval process
contains two sources of non-
determinism: in each state, (i)
a distribution according to the
transition probability intervals,
and (ii) the number j; €
{1,...,k} of arrivals in the
Poisson process may be cho-
sen. As usual, nondeterminism Fig. 3. Normalization
is resolved by a scheduler:

Definition 2 (Scheduler). Let £ be an Erlang-k interval process. A history-dependent
deterministic scheduler is a function D : uPathf, — distr(S) x {1,...,k} such that
D(&) € Te(€l) x {1,...,k} for all £ € uPathfe. The set of all history-dependent
deterministic schedulers of € is denoted as HD®.

Note that a richer class of schedulers is obtained if the scheduler’s choice may also
depend on the residence times of the states visited so far. We show below that the class
of history-dependent deterministic schedulers suffices when Erlang-£ interval processes
are used for abstracting CTMCs.

Probability measure. For Erlang-k interval process &£, let {2 = Pathg be the sample
space and B the Borel field generated by the basic cylinder sets C(so Ip ... I,—1 $n)
where s, € 5,0 <i <mnand I, = [0,z¢) C Rx¢ is a non-empty interval for 0 < ¢ <
n. The set C(so Ip ... I,,—1 sy,) contains all paths of £ with prefix Spto ... t,—1 5p
such that s; = &; and t; € I,. A scheduler D € HD¢ induces a probability space
(2, B, PrP”) where Pr" is uniquely given by Pr” (C(s¢)) := 1 and for n > 0

PrD(C(SO Iy... I, Sn+1)) = PrD(C'(SO Iy... I, Sn)) . F)\J.n (sup In) . /J'n(sn+1)
= TTig (Faj (sup L) - pui(sig))
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where (1, 7;) =: D(so s1 - .. s;). Additionally, we define the time-abstract probability
measure induced by D as Pr2 (C(sg)) := 1 and

Prg(C(SO IO v In 3n+1)) = H?:O Nz(31+1)

We are interested in the supremum/infimum (ranging over all schedulers) of the prob-
ability of measurable sets of paths. Clearly, the choice of j;, the number of steps in
the associated Poisson process in state s;, may influence such quantities. For instance,
on increasing j;, time-bounded reachability probabilities will decrease as the expected
state residence time (in s;) becomes longer. We discuss the nondeterministic choice in
the Poisson process in subsequent sections, and now focus on the choice of distribution
; according to the probability intervals.

Definition 3 (Extreme distributions). Let £ be an Erlang-k interval process, s € S

and S' C S. We define extr(P, P, S, s) C Te(s) such that i € extr(P,P,, 5, s)

iff either S’ = 0 and p = P(s,-) = Py (s, ) or one of the following conditions hold{l:
-3 €S uls) =Pi(s,s) and p € extr(P, Py[(s,s") — u(s)], 5"\ {s'},s)
-3¢ €S u(s) =Py(s,s) and p € extr(P[(s,s) — p(s)], Pu, S\ {s'}, 9)

We call ji € Tg(s) an extreme distribution if u € extr(P;, Py, S, s).

A scheduler D € ‘HD? is called extreme if all choices D(§) are extreme distributions.
For a subset D C HDE let D.,..r € D denote the subset of all extreme schedulers in D.

Theorem 1 (Extrema). Let £ be an Erlang-k interval process and D C HD®. For
every measurable set () € B of the induced probability space:

infpep,, PrD(Q) = infpep PrP (@), suppep,, PrD(Q) = SUpPpep PrD(Q).

4 Abstraction

This section makes the abstraction by stages as motivated in the introduction precise.
We define an abstraction operator based on the idea of partitioning the concrete states to
form abstract states. This yields an Erlang-k interval process. Moreover, we introduce
a simulation relation relating one transition in the abstract system to a sequence of
k transitions in the concrete system. We show that the abstraction operator yields an
Erlang-k interval process simulating the original CTMC.

Definition 4 (Abstraction). Ler abstr(C, A, k) := (A, P;, Py, A\, k, L', Ag) be the ab-
straction of CTMC C = (S, P, \, L, so) induced by partitioning A = {Ao, ..., An} of
S and k € NT such that forall 1 < i,j < n:
- Pi(Ai, Aj) = mingea, P¥(s,4;), and P,(A;, Aj) = maxsea, P*(s, 4))
T ifforallse€ A: L(s,a) =T
- L'(Aja)=q L ifforallsec A: L(s,a) = L

7  otherwise
- Ay € Awith sy € Ao.

' fly — ] denotes the function that agrees everywhere with f except at y where it equals .
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Lemma 1. For any CTMC C, any partitioning A of =
S and k € N, abstr(C, A, k) is an Erlang-k inter- P
val process. -

o
©
\

o
)

Example 2. Reconsider the CTMC C from Section[I]
(Fig. [I), top, with exit rate A = 1 and partition-
ing {4, A, } with Ay = {so, s1,52}, Ay = {u}. Yok T
As remarked above, in the Erlang-1 interval process / o1
abstr(C, {As, Ay}, 1) (not shown) the probability in- e T T
terval for a transition from A, to A, is [0, 1]. How- t

ever, choosing £ = 2 yields smaller intervals. The Fig.4. Concrete vs. abstract behav-
resulting Erlang-2 interval process is depicted in ior over time

Fig. [l bottom. The plot in Fig. @ shows the prob-

ability to reach A, = {u} within ¢ time units if the Erlang-2 interval process starts
at time 0 in A, and the CTMC in sg, 1 or se, respectively. For the Erlang-2 interval
process, the infimum over all schedulers is taken and it is obviously smaller than all the
concrete probabilities in the CTMC (the supremum coincides with the probabilities for
s1). A detailed discussion on which schedulers yield the infimum or supremum is given
in the next section.

Probability
N

o
~
~

o
)
N

Definition 5 (k-step forward simulation). Let C = (S¢, P, A, L¢, s¢) be a CTMC and
E = (S¢,P1,Py, N\ k, Lg, sg) an Erlang-k interval process. Relation Ry, C S¢ x Sg
is a k-step forward simulation on C and € iff for all s € Sc, s’ € Se, sRys’ implies:

1. Let ji := Pk(s, ). Then there exists i’ € Te(s') and A : Se x Sg — [0,1] s.t.
(a) Alu,v) > 0= uRyv, (b) A(u, Se) = p(u), (¢) A(S¢,v) = p/(v).
2. Foralla € AP, Lg(s',a) # 7 implies that Lg(s',a) = Le(s, a).

We write s < s’ if sRys’ for some k-step forward simulation Ry, and C =< & if
scRrse. In the sequel, we often omit subscript k. The main difference with existing
simulation relations is that & steps in C are matched with a single step in £. For k=1,
our definition coincides with the standard notion of forward simulation on CTMCs [4]].

Theorem 2 (Abstraction). Let C be a CTMC and let A be a partitioning on the state
space S. Then for all k € N* we have C < abstr(C, A, k).

It is important to understand that the k-step forward simulation relates the transition
probabilities of one transition in the abstract system to k-transitions in the concrete sys-
tem. However, it does not say anything about the number j € {1, ..., k} of arrivals in
the Poisson process, which has to be chosen appropriately to guarantee that the proba-
bility for reaching certain states within a given time bound is related in the concrete and
the abstract system. This issue will be approached in the next section.

5 Reachability

We now show that the abstraction method proposed above can be used to efficiently de-
rive bounds for the probability to reach a set B C S¢ ina CTMC C=(S¢, P, A\, Le, s¢).
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For that we consider an Erlang-% interval process £ with state space S¢ and C < £. For
B’ C Sg,t > 0let Reach<(B') := {0 € Pathg | 3t' € [0,t] : 0Qt' € B'}.

Since a CTMC is also an Erlang-k interval process, Reachgt(B) C Pathe is defined
in the same way. We assume that P(s,s) = 1 for all s € B as the behavior of C after
visiting B can be ignored. We say that B and B’ are compatible iff s < s’ implies that
s € Biff s € B, forall s € Sc, s’ € Se. For example, in Fig. @ B = {u} and
B’ ' = {A,},as well as, B = {sg, $1, 52} and B’ = {A,} are compatible.

The k-step forward simulation (cf. Def. [B) is useful for relating transition proba-
bilities in the concrete and the abstract system. However, to relate timed reachability
probabilities of concrete and abstract systems, we have to assess the time abstract tran-
sitions with the right number j of new arrivals in the Poisson process associated with
£. In other words, we have to check for which choice of the number of arrivals, we
obtain lower and upper bounds of the timed reachability probabilities. As motivated in
the introduction (Fig.2)) and stated in Theorem[3] (see below), a tight bound for

— the minimum probability is obtained when the scheduler chooses for number j
always k, and a tight bound for

— the maximum probability is obtained when the scheduler chooses once 7 = 1 and
for the remaining transitions j = k.

Consequently, we restrict our attention to the following scheduler classes:

HD; = {D € HD® | V&3ue : D(&) = (pe, k)}
HDE = {D € HD® | V€Tue : D(E) = (ue, 1) if € = sg, D(€) = (e, k) otherwise}

where s¢ is the initial state of the Erlang-k interval process .

Theorem 3. Let C be a CTMC and £ an Erlang-k interval process with C = E. For
t € R, compatible sets B and B', there exist schedulers D € HDY, D' € HDE with

PrP (Reach<,(B')) < Pr°(Reach<,(B)) < PrP (Reach<,(B')).
Let
Pr{ (Reach<;(B')) := inf pegepe PrP (Reach<(B"))
Pré(Reach<;(B')) := SUP peppe PrP(Reach<(B')).

The following corollary is a direct result of the theorem above. It states that when com-
paring reachability probabilities of a CTMC with those of a simulating Erlang-% interval
process &, in the worst (best) case £ will have a smaller (larger) time-bounded reacha-
bility probability, when restricting to the scheduler class HD}g (’HDi).

Corollary 1. Let C be a CTMC and £ an Erlang-k interval process with C < E. Let
t € R>o and B be compatible with B'. Then:

Prf (Reach<;(B')) < Pr®(Reach<;(B)) < Pré(Reach<(B'))

Similar to the uniformization method for CTMCs (see Section [2), we can efficiently
calculate time-bounded reachability probabilities in £, using time-abstract reachability
probabilities and the probability for the number of Poisson arrivals in a certain range.
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More specifically, after ¢ transitions in £, the number of arrivals in the associated Poisson
process is among i - k,i-k+1,...,i-k+(k—1),if D € HDf, and (i—1) - k+1, (i—1)-
k+2,...,i-k,if D € HDS.For B C Sg,i € Nlet Reach™ (B) := {0 € Pathg | oli] €
B}. Using 9y ; for the respective Poisson probabilities, we thus obtain:

Lemma 2. Let € be an Erlang-k interval process, t € R>o and B C Sg. Then
PrP (Reach<i(B)) = S22, (P (Reach™ (B)) - (3=t dns ) )

where j; = k foralli € N if D € HDY and jo = 1, j; = k fori € Nt if D € HDE.

Similar as in [2]], we can approximate the supremum/infimum w.r.t. the scheduler classes
HDZE and HD‘E by applying a greedy strategy for the optimal choices of distributions
P € T¢. A truncated, step-dependent scheduler is sufficient to achieve an accuracy of
1 — e where the error bound € > 0 is specified a priori. The decisions of this sched-
uler only depend on the number of transitions performed so far and its first N :=
N (€) decisions can be represented by a sequence Pq,...,Px € Tg. As discussed in
Section[3] it suffices if the matrices are such that only extreme distributions are involved.
As the principle for the greedy algorithm is similar for suprema and infima, we focus
on the former. Let i g be the vector of size |S¢| with ig(s) = 1 iff s € B. Furthermore,
Pyp:=Iandv; := Hl P,, - ip. We choose matrices P;, ¢ > 1 such that

m=0

|Pré(Reach<y(B)) — S Vilse) - at(Sp—o dns i)l < €.

The algorithm is illustrated in Fig. [Sl and has polynomial time complexity. Starting in
a backward manner, i.e., with P, vector ¢;* is maximized by successively assigning
as much proportion as possible to the transition leading to the successor s’ for which
qi'y1(s") is maximal. For every choice of a value P;(s, s") the transition probability
intervals for the remaining choices are normalized (compare Example[I). Note that the
algorithm computes bounds which may be with an error bound e below the actual value.
Thus, the computed lower bound may be lower than the actual lower bound. To assure
that the upper bound exceeds the actual upper bound, we add € to g;.

The following lemma is an adaptation of Th. 5] and states that the results are
indeed e-approximations of the supremum/infimum of the reachability probabilities.

Input: Erlang-k interval process &, Input: Erlang-k interval process &,
time bound ¢, set of states B time bound ¢, set of states B
Output: e-approx. gb of Pr (Reach<:(B))  Output: e-approx. ¢ of Pr§(Reach<(B))
Minimize ¢ where for1 <i < N Maximize q where for 1 <i < N
@ = ¥ae(0,k)ip +qi @ = a0, 1)in +aqi +e
¢ = Pau(ik, k) Piip + Pigly ' = Y1+ (i=1)k, k) Piip+Pi g’y
dni =0 v =0

Fig. 5. Greedy algorithm for infimum (left) and supremum (right) of time-bounded reachability
probabilities
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Table 2. Three-valued semantics of CSL

[true](s) =T [al(s) = L(s,a)

ler A 2] (s) = [pal(s) M e2(s)  [—e](s) = ([¢](s))°
T ifdtel: ([p2](c@t)=TAVE €[0,t): [p1](c@t) =T)

[erd ] (o) = { LifvVtel: (Je](c@t)y= LV It €[0,t): [p1](c@t) = L
7 otherwise

~—

T if Pri(s, 1 Z/{Igpz) > p <

[Pop(er U 2)](s) = { L if Pru(s, o1 U p2) <p >e{>>}a= {< :
7 otherwise -

if Pro(s, 1 U p2) p

-
[Pap(pr U 02)](s) = § L if Pri(s, 1 U p2) > p
7 otherwise

IA

> if <
e{<,§},>7{21fS

Lemma 3. For an Erlang-k interval process £, B C Sg, t > 0, error margin € > 0:

Prf (Reach<;(B)) > qh(se) > Pr{ (Reach<;(B)) — €
Pri(ReachSt(B)) < ql(se) < Pri(ReachSt(B)) +e.

We conclude this section with a result that allows us to use the algorithm presented
above to check if a reachability probability is at least (at most) p in the abstract model
and, in case the result is positive, to deduce that the same holds in the concrete model.

Theorem 4. For a CTMC C, an Erlang-k interval process € with C < &, compatible
sets B C S¢, B' C Sg, t >0, € > 0, the algorithm in Fig. Bl computes qf) and q§ with:

Pr¢(Reach<(B)) > Prf (Reach<i(B')) > qb(se) > Pr{ (Reach<;(B')) — ¢
Pr¢(Reach<y(B)) < Pr(Reach<;(B')) < q}f(sg) < Pré(Reach<(B')) + e.

6 Model Checking

The characterizations in Section [3] in terms of minimal and maximal time-bounded
reachability probabilities are now employed for model checking CSL on Erlang-k in-
terval processes. Therefore, we define a three-valued CSL semantics and show that ver-
ification results on Erlang-k interval processes carry over to their underlying CTMCs.

Three-valued semantics. For Erlang-k interval process £ = (S, P, P, \ k, L, so),
we define the satisfaction function [ - | : CSL — (S U Pathg — Bs) as in Table 2]
where s € S, &, is defined as £ but with initial state s and

[or U pa](0) =T}) (1)
[or U pa](0) # L}) )

For the propositional fragment the semantics is clear. A path o satisfies until formula

@1 Uy if ) definitely holds until ¢, definitely holds at the latest at time ¢. The
until-formula is violated, if either before @2 holds, ¢ is violated, or if 9 is definitely

Pri(s, 1 U ps) = Pr}gs({a € Pathg,
Pry(s, o1 UI<,02) = Pris({a € Pathg,
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violated up to time ¢. Otherwise, the result is indefinite. To determine the semantics
of P, (1 U%py), we consider the probability of the paths for which ¢y U0, is
definitely satisfied or perhaps satisfied, i.e., indefinite. If this probability is at most p
then P<, (1 U py) is definitely satisfied. Similarly, P<, (g1 U py) is definitely
violated if this probability exceeds p for those paths on which ¢ U9y, evaluates
to T. The semantics of P, (@1 UOUpy) for < € {<,>,>} follows by a similar
argumentation.

Theorem 5 (Preservation). For a CTMC C and an Erlang-k interval process € with
initial states s¢ and sg, if Sc = sg then for all CSL formulas p:

lel(se) #7 implies [p](se) = [¢](sc)-

Model checking three-valued CSL is, as usual, done bottom-up the parse tree of the
formula. The main task is checking until-subformulas P<,(a !*1b), which can be
handled as follows: As in [7]], the underlying transition system is transformed such that
there is one sink for all states satisfying b and another one for all states neither satisfying
a nor b. Thus, all paths reaching states satisfying b are along paths satisfying a, which
allows to compute the measure for reaching b states. However, before doing so, we
have to account for indefinite states (7 ): When computing lower bounds we consider
all states labeled by ? as ones labeled L, while we consider them as labeled T when
computing upper bounds, following equations (1)) and @).

Example 3. Consider Ex.[2] where state u (and thus A,) are labeled goal, and CSL for-
mula ¢ = P<g o(true U=12goal). Then ] (As) = T = [¢](s0) (compare Fig. 4). If
s1 was labeled goal as well then L(Ag, goal) =7 . Checking ¢ for satisfaction requires
an optimistic relabeling, i.e. we set L(As, goal) = T. Obviously, then ¢ is not satisfied
for sure. Analyzing the pessimistic instance with L( Ay, goal) = L however yields that
 is neither violated for sure (cf. Fig. 4). Therefore [¢](As) =? implying that either
the partitioning or the choice of & has to be revised in order to get conclusive results.

Theorem 6 (Complexity). Given an Erlang-k interval process £, a CSL formula o,
and an error margin €, we can approximate [¢] in time polynomial in the size of €
and linear in the size of ¢, the exit rate \ and the highest time bound t occurring in
(dependency on € is omitted as € is linear in \t). In case the approximation yields T or
L, the result is correct.

7 Case Study: Enzymatic Reaction

Markovian models are well established for the analysis of biochemical reaction net-
works [5IT5]]. Typically, such networks are described by a set of reaction types and the
involved molecular species, e.g., the different types of molecules. The occurrence of a
reaction changes the species’ populations as molecules are produced and/or consumed.

Enzyme-catalyzed substrate conversion. We focus on an enzymatic reaction network
with four molecular species: enzyme (F), substrate (,S), complex (C') and product (P)
molecules. The three reaction types R;, Re, R3 are given by the following rules:

R :E+S5C, Ry:C3E+4+S, R3y:CE+P
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The species on the left hand of the arrow (also called reactants) describe how many
molecules of a certain type are consumed by the reaction and those on the right hand
describe how many are produced. For instance, one molecule of type £ and S is con-
sumed by reaction Ry and one C' molecule is produced. The constants ¢y, ¢2, c3 € R
determine the probability of the reactions as explained below.

Concrete model. The temporal evolution of the system is represented by a CTMC as
follows (cf. [6]]): A state corresponds to a population vector x = (g, x5, vc,vp) € N*
and transitions are triggered by chemical reactions. The change of the current popula-
tion vector x caused by a reaction of type R,,, m € {1,2,3} is expressed as a vector
U Where v1 := (—1,—-1,1,0),v9 := (1,1,—1,0) and v3 := (1,0, —1, 1). Obviously,
reaction R,, is only possible if vector x + v,, contains no negative entries. Given an
initial state s := (sg, sg,0,0), it is easy to verify that the set of reachable states equals
S:={(zp,xs,2c,2p) | g + xc = Sg, s + xc +Tp = S5 }.

The probability that a reaction of type R, occurs within a certain time interval is
determined by the function o, : S — Rx¢. The value a,,,(z) is proportional to the
number of distinct combinations of R,,,’s reactants: a; (x) := cixprs, as () := cozc
and a3(z) := csxc. We define the transition matrix P of the CTMC by P(z,x +
Um) = apm(x) /X with exit rate A > max,es(aq(x) + az(z) + as(x)). Thus, state

has outgoing transitions x oml@)/A, T+ vy, for all m with x+v,, > 0 and the self-loop

probability in z is P(z, ) := 1 — (a1(z) + a2(x) + as(z)) /.

We are interested in the probability that within time ¢ the number of type P molecules
reaches threshold n := sg, the maximum number of P molecules. We apply labels
AP :={0,1,...,n}andfor0 < a < nlet L(z,a) := T ifx = (zg,xs,xc,xp) With
zp = a and L(x,a) := L otherwise. For the initial populations, we fix sz = 20 and
vary sg between 50 and 2000.

Stiffness. In many biological systems, components act on time scales that differ by
several orders of magnitude which leads to stiff models. Traditional numerical analysis
methods perform poorly in the presence of stiffness because a large number of very
small time steps has to be considered. For the enzymatic reaction, stiffness arises if
co > c3 and results in a high self-loop probability in most states because A is large
compared to ay(z) + az(z) + ag(x). Thus, even in case of a small number |S| of
reachable states, model checking properties like P<q o (true U 0:t]n) is extremely time
consuming. We show how our abstraction method can be used to efficiently verify prop-
erties of interest even for stiff parameter sets. We choose a realistic parameter set of
c1 = cg = 1 and ¢3 = 0.001. Note that the order of magnitude of the expected time
until threshold n = sg = 300 is reached is 10* for these parameters.

Abstract model. For the CTMC C := (S,P,\, L, s) described above, we choose par-
titioning A := {Ao, ..., A} with A, := {z € S| L(z,a) = T}, that is, we group
all states in which the number of molecules of type P is the same. Some important
remarks are necessary at this point. Abstraction techniques rely on the construction of
small abstract models by disregarding details of the concrete model as the latter is too
large to be solved efficiently. In this example, we have the additional problem of stiff-
ness and the abstraction method proposed here can tackle this by choosing high values
for k. Then one step in the Erlang-k interval process happens after a large number of
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arrivals in the underlying Poisson process and the self-loop probability in the abstract
model is much smaller than in the concrete one. We chose k € {219 211 212} for the
construction of the Erlang-% interval process abstr(C, A, k) and calculate the transition
probability intervals by taking the k-th matrix power of P. The choice for k is reason-
able, since for a given error bound ¢ = 10719, sg = 300 and ¢t = 10000, a transient
analysis of the concrete model via uniformization would require around 6 - 107 steps.
By contrast, our method considers k steps in the concrete model and around (6 - 107) /k
steps in the smaller abstract model. Thus, although the construction of the Erlang-%
interval process is expensive, the total time savings are enormous. We used the MAT-
LAB software for our prototypical implementation and the calculation of P* could be
performed efficiently because P2’ can be computed using j matrix multiplications. As
for non-stiff models a smaller value is chosen for k, it is obvious that upper and lower
bounds for the k-step transition probabilities can be obtained in a local fashion, i.e. by
computing the k-th matrix power of submatrices of P. Therefore, we expect our method
to perform well even if |S| is large. However, for stiff and large concrete models more
sophisticated techniques for the construction of the abstract model must be applied that
exploit the fact that only upper and lower bounds are needed.

Experimental results. For ss = 200 we compared
the results of our abstraction method for the probabil-
ity to reach A,, within time bound ¢ with results for
the concrete model that were obtained using PRISM.
While it took more than one day to generate the plot
for the concrete model in Fig. [7 right, our MATLAB
implementation took less than one hour for all three
pairs of upper and lower probability bounds and dif-
ferent values of tfl Our method is accurate as the
obtained intervals are small, e.g., for sg = 200,
k = 2'2,t = 14000 the relative interval width is ~ Fig-6. Computation times

419 time

50 861 Om b5s
300 6111 37m 36s
500 10311  70m 39s
1000 20811 144m 49s
1500 31311 214m 2s
2000 41811 322m 50s

! 1 _ —
09 —
-
0.8 08 /
k=1024, min
3 0.7 g / k=1024, max
c c > k=1024, diff
H 06 3 06 va k=2048, min
205 ; /,/ k=2048, max
£ £ / k=2048, diff
8 04 S 04l / ———— k=4096, min
& o / —— k=4096, max
0s o k=4096, diff
/ — * — concrete model
0.2 02 v
0.1 /
0 L L P L .
150 200 250 300 350 400 450 500 10.000 12.000 14.000 16.000 18.000 20.000
substrates time bound

Fig. 7. Time-bounded reachability

2 Both jobs were run on the same desktop computer (Athlon 64 X2 3800+, 2GB RAM).
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10.7%. Fig. [1 left, shows the lower and upper probability bounds using k = 2'2,
t = 20000 and varying sg. For high values of sg, e.g., ss = 500 the construction
of the Erlang-£ interval process took more than 99% of the total computation time
as the size of the transition matrix P is 10* x 10* and sparsity is lost during matrix
multiplication. We conclude this section with the additional experimental details on
computation times, given in Fig.[ using k& = 2'2, ¢ = 50000 (and sg = 200).

Note that for this case study exact abstraction techniques such as lumping do not
yield any state-space reduction.

8 Conclusion

We have presented an abstraction technique for model checking of CTMCs, presented
its theoretical underpinnings, as well as an the application of the abstraction technique
to a well-known case study from biochemistry. The main novel aspect of our approach is
that besides the abstraction of transition probabilities by intervals [10/17], sequences of
transitions may be collapsed yielding an approximation of the timing behavior. Abstract
Erlang k-interval processes are shown to provide under- and overapproximations of
time-bounded reachability probabilities. Our case study confirms that these bounds may
be rather accurate. Future work will focus on automatically finding suitable state-space
partitionings, and on guidelines for selecting k appropriately. As shown by our case
study, for stiff CTMCs, a high value of k is appropriate. This is, however, not the case
in general. We anticipate that graph analysis could be helpful to select a “good” value
for k. Moreover, we plan to investigate memory-efficient techniques for computing
k-step transition probabilities and counterexample-guided abstraction refinement.
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Abstract. This paper presents a novel algorithm to compute weak bisim-
ulation quotients for finite acyclic models. It is developed in the setting of
interactive Markov chains, a model overarching both labelled transition
systems and continuous-time Markov chains. This model has lately been
used to give an acyclic compositional semantics to dynamic fault trees, a
reliability modelling formalism.

While the theoretical complexity does not change substantially, the al-
gorithm performs very well in practice, almost linear in the size of the in-
put model. We use a number of case studies to show that it is vastly more
efficient than the standard bisimulation minimisation algorithms. In par-
ticular we show the effectiveness in the analysis of dynamic fault trees.

1 Introduction

Determining the minimum bisimulation quotient of a behavioural model is one of
the principal algorithmic challenges in concurrency theory, with concrete applica-
tions in many areas. Together with substitutivity properties enjoyed by process
algebraic composition operators, bisimulation is at the heart of compositional ag-
gregation, one of the most elegant ways to alleviate the state space explosion prob-
lem: In compositional aggregation, a model is composed out of sub-models. During
generation of its state-space representation, composition and minimisation steps
are intertwined along the structure of the compositional specification. This strat-
egy is central to explicit-state verification tools such as yCRL ﬂ] and CADP&],
and arguably a central backbone of their successes in industrial settings |7,

The algorithmic problem to minimise alabelled transition system with respect to
bisimulation is well studied. For strong bisimulation, a partition refinement based
approach Hﬂ] can be used to achieve an algorithm with complexity O(m logn),
where m and n denote the number of transitions and states of the model. The com-
putation of weak and branching bisimulation is theoretically dominated by the need
to compute the transitive closure of internal transitions. This directly determines
the overall complexity to be O(n?) (disregarding some very specialized algorithms
for transitive closure such as []). As first noted in ﬂﬁ], the transitive closure com-
putation does not dominate in practical applications, and then the complexity is
O(m*logn), where m* is the number of transitions after closure.

* This work is supported by the DFG as part of the Transregional Collaborative Re-
search Center SFB/TR 14 AVACS and by the European Commission under the IST
framework 7 project QUASIMODO.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 295 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Lately, the growing importance of the minimisation problem has triggered
work in at least three different directions. Orzan and Blom have devised an
efficient distributed algorithm for bisimulation minimisation, based on the no-
tion of signatures E] Wimmer et al. M] have taken up this idea to arrive at
a fully symbolic implementation of the signature-refinement approach, to effec-
tively bridge to BDD-based representations of state spaces. In E], an algorithm
with O(m) complexity has been proposed for deciding strong bisimulation on di-
rected acyclic graphs. Mateescu [20] developed an @(m) algorithm for checking
modal mu calculus on acyclic LTS, which can be instantiated to checking weak
bisimulation, then requiring O(m?).

Stochastic behavioural models are among the most prominent application
areas for bisimulation minimisation and compositional aggregation techniques
B, ] They are used to model and study ‘quantified uncertainty” in many
areas, such as embedded, networked, randomized, and biological systems. Inter-
active Markov chains (IMCs) m] constitute a process algebraic formalism to
construct such models. Recently, an extension of IMCs with input and output
(IOIMCs) [@] has been introduced to define a rigorous compositional semantics
for dynamic fault trees (DFTs). Fault trees and DFTs are in daily use in indus-
trial dependability engineering ﬂﬁ, } The analysis of DFTs via their IOIMC
semantics relies heavily on compositional aggregation and weak bisimulation
minimisation @] Remarkably, the IOIMC semantics maps on acyclic structures.
This is the main motivation for the work presented in this paper. We show how
to effectively exploit acyclicity of the model in weak bisimulation minimisation.
Since (IO)IMCs are a strict superset of LTSs, our results apply to LTSs as well.

The problem of weak bisimulation minimisation on acyclic models is sub-
stantially different from the strong bisimulation problem. While not directly
developed for LTSs, the rough idea of E] is to assign to each state a rank which
corresponds to the length of the longest path from the state to one of the absorb-
ing states. Observing that (i) transitions always move from higher rank states
to lower rank states, and (ii) only states on the same rank can be bisimilar.
allows one to arrive at a linear algorithm. Especially condition (i) is invalid in
the weak setting. To overcome this, we use elaborated rank-based techniques to
partition the state space on-the-fly during the computation of the weak bisimu-
lation quotient. The resulting algorithm is of linear time complexity in m*, the
size of the weak transition relation. We provide experimental evidence that in
practice, the algorithm runs even in linear time in the size of the original relation
m. The contributions are developed in the setting of IMCs.

Organisation. The paper is organised as follows. After giving preliminary defi-
nitions we discuss in Section Bl how to adapt the strong bisimulation algorithm
for acyclic digraphs in [9] to IMCs. Section [ is devoted to a novel algorithm
for weak bisimulation on acyclic IMCs. Section [ discusses two extensions which
allow us to handle the models appearing in DFT analysis. Section [@ presents
experimental results after we which we conclude.

Detailed proofs for the theorems in this paper can be found in B]
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2 Preliminaries

In this section we introduce the definition of acyclic interactive Markov chains,
strong and weak bisimulations [@]

Definition 1. An interactive Markov chain (IMC) is a tuple (S, s°, A, R;, Rys)
where: S is a finite set of states, s° € S is the starting state, A is a finite set of
actions, R; C Sx Ax S is the set of interactive transitions, and Ry C SxR>9x S
1s the set of Markovian transitions.

The label 7 is a assumed to be contained in A, it denotes the internal, unob-
se/{vable action. For (s,a,t) € R; we write s—'t and for (s, \,t) € Ry we write
s5Mt Let R = R; U Ry We write s—=s' if (s,2,5') € R. In this case x is either
an action or a Markovian rate. We write s—‘t for any interactive transition from
s to t and s—™t for any such Markovian transition.

States with outgoing 7-transitions are called unstable. States without outgo-
ing 7-transitions are called stable. We write the reflexive and transitive clo-
sure of all internal transitions s—»'s’ as == and say that if s==s’ then s
may move internally to state s'. For s==s'5is"==5"" we write s=='s""’. For
s 5! M g T g1 e write s=2sM s, For s==>s'Zss" =255 we write s==>s"".

The cumulative rate from a state s to a set of states C, denoted ~v,,(s,C), is
the sum of the rates of all Markovian transitions from s to states in C: v,,(s,C) =
SN (s, A\, t) € Ry At € O}, where {]...|} denotes a multi-set. The internal
backwards closure of a set of states C, denoted C7 is the set of all states that
can reach a state in C' via zero or more 7-transitions: C7 = {s | s==t At € C}.

A (finite) path 7 is a sequence ™ = soxgs127 . . . 5, in (S x (AUR>?))* x S such
that s;—>s;,1 for alli = 0,1,...,n — 1. For a path 7 we let first(r) denote the
first state so of m, last(m) denote the last state of a finite 7, 7[i] denote the i+ 1-th
state s; of 7, m,[i] denote the i+ 1-th label z; of 7, and len(7) denote the length
n of m. Moreover, we let wlen(mw) = {|mali] | i = 0,...,len(m) — 1 A ma[i] # 7|}
denote the weak length of 7, which corresponds to the number of observable
actions of 7. We write s’ if first(n) = s and last(m) = s’. We write the set of
all paths starting from a state s as Paths(s) = {n | 35’ € S - 5T’} A path 7
such that s3s and len(m) > 0 is called a cycle.

The mazimal progress assumption is usually employed when working with
IMCs. It states that if an unobservable (7) transition is possible in a state,
no time may advance prior to taking this (or any other action) transition. In
other words, in an unstable state the chance of taking a Markovian transition
is given by the probability that the delay associated with the transition is less
than or equal to 0. However, this probability is 0, and thus we qualify such
a transition as not plausible. Semantically, their existence is negligible, which
will become apparent in the definition of strong and weak bisimulation. On the
other hand, all interactive transitions and all Markovian transitions from stable
states are plausible. A path m = sgxq...s, is plausible if it holds that: for all
1=0,...,n—1,if siiMsiH then s; is stable. We write the set of all plausible
paths starting from a state s as Paths® (s). A plausible path 7 from s to t is
denoted 557t
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Definition 2. An IMC P = (S,s°, A, R;, Ryr) is acyclic if it does not contain
any plausible path m with s5Fs and len(r) > 0 for any s € S.

An acyclic IMC only contains finite plausible paths since the set of states is by
definition finite. We recall the definition of strong and weak bisimulations.

Definition 3. Let P = (S,s%, A, R;, Rys) be an IMC. An equivalence relation
E on S is a strong bisimulation if and only if s€t implies for all a € A and
all equivalence classes C' of £, that s—'s" implies t—'t' with s'Et’, and s stable
implies Yy (s,C) = vu(t, C).

Two states s,t of P are strongly bisimilar, written s ~ t if there exists a strong
bisimulation £ such that s&t.

Definition 4. Let P = (S,5°, A, R;, Ryr) be an IMC. An equivalence relation £
on S is a weak bisimulation if and only if sEt implies for all a € A (including T)
and all equivalence classes C of &, that s=='s' implies t=="t" with s'Et', and
s==s" and s' stable imply t==-t' for some stable t' and vy, (s',C7) = vy (t',C7).

Two states s,t of P are weakly bisimilar, written s ~ t if there exists a weak
bisimulation € such that s ~ t.

Strong, respectively weak bisimilarity is the largest strong, respectively weak
bisimulation [16]. For an IMC (S, s°, A, R;,0) the above definitions reduce to
Milner’s standard definitions on labelled transition systems ﬂﬂ]

3 Strong Bisimulation for Acyclic IMCs

To decide strong bisimulation on unlabelled acyclic digraphs, a linear-time al-
gorithm has been developed in E], which is based on state ranking. To handle
labelled transition systems, the authors encode them into unlabeled graphs, for
which strong bisimulation can then be decided. In this section, we extend their
rank-based algorithm in E] to decide strong bisimulation directly for IMCs.

We adapt the notion of ranks for acyclic IMCs. The rank of absorbing states
is 0, for other states it is the longest distance to a state on rank 0. So the rank
of a state is the length of the longest path starting in that state.

Definition 5. The rank function R : S — N is defined by: R(s) = max{len(r) |
7 € Paths®(s)}.

Since in acyclic IMCs all plausible paths are finite, we have that R(s) < oo.
If state s has a higher rank than state ¢, we say also that s is higher than ¢.
By definition, transitions always go from higher states to lower states. Before
continuing, we state an important observation about the relationship between
strong bisimilarity and ranks.

Theorem 1. If two states of P are strongly bisimilar they are on the same rank:
Vs,t € S-s~t— R(s)=R(t).
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Algorithm 1. Determining the strong bisimilarity quotient for an acyclic IMC
Require: P = (S,s°, A, R;, Ry) is an acyclic IMC.

1: R = CoMPUTERANKS()

2: mazrank = maz{n | s € S AR(s) = n}

3: BLOCKS = ({{s|s € SAR(s) =n}} | n« (0... mazrank))

4: matriz = 0; rate = 0

5: for i = 0 to mazrank — 1 do

6: for all (s,a,B) € {(s,a,B) | B€ BLOCKS[i| A3t € B (s,a,t) € R;} do

7 matriz[s][a][B] = 1

8:  for all (s,\,B) € {|(s,\,B) | B€ BLOCKS[i{JA3t € B-(s,\,t) € Ry|} do
9: if s stable then

10: rate[s][B] = rate[s][B] + A
11:  for j =i+ 1 to maxrank do
12: BLOCKS[j] = U{{{t | t € B A matriz[t] = matriz[s] A rate[t] = rate[s]} | s €

B} | B € BLOCKS[j]}

The above theorem mirrors Proposition 4.2 in E] and implies that only states
on the same rank can be bisimilar. Since transitions go from higher states to
lower states, whether two states on the same rank are bisimilar depends only
on the states below them. The main idea of the algorithm is to start with the
states on rank 0 and to process states rank by rank in a backward manner.
The algorithm is presented in Algorithm [l The input is an acyclic IMC. Lists
(and tuples) are written by: (...). The state ranks are computed in line [[l with
a simple depth first search (time-complexity O(m)). The partition BLOCKS is
initialised such that states with the same rank are grouped together. During the
algorithm, we use BLOCKS[i] to denote the partition of the states with rank
1. The matrices matriz and rate respectively denote the interactive transitions
and the cumulative rates from states to blocks of bisimilar states. The algorithm
starts with the rank 0 states which are all strongly bisimilar. Then, it traverses
the transitions backwards to refine blocks on the higher level according to the
bisimulation definition. Observe that in iteration 7 all states with ranks lower
than 7 have been processed. Since each transition is visited at most once, the
algorithm runs in linear time.

Theorem 2. Given an acyclic IMC P, Algorithm [ computes the strong bisim-
ulation correctly. Moreover, the time-complezity of the algorithm is O(m).

4 Weak Bisimulation Minimisation

Weak bisimulation (or observational equivalence ﬂ2_1|]) differs from strong bisim-
ulation in that only visible behavior has to be mimicked (see Definition [). In
general weak bisimulation can be computed by first computing the reflexive
transitive closure of internal transitions == and then computing the weak tran-
sitions s==t from s==t « s=='5t'==t. Once we have computed the weak
transition relation we can then compute weak bisimulation simply by computing
strong bisimulation on the weak transition relation.
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If we try this strategy for acyclic models we quickly run into a problem, since
the weak transition relation of an acyclic model is not acyclic, it contains cycles
s==s for each state s. Thus we cannot simply apply Algorithm [ to the weak
transition relation.

Of course it is easy to see that these T
self-loops will be the only cycles. A naive ap-
proach would then simply remove these self-
loops from the weak transition relation and
apply Algorithm [ to this modified weak tran-
sition relation. This approach however does
not work. Consider IMC P in Figure [l Tt
is obvious that states s; and s3 are weakly
bisimilar, while the naive approach would de-
cide that they are not, since s; can do the
weak transition s;==>s3, which s3 seemingly
cannot simulate if we do not consider the 7-
loop $3—=>s5. Even if we would memorize that
each state has a 7-loop, and treat this case separately in the algorithm, this is
not enough, since there is a fundamental difference to the strong case. We find
in fact that Theorem [ does not hold for weak bisimulation! States s; and s3
have different ranks (2 and 1 respectively) but they are still weakly bisimilar.
We can however, define a different ranking of states for which a similar theorem
does hold.

Fig. 1. An acyclic IMC P

4.1 Weak Ranks

Let P = (5,5, A, R;, Rys) be an acyclic IMC. To find the weak rank of a state
we do not look at the longest path starting in that state but we find the longest
path counting only the observable transitions.

Definition 6. We define the notion of weak rank (or the observable rank) RW :
S — N of a state s as the maximum weak length of all plausible paths starting
in s: RV (s) = maz{wlen(r) | m € Paths® (s)}.

For weak ranks we can establish a theorem similar to Theorem [Tl

Theorem 3. If two states of P are weakly bisimilar they have the same weak
rank: Vs,t € S-s~t— RW(s) =RW(¢).

For strong bisimulation and ranks we found the property that strong bisimu-
lation for states on a certain rank only depends on the states below this rank.
Unfortunately, this property does not hold for weak ranks. Consider again IMC
P in Figure[ll State s5 has weak rank 0 whereas all other states have weak rank
1. If we consider only weak transitions to the states on rank 0 we are tempted to
conclude that sg, s1, s2 and sz are all weakly bisimilar, since they can all do the
weak moves == s5 and =55, while state s4 can only do the weak move =55,
However state so can also do the move so==s4 which s1, for instance, cannot
simulate and thus sg and s; are actually not weakly bisimilar.
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4.2 A Different Way of Partitioning the State Space

To make use of the acyclicity of our models in computing weak bisimulation we
need to order the state space such that (i) weak bisimilarity of states on order
x only depends on the bisimilarity of states of a lower order, and (ii) all states
that are weakly bisimilar have the same order. However, we have seen that the
weak rank does not satisfy the first requirement and the rank does not satisfy
the second.

We introduce the notion of level of a state, which is computed on-the-fly,
to order the state space. A level function L maps states to some ordered well-
founded set W, such that for state s, level L(s) is the smallest value satisfying
the following conditions

1. State s has no outgoing transitions to any other state ¢t on a level higher
than L(s): st implies L(s) > L(t).

2. State s has no outgoing observable transitions to any state ¢ on level L(s):
s5t A L(s) = L(t) implies a = 7.

3. State s has no outgoing 7-transitions to any state ¢t on level L(s), unless s is
weakly bisimilar to ¢: s—»t A L(s) = L(t) implies s ~ t.

Notably, partitioning the state space in such levels satisfies the two requirements
(i) and (ii) above: If a state s has a level higher than ¢ they cannot be weakly
bisimilar since s must have a transition to a non-bisimilar state that is at least on
the same level as ¢t. Furthermore the bisimilarity of two states on a level 7 depends
only on lower levels since weak transitions to bisimilar states can, by definition,
always be simulated. However, if we want to use such a level function to compute
the weak bisimulation for an acyclic IMC P = (S,s°, A, R;, Ryr), we are in a trap,
because condition 3 relies on knowledge about the weak bisimulation classes.

Our algorithm exploits that we can — for a particular level — obtain the re-
quired bisimulation knowledge by only looking at an IMC that is spanned by
lower levels. This allows us to increment our knowledge about both L and =~
while ’climbing up’ the transitions, starting with absorbing states. Technically,
we are working with a sequence of partial functions L}, ..., L} (L} : S — W)
that satisfy (in set notation) L; C Lj,, and that must converge towards the
total function L in finitely many steps. For a given partial function I/, and a
fixed level w € W, the IMC spanned by level w is defined by restricting the
transitions of P to only those transitions which are part of the weak transition
relation to states s with level L/(s) < w.

Definition 7. For an acyclic IMC P, a partial function L' : S — W to an
ordered well-founded set, and an element of the ordered set w € W the IMC
spanned by level w is Py, = (S, 5", A, R, RY,), where:

RY = {(s,7,t) | -t==t' NL'(t') <wA (s,7,t) € R;}
U{(s,a,t) | It -t=="t' AL'(t') <wA(s,a,t) € R;}
RY = {(s,\t) | 3 - t=="t' AL'(t') <wA (s,\,t) € Rar}
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Algorithm 2. Determining the weak bisimilarity quotient for an acyclic IMC
Require: P = (S, 5%, A, R;, Ry) is an acyclic IMC.

1: (RY, #wout) = COMPUTERANKS(P)
2: mazwrank = maz{n | s € S ARY (s) = n}
3: BLOCKS = ({{s|s € SAR"Y(s) =n}} | n — (0... mazwrank))
4: matriz = 0; rate =0
5: for i = 0 to mazrank do
6: LSTATES = {s | RY (s) = i A #wout(s) = 0}
7. NSTATES =0
8 j=0
9:  while LSTATES # () do
10: COMPUTELEVEL(P, BLOCKS|i], LSTATES, NSTATES)
11: LBLOCKS = {{s | s € BAs € LSTATES} | B € BLOCKS]i]}
12: for all (s,a,B) € {(s,a,B) | B € LBLOCKS A3t € B-s=='t} do
13: matriz[s]a][B] = 1
14: for all (s,\,B) € {(s,\,B) | B € LBLOCKS A3t € S -s=="t At stable A
vu(t, BT) = A} do
15: rate[s|[B] = A
16: for k =i to mazxrank do
17: BLOCKSIk] = U{{{t | t € B A matriz[t] = matriz[s] A rate[t] = rate[s]} |
s € B} | B € BLOCKS[k]}
18: LSTATES = {s | s € NSTATES A #wout(s) = 0}
19: NSTATES =0
20: j=j+1

Our intention is to reformulate conditions 2 and 3 above to the following: if a
state s has a level L'(s) = w and w’ is the largest value smaller than w appearing
in the range of I/, then for all transitions st we find:

1. State ¢ has a level strictly lower than w, or
2. State t has level w and is weakly bisimilar to s on the IMC spanned by level
w'.
This property holds indeed for our algorithm, because the sequence L}, ..., L},
is constructed level-by-level, starting from the bottom level. The algorithm also
implies that if I/(s) is defined, then L’ is defined for all states reachable from s
as well, which is a requirement for the above idea to work.

Algorithm Bl computes the levels while traversing the state space, and while
computing the weak bisimulation relation for an acyclic IMC. Line 1 calculates
the weak rank and the number of outgoing weak transitions for every state.
Notably, the levels (line 10) and the weak bisimulation relation (lines 12 to 17)
are calculated per weak rank. This is justified by Theorem [Bl In other words,
we fix W = N x N where the first component is the weak rank, and use the
(lexicographic) order on pairs (z,y) > (2/,y) < x>2'V(e=2"Ny>y).
For each iteration of the loop 9-20 the set LSTATES then contains exactly those
states which have level (i, j), see Definition B below, and the set LBLOCKS
partitions LSTATES into sets of weakly bisimilar states. The set NSTATES
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Algorithm 3. CoMPUTELEVEL(P, BLOCKS, LSTATES, NSTATES)

1: for all States s in LSTATES do
2:  for all Transitions s € R; with R" () = R" (s) do
H#wout(t) = #wout(t) — 1
if =3B € BLOCKS - s,t € B then
NSTATES = NSTATES U {t}
else
if #wout(t) =0ANt ¢ NSTATES then
LSTATES = LSTATES U {t}

contains all states with weak rank 4, level greater than (7, ) and at least one
transition to a state on level (4, 7).

Theorem 4. Given an acyclic IMC P, Algorithm[2 computes the weak bisimu-
lation correctly. Moreover, the time-complexity of the algorithm, given the weak
transition relation, is O(n?). The space complexity is O(n?).

4.3 Correctness

We give here an extended sketch of the proof of correctness for Algorithm Pl For
the full proof we refer to B] First we define the notion of the level of a state
based on the two conditions given at the end of Subsection .2

Definition 8 (Level (i,7)). Let P = (S,s° A, R;, Ryr) be an acyclic IMC. We
define the set of all states in P with level (i, j), written L; j) as the largest set
for which the following holds:

s€Luj = RY(s)=in-3j <j-s€Ly,HNA
Vst L(t) < (i,5) V (t € Ly Ns ~ t)

We write L(s) = (i,7) if and only if s € L(; ;).

To prove that Algorithm [2is correct we prove that it computes in each iteration
(i,7) of the loop 9-20, the set of states on level (i,j) LSTATES (line 10) and
weak bisimulation on the IMC spanned by level (i,j) BLOCKS (lines 16-17).
By computing the set of states on level (i, j) we also further refine the partial
function I/ in each iteration, which is initially completely undefined. By iteration
(,7) we mean that pass of loop 9-20 where variables ¢ and j have those partic-
ular values. Line 1 computes, for each state, its weak rank and the number of
outgoing transitions to states on the same weak rank (#wout(s)). For each weak
rank ¢ the loop 9-20 terminates having computed the weak bisimulation on the
IMC spanned by the maximum possible level for weak rank 4, denoted (i, max;).
The algorithm then terminates after computing weak bisimulation for the IMC
spanned by the maximal level for the maximal weak rank which is equivalent to
the IMC itself.

First we consider the computation of weak bisimulation on IMCs spanned by
the different levels. Line 3 initializes BLOCKS such that all states are partitioned
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according to weak rank, this is justified by Theorem[3l For level (0,0) weak bisim-
ulation on P(g ¢y is computed in lines 12-19. For a level (i,0) > (0,0) we compute
weak bisimulation on P(; gy by refining weak bisimulation on P(;_1 max,_,)- We
do this by considering all the weak transitions to states on level (i,0) in lines
12715E|, note that we compute the set of states on level (i,0) in that same iter-
ation on line 10. Here it is assumed that the partition of states on level (i,0),
LBLOCKS, is the partition according to weak bisimilarity on P. This is correct
since the only outgoing weak transitions for states on level (7,0) we have not yet
considered are those that go to other states on level (7,0). But, by Definition [
such transitions are 7 transitions which go to bisimilar states and such transi-
tions can always be simulated. This then means that in line 17 weak bisimulation
on P(; o) is computed. The same holds for iteration (4, j) with j > 0 where weak
bisimulation on P(; ;_1) is refined to weak bisimulation on P(; ;.

Now we consider the computation of levels. For every weak rank ¢ line 6 ini-
tializes LSTATES to all states on weak rank ¢ with only transitions to states
levels lower than (4,0). By definition these states must have level (¢,0). Line 7
initializes NSTATES to (). The function COMPUTELEVEL then considers all
T-transitions to states in LSTATES. If a state is found which has a 7-transition
to a non-bisimilar state - with respect to transitions to states on levels below
(4,0), and note that we have computed this relation in the previous iteration -
on level (7,0) then we add this state to NSTATES since we are sure it has level
higher than (7, 0). If the condition of line 7 of COMPUTELEVEL is met for a state
t then all outgoing transitions of ¢ must go to lower levels or to bisimilar states
on level (7,0) which means that ¢ also has level (i,0). When COMPUTELEVEL
terminates we must have found all states on level (i,0) because the model is
acyclic. Now NSTATES contains all states with at least one transition to level
(,0). For those states s in NSTATES which now have #wout(s) = 0 (line 18
of Algorithm [2) we know that they only have transitions to states lower than
(7,1) and thus they must have level (7,1). In this way we compute all the levels
recursively. For each weak rank loop 9-20 must terminate since there are only a
finite number of states on that weak rank. Acyclicity also ensures that we must
encounter and assign a level to all states in the function COMPUTELEVEL.

This shows that in each iteration (7,j) of loop 9-20 the states on level (i, j)
and P(; jy are computed. Finally then weak bisimulation on P spanned by the
maximum level (i, jm) is computed. Since all states must have a level smaller
than or equal to the maximum we find that P, ; )= P.

4.4 Complexity

We first discuss the complexity of the algorithm itself. Afterwards we discuss the
time needed to compute the weak transition relation. In the following n, m and
[ are used the denote the number of states (|S]), transitions (|R;| + |Ras|) and
the number of actions (] A|) respectively.

! We only consider the weak transition relation to states on level (4, 0) while P(; o) also
contains transitions above this level. However, we will consider these transitions in
later iterations of the algorithm.
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The ranks are computed with a simple depth-first search which can be done in
time O(m). The level computations are also done in time O(m) as each state is
evaluated exactly once in Algorithm [l and in each such evaluation all incoming
transitions are considered once. For the partitioning of the state space in weakly
bisimilar blocks every state is considered exactly once, since we only consider
states in blocks that we do not have to partition anymore. For each state we
must consider each incoming weak move in the weak transition relation. The
time complexity is then in the order of the size of the weak transition relation
which is O(n?). There can be at most n partitions (in the case that there are no
bisimilar states at all) so we must make at most n partitions which then takes
O(n) time.

The