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Preface

This volume contains the proceedings of the 19th International Conference on
Concurrency Theory (CONCUR 2008) which took place at the University of
Toronto in Toronto, Canada, August 19–22, 2008. CONCUR 2008 was co-located
with the 27th Annual ACM SIGACT-SIGOPS Symposium on the Principles
of Distributed Computing (PODC 2008), and the two conferences shared two
invited speakers, some social events, and a symposium celebrating the lifelong
research contributions of Nancy Lynch.

The purpose of the CONCUR conferences is to bring together researchers,
developers, and students in order to advance the theory of concurrency and
promote its applications. Interest in this topic is continuously growing, as a
consequence of the importance and ubiquity of concurrent systems and their
applications, and of the scientific relevance of their foundations. Topics include
basic models of concurrency (such as abstract machines, domain theoretic mod-
els, game theoretic models, process algebras, and Petri nets), logics for con-
currency (such as modal logics, temporal logics and resource logics), models of
specialized systems (such as biology-inspired systems, circuits, hybrid systems,
mobile systems, multi-core processors, probabilistic systems, real-time systems,
synchronous systems, and Web services), verification and analysis techniques for
concurrent systems (such as abstract interpretation, atomicity checking, model-
checking, race detection, run-time verification, state-space exploration, static
analysis, synthesis, testing, theorem proving and type systems), and related pro-
gramming models (such as distributed or object-oriented).

Of the 120 regular and 5 tool papers submitted this year, 33 regular and
2 tool papers were accepted for presentation and are included in the present vol-
ume. During the reviewing process, at least three reviews were collected for each
regular paper and at least four reviews for each tool paper. In total, 416 reviews
were collected.

The conference also included talks by:

– Tevfik Bultan (University of California, Santa Barbara, USA)
– Joseph Halpern (Cornell University, Ithaca, USA) – shared with PODC
– Prakash Panangaden (McGill University, Montreal, Canada) – shared with

PODC
– Shaz Qadeer (Microsoft Research, Redmond, USA)

Abstracts of these talks can be found in the present volume.
The symposium “Nancy Lynch Celebration: Sixty and Beyond” included

talks by:

– Hagit Attiya (Technion, Haifa, Israel)
– Michael Fischer (Yale University, New Haven, USA)
– Seth Gilbert (EPFL, Lausanne, Switzerland)
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– Maurice Herlihy (Brown University, Providence, USA)
– Roberto Segala (University of Verona, Italy)
– Jennifer Welch (Texas A&M University, College Station, USA)

CONCUR 2008 had eight satellite workshops:

– Workshop on Approximate Behavioral Equivalences (ABE 2008), organized
by Franck van Breugel

– International Workshop on Concurrency in Enterprise Systems
(COINES 2008), organized by Matthias Anlauff and Asuman Suenbuel

– Workshop on Distributed Computing, Concurrency Theory, and Verification
(DisCoVeri 2), organized by Yoram Moses, Uwe Nestmann and Mark R.
Tuttle

– 15th International Workshop on Expressiveness in Concurrency (EXPRESS
2008), organized by Daniele Gorla and Thomas Hildebrandt

– Workshop on Formal Methods for Wireless Systems (FMWS 2008), orga-
nized by Jens Chr. Godskesen and Massimo Merro

– 10th International Workshop on Verification of Infinite-State Systems
(INFINITY 2008), organized by Peter Habermehl and Tomás Vojnar

– 6th International Workshop on Security Issues in Concurrency (SecCo 2008),
organized by Steve Kremer and Prakash Panangaden

– Young Researchers Workshop on Concurrency Theory (YR-CONCUR 2008),
organized by Joost-Pieter Katoen and P. Madhusudan

We would like to thank the Program Committee members and the refer-
ees who assisted in the process of putting together an excellent scientific pro-
gram for CONCUR. Many thanks to the Workshops Chair, Richard Trefler, and
the workshop organizers. We would also like to thank the invited speakers, the
authors of submitted papers, and the participants of the conference. Finally,
we thank Joan Allen and many volunteers from the University of Toronto and
York University without whom the conference could not run, as well as the
organizers of PODC (Rida Bazzi, Faith Ellen, Boaz Patt-Shamir, Eric Ruppert,
and Srikanta Tirthapura) and the organizers of the symposium for Nancy Lynch
(Hagit Attiya, Victor Luchangco, Roberto Segala, Frits Vaandrager and Jennifer
Welch), who helped shape the common agenda of the event.

We gratefully acknowledge the use of easychair for conducting the review
process and support from ACM’s SIGACT and SIGOPS, the Fields Institute,
IBM, Microsoft, SAP, the Department of Computer Science of the University
of Toronto, and the Department of Computer Science and Engineering of York
University.

June 2008 Franck van Breugel
Marsha Chechik
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Beyond Nash Equilibrium:
Solution Concepts for the 21st Century

Joseph Y. Halpern�

Cornell University

Nash equilibrium is the most commonly-used notion of equilibrium in game theory.
However, it suffers from numerous problems. Some are well known in the game the-
ory community; for example, the Nash equilibrium of repeated prisoner’s dilemma is
neither normatively nor descriptively reasonable. However, new problems arise when
considering Nash equilibrium from a computer science perspective: for example, Nash
equilibrium is not robust (it does not tolerate “faulty” or “unexpected” behavior), it does
not deal with coalitions, it does not take computation cost into account, and it does not
deal with cases where players are not aware of all aspects of the game. Solution con-
cepts that try to address these shortcomings of Nash equilibrium are discussed.

The paper appears in the Proceedings of the Twenty-Seventh Annual ACM Sympo-
sium on Principles of Distributed Computing, 2008.

� Work supported in part by NSF under grants ITR-0325453 and IIS-0534064, and by AFOSR
under grant FA9550-05-1-0055.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, p. 1, 2008.
c© by the Author 2008



Service Choreography and Orchestration with

Conversations

Tevfik Bultan

Department of Computer Science
University of California, Santa Barbara

bultan@cs.ucsb.edu

Service oriented computing provides technologies that enable multiple organiza-
tions to integrate their businesses over the Internet. Typical execution behavior
in this type of distributed systems involves a set of autonomous peers interacting
with each other through messages. Modeling and analysis of interactions among
the peers is a crucial problem in this domain due to following reasons: 1) Orga-
nizations may not want to share the internal details of the services they provide
to other organizations. In order to achieve decoupling among different peers, it is
necessary to specify the interactions among different services without referring to
the details of their local implementations. 2) Modeling and analyzing the global
behavior of this type of distributed systems is particularly challenging since no
single party has access to the internal states of all the participating peers. De-
sired behaviors have to be specified as constraints on the interactions among
different peers since the interactions are the only observable global behavior.
Moreover, for this type of distributed systems, it might be worthwhile to specify
the interactions among different peers before the services are implemented. Such
a top-down design strategy may help different organizations to better coordinate
their development efforts.

This type of distributed systems can be modeled as a composite Web service
that consists of a set of peers that interact with each other via synchronous
and/or asynchronous messages [3]. A conversation is the global sequence of mes-
sages exchanged among the peers participating in a composite Web service [2].
A choreography specification identifies the set of allowable conversations for a
composite Web service. An orchestration, on the other hand, is an executable
specification that identifies the steps of execution for the peers.

This conversation based modeling framework leads to the following interest-
ing problems: realizability, synthesis, conformance, and synchronizability [4]. A
choreography specification is realizable if the corresponding conversation set can
be generated by a set of peers [6,9]. This step is necessary to guarantee that the
choreography specifications that are developed in a top-down manner are imple-
mentable. A related problem is automated synthesis of peer implementations from
a given choreography specification. Another interesting problem is investigating
the conformance between orchestration and choreography specifications. An or-
chestration specification conforms to a choreography specification if the global se-
quence of messages generated by the orchestration is allowed by the choreography
specification. Finally, synchronizability analysis [5,10] investigates the effects of

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 2–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Service Choreography and Orchestration with Conversations 3

asynchronous versus synchronous communication to improve the efficiency of in-
teraction analysis. A set of asynchronously communicating peers are synchroniz-
able if their conversation set does not change when asynchronous communication
is replaced with synchronous communication. Replacing asynchronous communi-
cation with synchronous communication enables more efficient analysis by remov-
ing the communication channels from the state space of the system.

Web Service Analysis Tool (WSAT) [7] is a tool for analyzing conversations.
WSAT verifies LTL properties of conversations, checks sufficient conditions for
realizability and synchronizability and synthesizes peer implementations from
choreography specifications. In order to model XML data, WSAT uses a guarded
automata model where the guards of the transitions are written as XPath ex-
pressions. WSAT uses the explicit-state model checker SPIN [11] for LTL model
checking by translating the guarded automata model to Promela [8]. WSAT
has been used to analyze realizability and synchronizability of composite Web
services specified using the BPEL orchestration language [1] and conversation
protocols [6], which is a formalism for choreography specification and analysis.

References

1. Web services business process execution language version 2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
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Knowledge and Information in Probabilistic Systems

Prakash Panangaden

School of Computer Science, McGill University, Montreal, Quebec, Canada

Concurrency theory is in an exciting period of confusion. Confusion is always exciting
because it heralds the coming of new ideas and deeper understanding. There are several
ingredients in the cauldron: some new, some not so new. The old ingredients are process
algebra, bisimulation and other equivalences and modal logics. The not-so-old ingredi-
ents are probability, mobility and real-time, and the new ingredients are knowledge,
games and information theory.

Of course, knowledge in the form of epistemic logic – and especially common knowl-
edge and it variants – is well known to the PODC community. It is well over twenty years
since Halpern and Moses wrote their influential paper on common knowledge. Proba-
bilistic epistemic logic and dynamic epistemic logic have also been extensively studied.
It is time to synthesize these ideas with the world of concurrency theory.

How does concurrency theory accommodate the concept of knowledge? One way is
to think of concurrent processes as agents playing games. We have just begun to ex-
plore these ideas. There are certain situations – arising in security – where epistemic
concepts fit perfectly with the idea of agents playing games. The time is ripe for explor-
ing new forms of process algebra inspired by the idea of processes being agents playing
games. It is likely possible that this will lead to new types of interactions other than
synchronization and value passing. Indeed, one can argue that composition of strategies
is already an example of a new type of interaction between processes.

It is even possible that mobility can be understood as an epistemic concept: but now I
am speculating wildly. Roughly speaking, the thinking is that spatial concepts underlie
many recent developments in concurrency: for example, ambients. In many instances,
for example, knowledge in distributed systems, the epistemic modality captures a local
versus global view of space. Of course, much needs to be thought through.

Where does information theory fit in? If we are to think of knowledge as flowing
between agents in a probabilistic system then it is natural to think of quantifying the
“amount” of knowledge: this leads directly to ideas of information theory. I will de-
scribe some recent work along these lines by Parikh and his co-workers. Indeed, infor-
mation theory may serve as a kind of probabilistic epistemic “logic” just as measure
theory serves as a kind of probabilistic propositional logic: an analogy emphasized by
Kozen.

I would like to thank Samson Abramsky for numerous enlightening conversations
and for his inspirational paper, “Retracing some path in process algebra,” an invited
talk at CONCUR in 1996. I have also enjoyed enlightening conversations with Kostas
Chatzikokolakis, Joe Halpern, Sophia Knight, Radha Jagadeesan, Catuscia Palamidessi,
Rohit Parikh and especially Dexter Kozen who set me on the probabilistic path over 20
years ago.
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Concurrency, as a basic primitive for software construction, is more relevant today than
ever before, primarily due to the multi-core revolution. General-purpose software ap-
plications must find ways to exploit concurrency explicitly in order to take advantage
of multiple cores. However, experience has shown that explicitly parallel programs are
difficult to get right. To deliver compelling software products in the multi-core era, we
must improve our ability to reason about concurrency.

Generalizing well-known sequential reasoning techniques to concurrent programs is
fundamentally difficult because of the possibility of interference among concurrently-
executing tasks. In this lecture, I will present reduction and context-bounding – two
ideas that alleviate the difficulty of reasoning about interference by creating a simpler
view of a concurrent execution than an interleaving of thread instructions. Reduction
reduces interference by making a sequence of instructions in a thread appear as a sin-
gle atomic instruction; it allows the programmer to view an execution as a sequence of
large atomic instructions. Context-bounding reduces interference by focusing on exe-
cutions with a small number of context switches; it allows the programmer to view an
execution as a sequence of large thread contexts. I will present the theory behind these
two approaches and their realization in a number of program verification tools I have
worked on over the years.
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Abstract. Dynamic separation is a new programming discipline for sys-
tems with transactional memory. We study it formally in the setting of
a small calculus with transactions. We provide a precise formulation of
dynamic separation and compare it with other programming disciplines.
Furthermore, exploiting dynamic separation, we investigate some possi-
ble implementations of the calculus and we establish their correctness.

1 Introduction

Several designs and systems based on transactions aim to facilitate the writing
of concurrent programs. In particular, software transactional memory (STM)
appears as an intriguing alternative to locks and the related machinery for
shared-memory concurrency [14]. STM implementations often allow transactions
to execute in parallel, optimistically, detecting and resolving conflicts between
transactions when they occur. Such implementations guarantee that transac-
tions appear atomic with respect to other transactions, but not with respected
to direct, non-transactional accesses to memory. This property has been termed
“weak atomicity” [6], in contrast with the “strong atomicity” that programmers
seem to expect, but which can be more challenging to provide.

Therefore, it is attractive to investigate programming disciplines under which
the problematic discrepancy between “weak” implementations and “strong” se-
mantics does not arise. In these disciplines, basically, transactional and non-
transactional memory accesses should not be allowed to conflict. Much as in
work on memory models (e.g., [4]), these disciplines can be seen as contracts be-
tween the language implementation and the programmer: if a program conforms
to certain restrictions, then the language implementation must run it with strong
semantics. Such contracts should be “programmer-centric”—formulated in terms
of programs and their high-level semantics, not of implementation details. The
selection of particular restrictions represents a tradeoff.

– Stronger restrictions give more flexibility to the implementation by requir-
ing it to run fewer programs with strong semantics An example of such a
restriction is the imposition of a static type system that strictly segregates
transacted and non-transacted memory (e.g., [9,2,12]). This segregation of-
ten implies the need to copy data across these two parts of memory.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 6–20, 2008.
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– Conversely, weaker restrictions give more flexibility to the programmer but
may enable fewer implementation strategies. For example, violation-freedom
prohibits only programs whose executions cause conflicts at run-time, ac-
cording to a high-level, strong, small-step operational semantics [2] (see
also [8,3,5]). Violation-freedom does not consider lower-level conflicts that
may arise in implementations with optimistic concurrency; so these imple-
mentations may not run all violation-free programs with strong semantics,
and may therefore be disallowed.

We are exploring a new programming discipline that we call dynamic separa-
tion. Its basic idea is to distinguish memory locations that should be accessed
transactionally from those that should be accessed directly, allowing this distinc-
tion to evolve dynamically in the course of program execution. The programmer
(perhaps with the assistance of tools) indicates transitions between these modes.
Dynamic separation restricts only where data is actually accessed by a program,
not how the data is reachable through references.

Dynamic separation is intermediate between violation-freedom and static sep-
aration. Like violation-freedom, it does not require copying between two memory
regions; like static separation, on the other hand, it enables implementations with
weak atomicity, optimistic concurrency, lazy conflict detection, and in-place up-
dates. Indeed, dynamic separation is compatible with a range of transactional-
memory implementations. Moreover, dynamic separation does not necessitate
changes in how non-transactional code is compiled. This property makes trans-
actions “pay-to-use” and lets non-transacted code rely on features not available
for re-compilation (cf., e.g., [15]).

A companion paper [1] studies dynamic separation informally. That paper
provides a more detailed design rationale, an instantiation for C#, and some
conceptually easy but useful refinements, in particular for read-only data. It
also discusses implementations, describing our working implementation (done in
the context of Bartok-STM [10]) and a variant that serves as a debugging tool
for testing whether a program obeys the dynamic-separation discipline. As a case
study, it examines the use of dynamic separation in the context of a concurrent
web-proxy application built over an asynchronous IO library.

The present paper focuses on the formal definition and study of dynamic sep-
aration. It provides a precise formulation of dynamic separation, in the setting
of a small calculus with transactions (Sections 2–5). It also establishes precise
comparisons with static separation and with violation-freedom (Section 5). Fur-
thermore, it considers two possible lower-level implementations of the calculus
(Sections 6 and 7). One of the implementations relies on two heaps, with mar-
shaling between them. The other includes optimistic concurrency and some other
challenging features; it models important aspects of our Bartok-STM implemen-
tation. We establish the correctness of both implementations: we prove that, if
a program conforms to the dynamic-separation discipline, then the two imple-
mentations will run it with strong semantics.

We present our results focusing on the Automatic Mutual Exclusion (AME)
model [11,2] (Section 2). However, as explained in our companion paper, our
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approach applies also to other models for programming with transactions, for
instance to TIC [16].

2 AME and the AME Calculus

In this section we describe the AME programming model and the AME calculus,
a small language with AME constructs that serves as the setting of our formal
study. This section is mostly an informal review; in addition it introduces the
new constructs for indicating transitions between modes, named protect and
unprotect, into the AME calculus. We postpone a formal semantics of the
calculus to Section 4.

2.1 AME

AME distinguishes “protected” code, which executes within transactions, from
ordinary “unprotected” code. Importantly, the default is protected code.

Running an AME program consists in executing a set of asynchronous method
calls. The AME system guarantees that the program execution is equivalent to
executing each of these calls (or their atomic fragments, defined below) in some
serialized order. The invocation async MethodName(<method arguments>) cre-
ates an asynchronous call. The caller continues immediately after this invocation.
In the conceptual serialization of the program, the asynchronous callee will be
executed after the caller has completed. AME achieves concurrency by executing
asynchronous calls in transactions, overlapping the execution of multiple calls,
with roll-backs when conflicts occur. If a transaction initiates other asynchro-
nous calls, their execution is deferred until the initiating transaction commits,
and they are discarded if the initiating transaction aborts.

Methods may contain invocations of yield(), which break an asynchronous
call into multiple atomic fragments, implemented by committing one transaction
and starting a new one. With this addition, the overall execution of a program
is guaranteed to be a serialization of its atomic fragments.

Methods may also contain statements of the form blockUntil(<p>), where
p is a predicate. ¿From the programmer’s perspective, an atomic fragment exe-
cutes to completion only if all the predicates thus encountered in its execution
evaluate to true. The implementation of blockUntil(<p>) does nothing if p
holds; otherwise it aborts the current atomic fragment and retries it later.

In order to allow the use of legacy non-transacted code, AME provides block-
structured unprotected sections. These must use existing mechanisms for syn-
chronization. AME terminates the current atomic fragment before the code, and
starts a new one afterwards.

2.2 The AME Calculus (with protect and unprotect)

The AME calculus is a small but expressive language that includes constructs for
AME, higher-order functions, and imperative features. The following grammar
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defines the syntax of the calculus, with the extensions required for dynamic
separation.

V ∈ Value = c | x | λx. e
c ∈ Const = unit | false | true

x, y ∈ Var
e, f ∈ Exp = V | e f

| ref e | !e | e := f
| async e | blockUntil e
| unprotected e
| protect e | unprotect e

This syntax introduces syntactic categories of values, constants, variables, and
expressions. The values are constants, variables, and lambda abstractions (λx. e).
In addition to values and to expressions of the forms async e, blockUntil e,
and unprotected e, expressions include notations for function application (ef),
allocation (ref e, which allocates a new reference location and returns it after
initializing it to the value of e), dereferencing (!e, which returns the contents
in the reference location that is the value of e), and assignment (e := f , which
sets the reference location that is the value of e to the value of f). Expressions
also include the new forms protect e and unprotect e, which evaluate e to a
reference location, then make its value usable in transactions and outside trans-
actions, respectively. We treat yield as syntactic sugar for unprotected unit.
We write let x = e in e′ for (λx. e′) e, and write e; e′ for let x = e in e′ when
x does not occur free in e′.

We make a small technical restriction that does not affect the expressive-
ness of the calculus: in any expression of the form async e, any occurrences
of unprotected are under a λ. Thus, with our syntactic sugar, we can write
async (unit; unprotected e′), but not async (unprotected e′). More gener-
ally, we can write async (unit; e′), for any e′. This technical restriction roughly
ensures that an unprotected computation is not the first thing that happens in
an asynchronous computation. It is needed only for Theorem 2, below.

3 An Example

This section presents an example, informally. Although this example is small and
artificial, it serves to explain several aspects of our work. The example concerns
the following code fragment:

let x = ref false in
let y = ref false in
let z = ref false in
async (x := true);
async (x := false; (blockUntil (!x)); y := true);
unprotected ((blockUntil (!y)); z := true)

This code first creates three reference locations, initialized to false, and binds
x, y, and z to them, respectively. Then it forks two asynchronous executions. In
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one, it sets x to true. In the other, it sets x to false, checks that x holds true,
then sets y to true. In addition, the code contains an unprotected section that
checks that y holds true, then sets z to true.

In reasoning about such code, programmers (and tools) should be entitled to
rely on the high-level semantics of the AME constructs, without considering their
possible implementation details. According to this high-level semantics, the two
asynchronous executions are serialized. Therefore, the predicate !x in the second
asynchronous execution can never hold, so y := true is unreachable. Hence the
predicate !y in the unprotected section can never hold either, so z will never be
set to true. The formal semantics of Section 4 justifies this reasoning.

On the other hand, lower-level implementations, such as that modeled in
Section 7, may exhibit different, surprising behavior. With optimistic concur-
rency, the two asynchronous executions may be attempted simultaneously. For
efficiency, updates to reference locations may be done in place, not buffered.
So, if the assignment x := true immediately follows the assignment x :=
false, then the predicate !x in the second asynchronous execution will hold,
and y := true will execute. After the assignment x := true, the execution of
(blockUntil (!x)); y := true is a “zombie” [7], doomed to roll back. With lazy
conflict detection, a conflict may not yet be apparent. With weak atomicity,
moreover, the unprotected section has an opportunity to execute, and the pred-
icate !y holds, so z will be set to true. When the two asynchronous executions
attempt to commit, conflict detection will cause a roll-back of their effects on
x and y, but not of the indirect effect on z. Therefore, the code may terminate
with z holding true.

Despite the surprising behavior, we may want to allow such lower-level im-
plementations because of their potential efficiency and compatibility with legacy
code. So we may want to find criteria to exclude problematic programs. As
indicated in the introduction, static separation is such a criterion; it statically
segregates transacted and non-transacted memory. The code in our example does
not obey static separation because (without dead-code elimination) y seems to
be accessed both in a transaction and in the unprotected section. Unfortunately,
static separation also forbids many reasonable code fragments, implying the need
to marshal data back and forth between the two parts of memory.

Another possible criterion is violation-freedom. However, the code in our ex-
ample is violation-free. In particular, according to the high-level semantics, there
are no conflicting accesses to y at run-time, since y := true should never exe-
cute. Therefore, violation-freedom does not seem to be quite stringent enough
to enable the use of some attractive implementation strategies.

Nevertheless, violation-free programs can often be instrumented with calls to
protect and unprotect in order to conform to the dynamic-separation disci-
pline. In this example, our particular formulation of dynamic separation requires
adding two calls to unprotect in the last line of the code:

unprotected (unprotect y; unprotect z; (blockUntil (!y)); z := true)

Assuming that x, y, and z are initially in the mode where they are usable in
transactions, we can reason that the placement of unprotect implies that x, y,
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and z are always used in the appropriate mode, so the code does conform to
the dynamic-separation discipline. In this reasoning, we need to consider only
the behavior of the code in the high-level semantics. Although the high-level
semantics of unprotect is quite straightforward—and resembles that of no-op—
an implementation of unprotect may do non-trivial work. Sections 6 and 7
provide two illustrations of this point, in the latter case modeling important
aspects of our actual implementation in Bartok-STM. In particular, unprotect y
may block while y is being written in a transaction, even if the transaction is a
zombie. Moreover, updating y in a transaction may check that y is protected.
Crucially, neither of these implementation refinements require any changes to
non-transactional access to y. In combination, these refinements can prevent the
problematic behavior of this code, guaranteeing that it runs correctly.

Zombies constitute only one of several problems in this area. Others include
the so-called privatization and publication problems (e.g., [2,17]). Although we
do not discuss those in detail, our approach and our results address them as
well. In particular, the correctness theorems below imply that publication and
privatization idioms can execute correctly.

4 Semantics

The strong semantics of the AME calculus is a small-step operational semantics
in which at most one transaction may take steps at any one time, and non-
transacted code may take steps only when there is no current transaction taking
steps [2]. We extend this strong semantics to the new constructs.

States. A state 〈σ, τ, T, e〉 consists of a reference store σ, a protection state τ , a
collection of expressions T , and a distinguished active expression e. A reference
store σ is a finite mapping of reference locations to values. Similarly, a protection
state τ is a finite mapping of reference locations to protection modes, which we
write P and U. It is a “history variable”, in the sense that it is determined by
the history of execution and does not influence this history. Reference locations
are simply special kinds of variables that can be bound only by the respective
store and protection state. We write RefLoc for the set of reference locations;
we assume that RefLoc is infinite. For every state 〈σ, τ, T, e〉, we require that
dom(σ) = dom(τ) and, if r ∈ RefLoc occurs in 〈σ, τ, T, e〉, then r ∈ dom(σ). We
set:

S ∈ State ⊂ RefStore × ProtState × ExpSeq × Exp
σ ∈ RefStore = RefLoc ⇀ Value
τ ∈ ProtState = RefLoc ⇀ {P, U}
r ∈ RefLoc ⊂ Var
T ∈ ExpSeq = Exp∗

Steps. As usual, a context is an expression with a hole [ ], and an evaluation
context is a context of a particular kind. Given a context C and an expression e,
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〈σ, τ, T, P[ (λx. e) V ]〉 �−→s 〈σ, τ, T, P[ e[V/x] ]〉 (Trans Appl P)s

〈σ, τ, T.U[ (λx. e) V ].T ′, unit〉 �−→s 〈σ, τ, T.U[ e[V/x] ].T ′, unit〉 (Trans Appl U)s

〈σ, τ, T, P[ ref V ]〉 �−→s 〈σ[r �→ V ], τ[r �→ P], T, P[ r ]〉 (Trans Ref P)s
if r ∈ RefLoc − dom(σ)

〈σ, τ, T.U[ ref V ].T ′, unit〉 �−→s 〈σ[r �→ V ], τ[r �→ U], T.U[ r ].T ′, unit〉 (Trans Ref U)s
if r ∈ RefLoc − dom(σ)

〈σ, τ, T, P[ !r ]〉 �−→s 〈σ, τ, T, P[ V ]〉 (Trans Deref P)s
if σ(r) = V

〈σ, τ, T.U[ !r ].T ′, unit〉 �−→s 〈σ, τ, T.U[ V ].T ′, unit〉 (Trans Deref U)s
if σ(r) = V

〈σ, τ, T, P[ r := V ]〉 �−→s 〈σ[r �→ V ], τ, T, P[ unit ]〉 (Trans Set P)s

〈σ, τ, T.U[ r := V ].T ′, unit〉 �−→s 〈σ[r �→ V ], τ, T.U[ unit ].T ′, unit〉 (Trans Set U)s

〈σ, τ, T, P[ async e ]〉 �−→s 〈σ, τ, e.T, P[ unit ]〉 (Trans Async P)s

〈σ, τ, T.U[ async e ].T ′, unit〉 �−→s 〈σ, τ, e.T.U[ unit ].T ′, unit〉 (Trans Async U)s

〈σ, τ, T, P[ blockUntil true ]〉 �−→s 〈σ, τ, T, P[ unit ]〉 (Trans Block P)s

〈σ, τ, T.U[ blockUntil true ].T ′, unit〉 �−→s 〈σ, τ, T.U[ unit ].T ′, unit〉 (Trans Block U)s

〈σ, τ, T, P[ unprotected e ]〉 �−→s 〈σ, τ, T.P[ unprotected e ], unit〉 (Trans Unprotect)s

〈σ, τ, T.E[ unprotected V ].T ′, unit〉 �−→s 〈σ, τ, T.E[ V ].T ′, unit〉 (Trans Close)s

〈σ, τ, T.e.T ′, unit〉 �−→s 〈σ, τ, T.T ′, e〉 (Trans Activate)s

〈σ, τ, T.U[ protect r ].T ′, unit〉 �−→s 〈σ, τ[r �→ P], T.U[ r ].T ′, unit〉 (Trans DynP)s

〈σ, τ, T.U[ unprotect r ].T ′, unit〉 �−→s 〈σ, τ[r �→ U], T.U[ r ].T ′, unit〉 (Trans DynU)s

Fig. 1. Transition rules with dynamic separation

we write C[ e ] for the result of placing e in the hole in C. We use several kinds
of evaluation contexts, defined by:

P = [ ] | P e | V P | ref P | !P | P := e | r := P | blockUntil P
| protect P | unprotect P

U = unprotected E | U e | V U | ref U | !U | U := e | r := U | blockUntil U
| protect U | unprotect U

E = [ ] | E e | V E | ref E | !E | E := e | r := E | blockUntil E
| unprotected E | protect E | unprotect E

A context E is a general evaluation context; a context U is one where the hole
is under unprotected; a context P is one where it is not.

Figure 1 gives rules that specify the transition relation that takes execution
from one state to the next. In these rules, we write e[V/x] for the result of
the capture-free substitution of V for x in e, and write σ[r �→ V ] for the store
that agrees with σ except at r, which is mapped to V . The subscript s in �−→s

indicates that this is a strong semantics.
In rules (Trans Ref P)s and (Trans Ref U)s, the reference-allocation construct

ref e initializes the new location’s mode to P (when allocating inside a transac-
tion) or to U (otherwise). In rules (Trans DynP)s and (Trans DynU)s, the new
constructs protect and unprotect set the mode to P and to U respectively. It is
not an error to call protect on a reference location already in mode P. Similarly,
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it is not an error to call unprotect on a reference location already in mode U.
This design choice enables a broader range of implementations, as discussed in
our companion paper.

According to the rules, protect and unprotect work only outside trans-
actions. They get stuck otherwise. Fundamentally, we do not want to rely on
protect and unprotect in transactions because of questionable interactions,
such as the possibility of zombie updates to the protection state.

5 The Dynamic-Separation Discipline

We give a precise definition of dynamic separation. We also establish results that
relate dynamic separation to static separation and to violation-freedom.

5.1 Definition

The definition of dynamic separation says that, in the course of an execution,
reads and writes to a reference location should happen only if the protection
state of the reference location is consistent with the context of the operation.
The definition is intended to constrain expressions, but more generally it applies
to initial states of executions.

Given a state 〈σ, τ, T, e〉, a read or a write may occur in two cases:

– e is of the form P [ !r ] or P [ r := V ]; or
– e = unit and T contains an expression of the form U [ !r ] or U [ r := V ].

Accordingly, we say that a state S obeys the dynamic-separation discipline,
and write DS(S), if whenever S �−→∗

s 〈σ, τ, T, e〉, the state 〈σ, τ, T, e〉 is such that:

– if e is of the form P [ !r ] or P [ r := V ], then τ(r) = P;
– if e = unit and T contains an expression of the form U [ !r ] or U [ r := V ],

then τ(r) = U.

In sum, a state S obeys the dynamic-separation discipline if, in S, reads or
writes to a reference location r can happen only if r’s protection state (P or U)
is consistent with the context (transacted or not, respectively) of the operation,
and if the same is true for any state reachable from S.

5.2 Comparison with Static Separation

Static separation can be defined as a type system; its details are straightforward,
and for AME they are given in [2, Section 6.2]. There, the judgment E � 〈σ, T, e〉
says that the state 〈σ, T, e〉 obeys the static-separation discipline in a typing
environment E, which gives types of the form RefP t or RefU t for the free
reference locations of the state. The state does not include a protection state τ ,
since separation is static. Given E, however, we write τE for the protection state
that maps each reference location to P or U according to its type in E. We obtain:

Theorem 1. If E � 〈σ, T, e〉 then DS(〈σ, τE , T, e〉).
The converse of this theorem is false, not only because of possible occurrences
of protect and unprotect but also because of examples like that of Section 3.
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5.3 Comparison with Violation-Freedom

As discussed above, violation-freedom is a condition that prohibits programs
whose executions cause certain conflicts at run-time. More precisely, we say that
a state 〈σ, τ, T, e〉 has a violation on r when:

– e is of the form P [ e′ ],
– T contains an expression of the form U [ e′′ ],
– e′ and e′′ are of the form !r or r := V for some V , and at least one is of the

latter form.

(Note that the second of these clauses does not require e = unit, unlike the
corresponding part of the definition of dynamic separation.) We say that a state
S obeys the violation-freedom discipline, and write VF(S), if whenever S �−→∗

sS
′,

the state S′ does not have violations on any r.
In general, dynamic separation is not sufficient for violation-freedom. For in-

stance, the state

〈∅[r �→ false], ∅[r �→ P], unprotected (r := true), blockUntil !r〉

obeys the dynamic-separation discipline, but has an obvious violation on r. This
violation never leads to an actual concurrent access under the strong semantics.

Dynamic separation does however imply violation-freedom for initial states of
the form 〈σ, τ, T, unit〉, in which there is no active transaction—but of course a
transaction may be activated. We regard this result, together with Theorem 1, as
proof of our informal statement that dynamic separation is intermediate between
violation-freedom and static separation.

Theorem 2. If DS(〈σ, τ, T, unit〉), then VF(〈σ, τ, T, unit〉).

Conversely, violation-freedom is not a sufficient condition for dynamic separa-
tion, for several reasons. Most obviously, violation-freedom does not require
the use of explicit calls to protect and unprotect. In addition, violation-
freedom does not constrain read-read concurrency, while dynamic separation
does. Strengthening violation-freedom so that it also constrains read-read con-
currency, we have developed a method for taking a violation-free expression
and adding calls to protect and unprotect so as to make it obey dynamic
separation. We omit the details of our method, but briefly note its two main
assumptions: (1) The method requires the absence of race conditions in unpro-
tected computations, because race conditions could cause instrumentation to
work incorrectly. (2) It also assumes that we can distinguish transacted and
non-transacted code at instrumentation time; code duplication can make this
task trivial.

6 An Implementation with Two Heaps

In this section, we consider an abstract machine with two separate heaps ac-
cessed by transactional and non-transactional code, respectively. The constructs



A Model of Dynamic Separation for Transactional Memory 15

〈σ1, σ2, τ, T, P[ (λx. e) V ]〉 �−→t 〈σ1, σ2, τ, T, P[ e[V/x] ]〉 (Trans Appl P)t

〈σ1, σ2, τ, T.U[ (λx. e) V ].T ′, unit〉 �−→t 〈σ1, σ2, τ, T.U[ e[V/x] ].T ′, unit〉 (Trans Appl U)t

〈σ1, σ2, τ, T, P[ ref V ]〉 �−→t 〈σ1[r �→ V ], σ2[r �→ V ], τ[r �→ P], T, P[ r ]〉 (Trans Ref P)t
if r ∈ RefLoc − dom(σ1)

〈σ1, σ2, τ, T.U[ ref V ].T ′, unit〉 �−→t 〈σ1[r �→ V ], σ2[r �→ V ], τ[r �→ U], T.U[ r ].T ′, unit〉 (Trans Ref U)t
if r ∈ RefLoc − dom(σ1)

〈σ1, σ2, τ, T, P[ !r ]〉 �−→t 〈σ1, σ2, τ, T, P[ V ]〉 (Trans Deref P)t
if σ1(r) = V

〈σ1, σ2, τ, T.U[ !r ].T ′, unit〉 �−→t 〈σ1, σ2, τ, T.U[ V ].T ′, unit〉 (Trans Deref U)t
if σ2(r) = V

〈σ1, σ2, τ, T, P[ r := V ]〉 �−→t 〈σ1[r �→ V ], σ2, τ, T, P[ unit ]〉 (Trans Set P)t

〈σ1, σ2, τ, T.U[ r := V ].T ′, unit〉 �−→t 〈σ1, σ2[r �→ V ], τ, T.U[ unit ].T ′, unit〉 (Trans Set U)t

〈σ1, σ2, τ, T, P[ async e ]〉 �−→t 〈σ1, σ2, τ, e.T, P[ unit ]〉 (Trans Async P)t

〈σ1, σ2, τ, T.U[ async e ].T ′, unit〉 �−→t 〈σ1, σ2, τ, e.T.U[ unit ].T ′, unit〉 (Trans Async U)t

〈σ1, σ2, τ, T, P[ blockUntil true ]〉 �−→t 〈σ1, σ2, τ, T, P[ unit ]〉 (Trans Block P)t

〈σ1, σ2, τ, T.U[ blockUntil true ].T ′, unit〉 �−→t 〈σ1, σ2, τ, T.U[ unit ].T ′, unit〉 (Trans Block U)t

〈σ1, σ2, τ, T, P[ unprotected e ]〉 �−→t 〈σ1, σ2, τ, T.P[ unprotected e ], unit〉 (Trans Unprotect)t

〈σ1, σ2, τ, T.E[ unprotected V ].T ′, unit〉 �−→t 〈σ1, σ2, τ, T.E[ V ].T ′, unit〉 (Trans Close)t

〈σ1, σ2, τ, T.e.T ′, unit〉 �−→t 〈σ1, σ2, τ, T.T ′, e〉 (Trans Activate)t

〈σ1, σ2, τ, T.U[ protect r ].T ′, unit〉 �−→t 〈σ1, σ2, τ, T.U[ r ].T ′, unit〉 (Trans DynP (1))t
if τ(r) = P

〈σ1, σ2, τ, T.U[ protect r ].T ′, unit〉 �−→t 〈σ1[r �→ σ2(r)], σ2, τ[r �→ P], T.U[ r ].T ′, unit〉 (Trans DynP (2))t
if τ(r) = U

〈σ1, σ2, τ, T.U[ unprotect r ].T ′, unit〉 �−→t 〈σ1, σ2[r �→ σ1(r)], τ[r �→ U], T.U[ r ].T ′, unit〉 (Trans DynU (1))t
if τ(r) = P

〈σ1, σ2, τ, T.U[ unprotect r ].T ′, unit〉 �−→t 〈σ1, σ2, τ, T.U[ r ].T ′, unit〉 (Trans DynU (2))t
if τ(r) = U

Fig. 2. Transition rules with two heaps

protect and unprotect marshal between these heaps. Although this two-heap
scheme is not particularly efficient, it is reminiscent of some practical systems
that use different data formats in transactional and non-transactional code. It is
also an interesting approximation of a static-separation regime, and illustrates
that protect and unprotect may do more than in the high-level semantics of
Figure 1. Still, for expressions that obey the dynamic-separation discipline, we
prove that this two-heap implementation respects the high-level semantics.

6.1 Operational Semantics

We define the two-heap implementation as a lower-level semantics, in the style
of that of Section 4 though with some additional intricacies.

States. The components of a state are much like those in Section 4, except that
there are two reference stores rather than one. A state 〈σ1, σ2, τ, T, e〉 consists of
two reference stores σ1 and σ2, a protection state τ , a collection of expressions T ,
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and a distinguished active expression e. We require that dom(σ1) = dom(σ2) =
dom(τ) and that, if r ∈ RefLoc occurs in the state, then r ∈ dom(σ1). So we set:

S ∈ State ⊂ RefStore × RefStore × ProtState × ExpSeq × Exp

Steps. Figure 2 gives rules that specify the transition relation of this semantics.
According to these rules, ref e sets the protection state of a new reference loca-
tion r and initializes the contents of r in each of the reference stores. Initializing
the contents in the appropriate reference store would suffice, provided r is added
to the domain of both reference stores. While reading or writing a location, the
context in which an expression executes determines which reference store it ac-
cesses. Finally, protect r and unprotect r perform marshaling, as follows. If r
already has the desired protection state, then no copying is required. (In fact,
copying could overwrite fresh contents with stale ones.) Otherwise, r’s contents
are copied from one reference store to the other.

6.2 Correctness

The two-heap implementation is correct under the dynamic-separation discipline,
in the following sense:

Theorem 3. Assume that DS(〈σ, τ, T, e〉), that dom(σ) = dom(σ1) = dom(σ2),
and that σ1(r) = σ(r) if τ(r) = P and σ2(r) = σ(r) if τ(r) = U. Consider a
computation with two heaps:

〈σ1, σ2, τ, T, e〉 �−→∗
t 〈σ′

1, σ
′
2, τ

′, T ′, e′〉

Then there is a computation:

〈σ, τ, T, e〉 �−→∗
s 〈σ′, τ ′, T ′, e′〉

for some σ′ such that dom(σ′) = dom(σ′
1) = dom(σ′

2) and, for every r ∈
dom(σ′), if τ ′(r) = P, then σ′

1(r) = σ′(r), and if τ ′(r) = U, then σ′
2(r) = σ′(r).

This simulation result implies that the contents of a reference location r is always
correct in the reference store that corresponds to r’s current protection state.
The dynamic-separation hypothesis is essential: it is required for extending the
simulation in the cases of (Trans Deref . . . )t and (Trans Set . . . )t. Without it,
the execution with two heaps may produce incorrect results.

7 An Implementation with Optimistic Concurrency

Going further, we treat a lower-level implementation in which multiple trans-
actions execute simultaneously, with roll-backs in case of conflict. This imple-
mentation is based on one studied in our previous work [2], with the addition
of dynamic separation. As explained there, various refinements are possible, but
they are not necessary for our present purposes. Our goal is to show how dynamic
separation works (correctly) in a setting with realistic, challenging features such
as in-place updates (e.g., [13]). The model developed in this section is an abstract
version of our actual implementation in Bartok-STM.
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7.1 Operational Semantics

Again, we define the implementation as a lower-level semantics.

States. States become more complex for this semantics. In addition to the com-
ponents σ, τ , and T that appear in the earlier semantics, we add constructs for
roll-back and optimistic concurrency. In order to support, roll-back, we maintain
a log l of the reference locations that have been modified, with their correspond-
ing original values. In the case of roll-back, we use the log to restore these values
in the reference store. For optimistic concurrency, we have a list of tuples instead
of a single active expression. Each of the tuples is called a try, and consists of
the following components:

– an active expression e,
– another expression f from which e was obtained (its “origin”),
– a description of the accesses that e has performed, which are used for conflict

detection and which here is simply a list of reference locations,
– a list P of threads to be forked upon commit.

For every state 〈σ, τ, T,O, l〉, we require that dom(σ) = dom(τ) and that, if
r ∈ RefLoc occurs in the state, then r ∈ dom(σ). We set:

S ∈ State ⊂ RefStore × ProtState × ExpSeq × TrySeq × Log
σ ∈ RefStore = RefLoc ⇀ Value
τ ∈ ProtState = RefLoc ⇀ {P, U}
l ∈ Log = (RefLoc ×Value)∗

r ∈ RefLoc ⊂ Var
T, P ∈ ExpSeq = Exp∗

O ∈ TrySeq = Try∗

d ∈ Try = Exp × Exp ×Accesses × ExpSeq
a ∈ Accesses = RefLoc∗

Steps. Figure 3 gives the rules of this semantics, relying on these definitions:

– (ei, fi, ai, Pi) and (ej , fj, aj , Pj) conflict if ai and aj have at least one element
in common.

– (e, f, a, P ) conflicts with O if (e, f, a, P ) conflicts with some try in O.
– Given a log l and a list of reference locations a, l−a is the log obtained from
l by restricting to reference locations not in a.

– If O is (e1, f1, a1, P1). · · · .(en, fn, an, Pn) then origin(O) is the list f1. · · · .fn.
– σl is the result of applying all elements of l to σ.

Many aspects of this semantics are explained in our previous work. Here we focus
on the new ones, namely those related to dynamic separation.

Rule (Trans DynU)o requires that, when a reference location is unprotected, it
is not being written by any try. This restriction is a formalization of one present
in our Bartok-STM implementation (where “being written” means, more specif-
ically, “open for update”). The restriction on (Trans DynU)o can be satisfied
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〈σ, τ, T, O.(P[ (λx. e) V ], f, a, P ).O′, l〉 �−→o 〈σ, τ, T, O.(P[ e[V/x] ], f, a, P ).O′, l〉 (Trans Appl P)o

〈σ, τ, T.U[ (λx. e) V ].T ′, O, l〉 �−→o 〈σ, τ, T.U[ e[V/x] ].T ′, O, l〉 (Trans Appl U)o

〈σ, τ, T, O.(P[ ref V ], f, a, P ).O′, l〉 �−→o 〈σ[r �→ V ], τ[r �→ P], T, O.(P[ r ], f, a, P).O′, l〉 (Trans Ref P)o
if r ∈ RefLoc − dom(σ)

〈σ, τ, T.U[ ref V ].T ′, O, l〉 �−→o 〈σ[r �→ V ], τ[r �→ U], T.U[ r ].T ′, O, l〉 (Trans Ref U)o
if r ∈ RefLoc − dom(σ)

〈σ, τ, T, O.(P[ !r ], f, a, P).O′, l〉 �−→o 〈σ, τ, T, O.(P[ V ], f, r.a, P ).O′, l〉 (Trans Deref P)o
if σ(r) = V

〈σ, τ, T.U[ !r ].T ′, O, l〉 �−→o 〈σ, τ, T.U[ V ].T ′, O, l〉 (Trans Deref U)o
if σ(r) = V

〈σ, τ, T, O.(P[ r := V ], f, a, P ).O′, l〉 �−→o 〈σ[r �→ V ], τ, T, O.(P[ unit ], f, r.a, P ).O′, l′〉 (Trans Set P)o
where l′ = if r ∈ dom(l) then l else l.[r �→ σ(r)]
and τ(r) = P

〈σ, τ, T.U[ r := V ].T ′, O, l〉 �−→o 〈σ[r �→ V ], τ, T.U[ unit ].T ′, O, l〉 (Trans Set U)o

〈σ, τ, T, O.(P[ async e ], f, a, P ).O′, l〉 �−→o 〈σ, τ, T, O.(P[ unit ], f, a, e.P ).O′, l〉 (Trans Async P)o

〈σ, τ, T.U[ async e ].T ′, O, l〉 �−→o 〈σ, τ, e.T.U[ unit ].T ′, O, l〉 (Trans Async U)o

〈σ, τ, T, O.(P[ blockUntil true ], f, a, P).O′, l〉 �−→o 〈σ, τ, T, O.(P[ unit ], f, a, P ).O′, l〉 (Trans Block P)o

〈σ, τ, T.U[ blockUntil true ].T ′, O, l〉 �−→o 〈σ, τ, T.U[ unit ].T ′, O, l〉 (Trans Block U)o

〈σ, τ, T, O, l〉 �−→o 〈σl, τ, origin(O).T, ∅, ∅〉 (Trans Undo)o

〈σ, τ, T, O.(P[ unprotected e ], f, a, P).O′, l〉 �−→o 〈σ, τ, T.P[ unprotected e ].P, O.O′, l − a〉 (Trans Unprotect)o
if (P[ unprotected e ], f, a, P ) does not conflict with O.O′

〈σ, τ, T, O.(unit, f, a, P ).O′, l〉 �−→o 〈σ, τ, T.P, O.O′, l − a〉 (Trans Done)o
if (unit, f, a, P ) does not conflict with O.O′

〈σ, τ, T.E[ unprotected V ].T ′, O, l〉 �−→o 〈σ, τ, T.E[ V ].T ′, O, l〉 (Trans Close)o

〈σ, τ, T.e.T ′, O, l〉 �−→o 〈σ, τ, T.T ′, (e, e, ∅, ∅).O, l〉 (Trans Activate)o

〈σ, τ, T.U[ protect r ].T ′, O, l〉 �−→o 〈σ, τ[r �→ P], T.U[ r ].T ′, O, l〉 (Trans DynP)o

〈σ, τ, T.U[ unprotect r ].T ′, O, l〉 �−→o 〈σ, τ[r �→ U], T.U[ r ].T ′, O, l〉 (Trans DynU)o
if r 	∈ dom(l)

Fig. 3. Transition rules with optimistic concurrency and dynamic separation

by performing an undo. However, an undo is never forced to happen. Indeed,
the rules allow undo to happen at any point—possibly but not necessarily when
there is a conflict. Conflict detection may be eager or lazy; the rules do not
impose a particular strategy in this respect.

There is no corresponding subtlety in rule (Trans DynP)o. Bartok-STM em-
ploys a more elaborate version of this rule in order to allow compiler optimiza-
tions that reorder accesses.

When writing to a reference location from within a transaction (rule (Trans
Set P)o), the protection state of that reference location is verified. Even with
dynamic separation, this check is essential for correctness because of the possi-
bility of zombie transactions. On the other hand, a check is not needed for reads
(rule (Trans Deref P)o), nor for accesses in unprotected code (rules (Trans Deref
U)o and (Trans Set U)o). These features of the rules correspond to important
aspects of our Bartok-STM implementation, which aims to allow the re-use of
legacy code without instrumentation.
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7.2 Correctness

The implementation with optimistic concurrency is correct with respect to the
strong semantics of Section 4, in the following sense:

Theorem 4. Assume that DS(〈σ, τ, T, unit〉). Consider a computation:

〈σ, τ, T, ∅, ∅〉 �−→∗
o 〈σ′, τ ′, T ′, ∅, ∅〉

Then there is a computation:

〈σ, τ, T, unit〉 �−→∗
s 〈σ′′, τ ′′, T ′′, unit〉

for some σ′′, τ ′′, and T ′′ such that σ′ is an extension of σ′′, τ ′ is an extension
of τ ′′, and T ′′ = T ′ up to reordering.

Much as for Theorem 3, the dynamic-separation assumption is essential for The-
orem 4. However, Theorem 4 is much harder than Theorem 3.

8 Conclusion

A notable aspect of our research on AME is that we have developed formal
semantics alongside our software artifacts. The formal semantics have helped
guide the practical implementation work and vice versa. As in the present study
of dynamic separation, formal semantics shed light on the behavior of constructs
and the properties of programming disciplines, even in the face of diverse imple-
mentation techniques.

Our objective is to enable the creation of programs by programmers with nor-
mal (not exceptional) skills, such that the programs will be satisfactory on current
and future hardware, especiallymulti-processor andmulti-core hardware.Thepro-
grams must be semantically correct and must actually run correctly—at least the
semantics and the implementations should be well-defined and simple enough that
they are not an obstacle to correctness. The programs should also be efficient, so
they should utilize concurrency where appropriate. Transactional memory with
dynamic separation appears as a promising element in reconciling these goals.
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Model Checking Transactional Memories�
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EPFL, Switzerland

Abstract. Software transactional memory (STM) offers a disciplined
concurrent programming model for exploiting the parallelism of mod-
ern processor architectures. This paper presents the first deterministic
specification automata for strict serializability and opacity in STMs. Us-
ing an antichain-based tool, we show our deterministic specifications to
be equivalent to more intuitive, nondeterministic specification automata
(which are too large to be determinized automatically). Using determin-
istic specification automata, we obtain a complete verification tool for
STMs. We also show how to model and verify contention management
within STMs. We automatically check the opacity of popular STM algo-
rithms, such as TL2 and DSTM, with a universal contention manager.
The universal contention manager is nondeterministic and establishes
correctness for all possible contention management schemes.

1 Introduction

Software transactional memory (STM) has gained much recent interest with the
advent of multicore architectures. An STM enables the programmer to structure
her application in terms of coarse-grained code blocks that appear to be exe-
cuted atomically [7,12]. Behind the apparent simplicity of the STM abstraction,
however, lie challenging algorithms that seek to ensure transactional atomicity
without restricting parallelism. Despite the large amount of experimental work
on such algorithms [8], little effort has been devoted to their formalization [3,11].

We believe that an approach to formalizing and verifying STM algorithms
can only have impact if it is accepted by the transactional memory community,
and this concern has guided our decisions in choosing the correctness properties
that STMs should satisfy. For this reason we consider strict serializability [9]
and opacity [3] as the two measures of the correctness of STMs. The former
requires committed transactions to appear as if executed at indivisible points in
time during their lifetime. Opacity goes a step further and also requires aborted
transactions to always access consistent state. The notion of opacity corresponds
closest to an emerging consensus about correctness in the transactional software
community [2,6]. The motivation of this work is to formally check popular STM
algorithms such as DSTM [6] and TL2 [2] against opacity.
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Our first step in this direction addressed the problem of space explosion in
STMs [4]. We restricted our attention to STMs that satisfy certain structural
properties, and we proved that the correctness of such an STM for 2 threads
and 2 variables implies the correctness of the STM for an arbitrary number of
threads and variables. Then, to check the correctness of an STM for 2 threads
and 2 variables, we modeled an STM as a deterministic transition system. At
the same time, we constructed nondeterministic specification automata for the
strictly serializable and opaque words on 2 threads and 2 variables. An STM
is then correct if the language of the STM transition system is included in the
language of the specification automaton. Since checking language inclusion was
too expensive, we resorted to checking the existence of a simulation relation. As
the existence of a simulation relation is a sufficient, but not a necessary, condition
for language inclusion with nondeterministic specifications, our procedure was
sound but not complete.

In this paper, we provide deterministic specification automata for strict serial-
izability and opacity. Constructing such deterministic specifications is non-trivial.
Roughly speaking, the difficulty comes in specifying opacity in the presence of
aborting transactions. In this scenario, some conflicts between transactions are
transitive, whereas others are not. The determinism of the specification automata
allows for an efficient check of language inclusion (by constructing the product of
the specification and implementation), which results in a complete verification pro-
cedure. Moreover—and perhaps surprisingly— the deterministic specification au-
tomata are significantly smaller than their nondeterministic counterparts, which
provide more intuitive specifications. As the nondeterministic automata are too
large to be determinized explicitly, we use an antichain-based tool [13] to prove
the correctness of our deterministic specifications. The tool shows language equiv-
alence of our deterministic automata with the natural, nondeterministic specifica-
tions, without an explicit subset construction. The smaller, deterministic
specification automata speed up the verification of STMs like DSTM and TL2 by
an order of magnitude. This speed-up allows us to check the correctness of STMs
with much larger state spaces. We use this gain to verify nondeterministic STMs
that model realistic contention management schemes like exponential backoff and
prioritized transactions.

In practice, STMs employ an external contention manager to enhance live-
ness [5,10]. The idea of the contention manager is to resolve conflicts between
transactions on the basis of their past behavior. Various contention managers
have been proposed in the literature. For example, the Karma contention man-
ager prioritizes transactions according to the number of objects opened, whereas
the Polite contention manager backs off conflicting transactions for a random
duration [10]. For verification purposes, modeling a contention manager explic-
itly is infeasible. First, it would blow up the state space, as the decision of a
contention manager often depends on the past behavior of every thread in an
intricate manner. Second, many contention managers break the structural prop-
erties that the model checking approach [4] expects in order to reduce the prob-
lem to two threads and two variables. Third, an STM is designed to maintain
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safety for all possible contention managers, which can be changed independent
of the STM.

To tackle these issues, we model the effect of all possible contention man-
agers on an STM by defining a universal contention manager. An STM with the
universal contention manager is a nondeterministic transition system that con-
tains transitions for all possible decisions of any contention manager. Moreover,
the universal contention manager does not break any structural property of the
STM, which allows us to reduce the verification problem to two threads and
two variables. Putting everything together, we are able to automatically verify
opacity for STMs such as DSTM and TL2 for all contention managers.

Related work. This work improves the model-checking approach [4] for trans-
actional memories in terms of both the generality of the model (including non-
deterministic contention management) and the efficiency and completeness of
the verification procedure. There also has been recent independent work on the
formal verification of STM algorithms [1]. That verification model checks STMs
applied to programs with a small number of threads and variables against the
safety criteria of Scott [11], which are stronger than opacity.

2 Framework

We describe a framework to express transactions and their correctness properties.

Preliminaries. Let V be a set {1, . . . , k} of k variables, and let C = {commit}∪
({read,write} × V ) be the set of commands on the variables V . Also, let Ĉ =
C ∪ {abort}. Let T = {1, . . . , n} be a set of n threads. Let Ŝ = Ĉ × T be the
set of statements. Also, let S = C × T . A word w ∈ Ŝ∗ is a finite sequence of
statements. Given a word w ∈ Ŝ∗, we define the thread projection w|t of w on
thread t ∈ T as the subsequence of w consisting of all statements s in w such that
s ∈ Ĉ × {t}. Given a thread projection w|t = s0 . . . sm of a word w on thread t,
a statement si is finishing in w|t if it is a commit or an abort. A statement si is
initiating in w|t if it is the first statement in w|t, or the previous statement si−1

is a finishing statement.

Transactions. Given a thread projection w|t of a word w on thread t, a consec-
utive subsequence x = s0 . . . sm of w|t is a transaction of thread t in w if (i) s0 is
initiating in w|t, and (ii) sm is either finishing in w|t, or sm is the last statement
in w|t, and (iii) no other statement in x is finishing in w|t. The transaction x is
committing in w if sm is a commit. The transaction x is aborting in w if sm is an
abort. Otherwise, the transaction x is unfinished in w. Given a word w and two
transactions x and y in w (possibly of different threads), we say that x precedes
y in w, written as x <w y, if the last statement of x occurs before the first state-
ment of y in w. A word w is sequential if for every pair x, y of transactions in w,
either x <w y or y <w x. We define a function com : Ŝ∗ → S∗ such that for all
words w ∈ Ŝ∗, the word com(w) is the subsequence of w which consists of every
statement in w that is a part of a committing transaction. A transaction x of a
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thread t writes to a variable v if x contains a statement ((write, v), t). A statement
s = ((read, v), t) in x is a global read of a variable v if there is no statement
((write, v), t) before s in the transaction x. A transaction x of a thread t globally
reads a variable v if there exists a global read of variable v in transaction x.

Correctness properties. We consider two correctness properties for transac-
tional memories: strict serializability and opacity. Strict serializability [9] re-
quires that the order of conflicting statements from committing transactions is
preserved, and the order of non-overlapping transactions is preserved. Opacity,
in addition to strict serializability, requires that even aborting transactions do
not read inconsistent values. The motivation behind the stricter requirement for
aborting transactions in opacity is that in STMs, inconsistent reads may have
unexpected side effects, like infinite loops, or array bound violations.

A statement s1 of transaction x and a statement s2 of transaction y (where x
is different from y) conflict in a word w if (i) s1 is a global read of some variable
v, and s2 is a commit, and y writes to v, or (ii) s1 and s2 are both commits, and x
and y write to some variable v. This notion of conflict corresponds to the deferred
update semantics [8] in transactional memories, where the writes of a transaction
are made global upon the commit. A word w = s0 . . . sm is strictly equivalent to
a word w′ if (i) for every thread t ∈ T , we have w|t = w′|t, and (ii) for every pair
si, sj of statements in w, if si and sj conflict and i < j, then si occurs before sj
in w′, and (iii) for every pair x, y of transactions in w, where x is a committing
or an aborting transaction, if x <w y, then it is not the case that y <w′ x. We
define the correctness property strict serializability πss ⊆ Ŝ∗ as the set of words
w such that there exists a sequential word w′, where w′ is strictly equivalent to
com(w). Furthermore, we define opacity πop ⊆ Ŝ∗ as the set of words w such that
there exists a sequential wordw′, wherew′ is strictly equivalent tow. We note that
πop ⊆ πss , that is, if a word is opaque, then it is strictly serializable.

3 Transactional Memory Specifications

We capture correctness properties using TM specification automata. A transition
system is a 3-tuple 〈Q, qinit , δ〉, where Q is a set of states, qinit is the initial state,
and δ ⊆ Q× Ŝ ×Q is a transition relation. A transition system is deterministic
if for every state q ∈ Q and every statement s ∈ Ŝ, there is at most one state
q′ ∈ Q such that (q, s, q′) ∈ δ. A word s0 . . . sm is a run of the transition system
if there exist states q0 . . . qm+1 in Q such that q0 = qinit and for all i such that
0 ≤ i ≤ m, we have (qi, si, qi+1) ∈ δ. The language L of a transition system is the
set of all runs of the transition system. A TM specification Σ for a correctness
property π is a transition system such that L(Σ) = π. A TM specification is
deterministic if it is a deterministic transition system.

Strict serializability and opacity have been formally defined so far using non-
deterministic TM specifications [4]. The nondeterminism allows a natural con-
struction of the specification, where a transaction nondeterministically guesses
a serialization point during its lifetime. A branch of the nondeterministic spec-
ification corresponds to a specific serialization choice of the transactions, which
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makes the construction simple and intuitive, though redundant. Due to the non-
determinism of the specification, the existence of a simulation relation is a suf-
ficient but not a necessary condition for language containment. This makes the
decision procedure incomplete [4]. Moreover, these specifications are too large to
be determinized automatically.

3.1 Difficulties in Providing Deterministic TM Specifications

It turns out that creating deterministic TM specifications for strict serializability
and opacity is a non-trivial problem. We first give some examples that manifest
the subtleties involved.
Analysis of strict serializability. We look at two words and reason whether
they are strictly serializable.

x (r, v1)1

(w, v2)1

c1

(r, v2)3

(r, v1)3

c3

y (w, v1)2

c2
z

time

(a)

y (w, v1)2

x (r, v1)1

c3

c1

(r, v2)2

(r, v3)3

(w, v2)3

c2

(w, v3)1

z

time

(b)

Fig. 1. Examples for strict serializability. The words are fragmented into transactions
of different threads. We use the notation: w for write, r for read, c for commit, and a
for abort.

– Consider the word w = ((write, v1), t2), ((read, v1), t1), ((read, v2), t3),
(commit, t2), ((write, v2), t1), ((read, v1), t3), (commit, t1), (commit, t3). The
word w is illustrated in Figure 1(a). The transaction x has to serialize before
y due to a conflict on v1 (as x reads v1 before y commits and y writes to v1).
Similarly, the transaction z has to serialize before x due to a conflict on v2.
However, z has to serialize after y due to a conflict on v1 (z reads v1 after
v1 is written and committed by y). So, w is not strictly serializable. On the
other hand, if one of the transactions had not committed, the word would
have been strictly serializable.

– Consider the word w = ((write, v1), t2), ((read, v2), t2), ((read, v3), t3),
((read, v1), t1), (commit, t2), ((write, v2), t3), ((write, v3), t1), (commit, t1),
(commit, t3). The word is illustrated in Figure 1(b). The transaction x has
to serialize before y due to a conflict on v1. Similarly, the transaction z has
to serialize before x due to a conflict on v3. Also, z writes to the variable
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v2 which is read by transaction y before z commits. Thus, z has to serialize
after y. This makes w not strictly serializable.

These examples show that strict serializability is a property concerned with
committing transactions. Our deterministic TM specification maintains all con-
flicts as part of the state. We define that a transaction x is a weak predecessor
of transaction y in a word w if y must serialize after x for both x and y to be
committing transactions. When a transaction y commits, all weak predecessors
of y become weak predecessors of the threads of which y is a weak predecessor.
Note that the relation weak predecessor itself is not a transitive relation. The
deterministic TM specification ensures that a transaction x cannot commit if
x is a weak predecessor of itself. Moreover, when a transaction commits, the
information of reads and writes of the transaction has to be provided to all weak
predecessors of the transaction.

Analysis of opacity. Designing a deterministic specification for opacity requires
even further care. This is because even aborting transactions should be prevented
from reading inconsistent values. To demonstrate the intricacies involved, we
again give two examples.

x (r, v1)1

(w, v2)1

c1

y (w, v1)2

c2

(r, v1)3

z (r, v2)3

time

(a)

x (r, v1)1

c1

y (w, v1)2

(w, v2)1

c2

z (r, v2)3

a3

time

(b)

Fig. 2. Examples for opacity. The words are fragmented into transactions of different
threads.

– Consider the word w = ((write, v1), t2), ((read, v1), t1), ((read, v2), t3),
(commit, t2), ((write, v2), t1), ((read, v1), t3), (commit, t1). The word is
illustrated in Figure 2(a). Transaction x has to serialize before y due to a
conflict on v1. Also, z has to serialize after y due to a conflict on v1, and
before x due to a conflict on v2. Note that although z does not commit,
opacity requires that transaction x does not commit. So, w is not opaque.

– Consider the word w = ((write, v1), t2), ((read, v1), t1), (commit, t2), ((read,
v2), t3), (abort, t3), ((write, v2), t1), (commit, t1). The word is illustrated in
Figure 2(b). Transaction x has to serialize before y due to a conflict on v1.
Transaction z has to serialize after y as they do not overlap in w. Also, z
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has to serialize before x due to the conflict on v2. This makes w not opaque.
This shows how a read of an aborting transaction may disallow a commit of
another transaction, for the sake of opacity.

Opacity concerns committing as well as aborting transactions. Again, the de-
terministic TM specification for opacity maintains all conflicts as part of the
state. As for strict serializability, we again use the notion of weak predecessors
to store intransitive conflicts. We say that a transaction x is a strong predecessor
of transaction y in a word w if y must serialize after x in w. Unlike weak prede-
cessor, strong predecessor is a transitive relation. The specification for opacity
ensures that a transaction y cannot execute any statement s if s makes some
transaction x a strong predecessor of x. This shows how opacity poses a restric-
tion on commands other than commit.

3.2 Deterministic TM Specifications

We now present the formal definitions of the deterministic TM specifications for
strict serializability and opacity. The deterministic TM specification for strict
serializability Σss is given by the tuple 〈Q, qinit , δss〉. A state q ∈ Q is a 7-tuple
〈Status, rs,ws , prs , pws ,wp, sp〉, where Status : T → {started, invalid, pending,
finished} is the status, rs : T → 2V is the read set, ws : T → 2V is the write
set, prs : T → 2V is the prohibited read set, pws : T → 2V is the prohibited
write set, wp : T → 2T is the weak predecessor set, and sp : T → 2T is the
strong predecessor set for the threads. If v ∈ prs(t) (resp. v ∈ pws(t)), then
the status of the thread t is set to invalid if t globally reads (resp. writes to) v.
A thread u is in the weak predecessor set of thread t if the unfinished trans-
action of u is a weak predecessor of the unfinished transaction of t. The initial
state qinit is 〈Status0, rs0,ws0, prs0, pws0,wp0, sp0〉, where Status0(t) = finished
for all threads t ∈ T , and rs0(t) = ws0(t) = prs0(t) = pws0(t) = wp0(t) =
sp0(t) = ∅ for all threads t ∈ T . The transition relation δss is obtained from
Algorithm 1. For all states q ∈ Q and all statements s ∈ Ŝ, the following
hold: (i) if specTransition(q, s, πss ) =⊥, then there is no state q′ ∈ Q such that
(q, s, q′) ∈ δss , and (ii) if specTransition(q, s, πss) = q′ for some state q′ ∈ Q,
then (q, s, q′) ∈ δss . Given a state q = 〈Status, rs ,ws, prs , pws ,wp, sp〉 and a
thread t ∈ T , the procedure ResetState(q, t) changes Status(t) to finished and
the sets rs(t),ws(t), prs(t), pws(t),wp(t), and sp(t) to ∅. The deterministic TM
specification for opacity builds upon the deterministic TM specification for strict
serializability. The difference comes in the strong predecessor set. We exploit the
relation of strong predecessors in such a way that even aborting transactions see
consistent values. For example, if a thread u is a strong predecessor of t, and t
is a weak predecessor of u, then u cannot commit but t can. Many similar cases
of conflict have to be carefully considered to capture the exact notion of opacity,
that is, L(Σop) = πop . The deterministic TM specification for opacity Σop is
given by the tuple 〈Q, qinit , δop〉. The set of states and the initial state are the
same as those for Σss . Also, the transition relation δop can be similarly obtained
from Algorithm 1 using the property πop in place of πss .
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Algorithm 1. specTransition(〈Status , rs,ws , prs , pws ,wp, sp〉, s, π)
if s = ((read, v), t) then

if v ∈ ws(t) then return 〈Status , rs, ws, prs , pws ,wp, sp〉
if π = πop then

U := {u ∈ T | v ∈ prs(u) or v ∈ prs(u′) such that u ∈ sp(u′)}
if t ∈ U or there exists a thread u ∈ U such that t ∈ sp(u) then return ⊥

if Status(t) = finished then
add all threads u ∈ T such that Status(u) = pending to wp(t) and sp(t)
add all threads u′ ∈ T to sp(t) such that u′ ∈ sp(u) and Status(u) = pending
Status(t) := started

rs(t) := rs(t) ∪ {v}
if v ∈ prs(t) then Status(t) := aborted
for all threads u ∈ T do

if v ∈ ws(u) then wp(u) := wp(u) ∪ {t}
if v ∈ prs(u) then wp(t) := wp(t) ∪ {u}

if π = πss then return 〈Status , rs ,ws , prs , pws ,wp, sp〉
for all threads u ∈ T such that u = t or t ∈ sp(u) do sp(u) := sp(u) ∪ U
for all threads u ∈ T such that u ∈ sp(t) do

pws(u) := pws(u) ∪ {v}
if v ∈ ws(u) then Status(u) := aborted

if s = ((write, v), t) then
if Status(t) = finished then

add all threads u ∈ T such that Status(u) = pending to wp(t) and sp(t)
add all threads u′ ∈ T to sp(t) such that u′ ∈ sp(u) and Status(u) = pending
Status(t) := started

ws(t) := ws(t) ∪ {v}
if v ∈ pws(t) then Status(t) := aborted
for all threads u ∈ T do

if v ∈ rs(u) then
wp(t) := wp(t) ∪ {u}
if π = πop and t ∈ sp(u) then Status(t) := aborted

if v ∈ pws(u) then wp(t) := wp(t) ∪ {u}
if s = (commit, t) then

if t ∈ wp(t) then return ⊥
if π = πop then

U := {u | u ∈ wp(t) or u ∈ sp(u′) for some u′ ∈ wp(t)}
if t ∈ U or there exists a thread u ∈ U such that t ∈ sp(u) then return ⊥

for all threads u ∈ T such that u ∈ wp(t) do
if ws(u) ∩ ws(t) �= ∅ then Status(u) := aborted else Status(u) := pending
prs(u) := prs(u) ∪ prs(t) ∪ ws(t)
pws(u) := pws(u) ∪ pws(t) ∪ ws(t) ∪ rs(t)
for all threads u′ ∈ T such that t ∈ wp(u′) or ws(u′) ∩ ws(t) �= ∅ do

wp(u′) := wp(u′) ∪ {u}
for all threads u ∈ T such that u = t or t ∈ sp(u) do sp(u) := sp(u) ∪ U
ResetState(q, t)

if s = (abort, t) then ResetState(q, t)
return 〈Status , rs ,ws , prs , pws ,wp, sp〉
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3.3 Model Checking with Deterministic TM Specifications

It has been shown [4] that for a transactional memory which satisfies certain
structural properties, it is sufficient to show its correctness for all programs with
two threads and two variables in order to prove the correctness of the transac-
tional memory for all programs. These properties were shown for transactional
memories like DSTM [6] and TL2 [2]. The nondeterministic TM specifications
presented [4] are too huge to be automatically determinized. However, surpris-
ingly enough, the deterministic TM specifications we present in this paper turn
out to be much smaller in size. Using an antichain-based tool [13], we establish
that for two threads and two variables, the language of our deterministic TM
specification for strict serializability (resp. opacity) is equivalent to the language
of the nondeterministic specification for strict serializability (resp. opacity) [4].

For strict serializability, our deterministic TM specification Σss has only 3520
states, whereas the nondeterministic one Ass has 12345 states. Similarly, for
opacity, Σop has 2272 states, while the nondeterministic specification Aop re-
quires 9202 states. Moreover, the deterministic TM specifications allow for an
efficient procedure that directly checks, whether the language of the TM algo-
rithm is included in the language of the deterministic TM specifications. This

Table 1. Time for simulation (resp. language inclusion) checking for STMs on a quad
dual core 2.8 GHz server with 16 GB RAM. In case simulation (resp. language inclusion)
holds, we write Y followed by the time required for finding it. Otherwise, we write N
followed by the counterexample produced, followed by the time required to prove that
no simulation exists (resp. language inclusion does not hold), followed by the time
required to find the counterexample. A ‘*’ for the search for simulation relation means
that it does not complete in 2 hours, but we do find a counterexample. A ‘–’ means
that the search for both, the simulation relation and the counterexample, does not
complete in 2 hours.

TM algo-
rithm A

Number
of states

A ≺ Ass A ≺ Aop L(A) ⊆ L(Σss) L(A) ⊆ L(Σop)

Deterministic STMs [4]

seq 3 Y, 0.8s Y, 0.7s Y, 0.01s Y, 0.01s
2PL 99 Y, 13s Y, 8s Y, 0.01s Y, 0.01s
dstm 944 Y, 127s Y, 82s Y, 0.09s Y, 0.07s
TL2 11840 Y, 1647s Y, 1438s Y, 1.2s Y, 1s
occ 4480 Y, 765s N, w1, 567s,4s Y, 0.46s N, w1, 0.41s, 4s

TL2 mod. 17520 N, w2, *, 9s N, w2, *, 9s N, w2, 2.7s, 9s N, w2, 2.1s, 8s

Nondeterministic STMs

dstm 1846 Y, 303s Y, 279s Y, 0.16s Y, 0.13s
TL2 21568 – – Y, 3.2s Y, 2.4s

Counterexamples

w1 (w, 1)2, (r, 1)1, c2, (r, 1)1
w2 (w, 2)1, (w, 1)2, (r, 2)2, (r, 1)1, c2, c1
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procedure makes our model checking complete too. We show the results in
Table 1. For deterministic STMs [4], we observe that checking language inclusion
with deterministic TM specifications is much faster than checking existence of a
simulation relation with nondeterministic TM specifications.

4 Nondeterministic Transactional Memories

Our succinct deterministic TM specifications tempt us to go a step further in
model checking transactional memories. Transactional memories often employ
nondeterministic schemes to resolve conflicts, in the face of thread failures or
repetitive aborts of a thread. These schemes are generally treated externally
to the transactional memory, and are referred to as contention managers. The
notion of a contention manager helps to keep the design of a transactional mem-
ory modular. This allows a transactional memory to switch from one contention
manager to another, depending upon the contention scenario [5]. An STM is
designed in such a way that it maintains its correctness property for all possible
contention managers.

Transactional memories have been modeled in a restrictive framework as TM
algorithms [4], where a transactional memory is tied to an implicit, specific con-
tention manager. We now give a general formalism which is practically more
useful, where a transactional memory is separated from the contention manager.

4.1 A Formalism for TM with Contention Managers

Programs. We express a thread program as an infinite binary trees on com-
mands. For every command of a thread, we define two successor commands, one
if the command is successfully executed, and another if the command fails due
to an abort of the transaction. We use a set of thread programs to define a mul-
tithreaded program. Formally, a thread program θ on a set C of commands is a
function θ : B∗ → C. We define a (multithreaded) program p on n threads and k
variables as an n-tuple p = 〈θ1, . . . , θn〉 of thread programs on C.

TM algorithms. We model transactional memories using TM algorithms. A
TM algorithm consists of a set of states, an initial state, an extended set of com-
mands depending on the underlying TM, a conflict function, a pending function,
and a transition relation between the states. The extended commands include
the set C of commands, and TM specific additional commands. For example, a
given TM may require that a thread locks a variable before writing to the vari-
able. Every extended command is assumed to execute atomically. The conflict
function captures the statements in the states, when the TM algorithm needs
to consult a contention manager for a decision. The pending function represents
the pending command of a thread in a state, and ensures that if a thread has
not finished the execution of a particular command, then no other command is
executed by the thread.
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We define a TM algorithm A = 〈Q, qinit , D, φ, γ, δ〉, where Q is a set of states,
qinit is the initial state, D is the set of extended commands with C ⊆ D, φ : Q×
D → B is the conflict function, γ : Q×T → C∪{⊥} is the pending function, and
δ ⊆ Q×Ĉ×ŜD×Resp×Q is the transition relation, where ŜD = (D∪{abort})×T
and Resp = {⊥, 0, 1}. For a TM algorithm A = 〈Q, qinit , D, φ, γ, δ〉, the following
rules hold:

– For all threads t ∈ T , we have γ(qinit , t) =⊥.
– For all states q, q′∈Q such that there is an incoming transition (q, c, (d, t), r, q′)

to q′ in δ, if r =⊥, then γ(q′, t) = c, otherwise γ(q′, t) =⊥.
– For all states q, q′∈Q such that there is an incoming transition (q, c, (d, t), r, q′)

to q′ in δ, then γ(q′, u) = γ(q, u) for all threads u �= t.
– For all states q and all threads t, if γ(q, t) = c where c �=⊥, then for all

outgoing transitions (q, c1, (d, t), r, q′) from q in δ, we have c1 = c.
– For all states q and all threads t, if γ(q, t) =⊥, then there is an outgoing

transition (q, c, (d, t), r, q′ from q in δ for every command c ∈ C.
– For all q ∈ Q, for all transitions (q, c, (d, t), r, q′) in δ, we have d = abort if

and only if r = 0.

Note that the rules above restrict the transition relation δ and the pending
function γ such that γ is unique. A command c is enabled in a state q for thread
t if γ(q, t) ∈ {⊥, c} (i.e., either no command is pending, or c itself is pending). A
command c is abort enabled in a state q for thread t if c is enabled in q for thread
t and there is no transition (q, c, (d, t), r, q′) ∈ δ such that d ∈ D. A transition
relation δ is deterministic if for all q ∈ Q and (c, t) ∈ S, if (q, c, (d1, t), r1, q1) ∈ δ
and (q, c, (d2, t), r2, q2) ∈ δ, then d1 = d2, r1 = r2, and q1 = q2. A TM algorithm
is deterministic if its transition relation is deterministic.

Contention managers. When the transactional memory detects a conflict (the
conflict function is true), it requests the contention manager to resolve the con-
flict. The contention manager proposes the TM algorithm the next statement to
be executed. Formally, a contention manager cm on a set D of commands is a
function cm : Ŝ∗

D → 2ŜD , such that if the last statement of w is from thread t,
then every statement in cm(w) is a statement of t.

Given a TM algorithm A = 〈Q, qinit , D, φ, γ, δ〉 and a contention manager cm :
Ŝ∗

D → 2ŜD , we define a TM algorithm and contention manager pair 〈M, cm〉 =
〈Q×, (qinit , ε), D, γ×, δ×〉, where Q× = Q×Ŝ∗

D is the set of states, γ× : Q××T →
C ∪{⊥} is the pending function such that for all states q× ∈ Q× and all threads
t ∈ T , we have γ×(q×, t) = γ(q, t) where q× = (q, w) for some word w ∈ Ŝ∗

D,
δ× ⊆ Q× × Ĉ × ŜD × Resp × Q× is the transition relation such that for all
states q×, q′× ∈ Q×, for all commands c ∈ Ĉ, for all statements s ∈ ŜD, and for
all responses r ∈ Resp, we have (q×, c, s, r, q′×) ∈ δ× if and only if (i) there is
a transition (q, c, s, r, q′) ∈ δ, and (ii) if φ(q, s) = true, then s ∈ cm(w), where
w ∈ Ŝ∗

D and q, q′ ∈ Q such that q× = (q, w) and q′× = (q′, w · s).
Runs and languages of TM algorithms. On putting the pieces together, a
TM algorithm interacts with a program, a scheduler, and a contention manager
(see Fig. 3). A thread of the program is chosen by the scheduler, and the next
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command of the thread is given to the TM algorithm. The TM algorithm decides
whether the command can be executed in a single or several atomic steps, or the
command is in conflict. The commands executed by the TM algorithm are also
reported to the contention manager for its bookkeeping. If the TM algorithm
finds a conflict, the TM algorithm resolves the conflict using the contention
manager. The TM algorithm makes a transition accordingly, and gives back to
the program a response. The response is ⊥ if the TM algorithm needs additional
steps to complete the command, 0 if the TM algorithm needs to abort the
transaction of the scheduled thread, and 1 if the TM algorithm has completed
the command. Given a program, a scheduler, a TM algorithm, and a contention
manager, we get a run. Projecting the run to the set of successful statements
(that is, aborts, and statements that get response 1) gives an infinite word. The
language of a TM algorithm and contention manager pair is the set of infinite
words that the TM algorithm can produce for any program and any scheduler,
where conflicts are resolved using the specific contention manager.

Formally, a scheduler σ on T is a function σ : N → T . Let p = 〈θ1, . . . , θn〉 be
a program, and let σ be a scheduler. A run ρ = 〈q0, l0, (d0, t0), r0〉〈q1, l1, (d1, t1),
r1〉 . . . of a TM algorithm A with scheduler σ on program p and contention man-
ager cm is an infinite sequence of tuples of states, program locations, statements,
and responses, where lj = 〈l1j , . . . , lnj 〉 ∈ (B∗)n for all j ≥ 0 and the following
hold: (i) q0 = qinit and l0 = 〈ε, . . . , ε〉, and (ii) for all j ≥ 0, there exists a transi-
tion (qj , cj, (dj , tj), rj , qj+1) ∈ δ such that if φ(qj , (dj , tj)) = true, then (dj , tj) ∈
cm((d0, t0) . . . (dj−1, tj−1]), and (iii) tj = σ(j), and (iv) cj = θtj (ltj

j ), and (v) for
all t ∈ T , we have ltj+1 = ltj if either t �= tj or rj =⊥, and ltj+1 = ltj · rj otherwise.
A statement sj ∈ Ŝ is successful in the run ρ = 〈q0, l0, s0, r0〉〈q1, l1, s1, r1〉 . . . if
(i) rj ∈ {0, 1}, or (ii) rk = 1 with j < k and rj+1 . . . rk−1 are all equal to ⊥.
We define the language L(〈A, cm〉) of a 〈A, cm〉 pair as the set of all infinite
words w ∈ Ŝω such that w is the sequence of all successful statements in a run
of A with some scheduler on some program and the contention manager cm. A
TM algorithm A with a contention manager cm ensures a correctness property
π ⊆ Ŝ∗ if every finite prefix of every word in L(〈A, cm〉) is in π.

ProgramScheduler
Thread

TM Algorithm
Response

Command

Run

Request

Statement
Contention Manager

Fig. 3. Interaction in the model

Modeling contention managers explicitly in our formalism is not a feasible
option. First of all, contention managers may blow up the state space as their
decisions may depend intricately on past behavior. For example, a simple ran-
dom backoff contention manager, that asks a conflicting thread to back off for
a random amount of time could blow up the state space. Secondly, some of the
structural properties break when we model a TM algorithm in conjunction with
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a particular contention manager. For example, if a contention manager priori-
tizes transactions according to the number of times it has aborted in the past,
then the TM algorithm does not satisfy the structural property of ‘transactional
projection’ [4]. This is because, an abort of a transaction of thread t may be the
reason why the next transaction of thread t commits. As the remaining structural
properties build upon the transactional projection property, they also collapse
for specific contention managers.

We take a novel approach to model check transactional memories with differ-
ent contention managers. Given a TM algorithm A with extended alphabet D,
we define a universal contention manager ucm such that for all words w ∈ Ŝ∗

D,
we have ucm(w) = ŜD. The idea of the universal contention manager is to allow
nondeterministically all choices that the TM algorithm has. It is easy to observe
that the transition relation for the pair 〈A, ucm〉 is identical to that of the TM
algorithm A. From the definition of the language of a TM algorithm and a con-
tention manager pair, we get L(〈A, cm〉) ⊆ L(〈A, ucm〉) for every contention
manager cm . Thus, if a TM algorithm ensures a correctness property with the
universal contention manager, then the TM algorithm is correct for all contention
managers. Moreover, if a TM algorithm A satisfies the structural properties, then
the pair 〈A, ucm〉 also satisfies the structural properties [4]. Thus, verifying the
correctness of the TM algorithm with ucm for two threads and two variables
proves the correctness of the TM algorithm for arbitrary number of threads and
variables for all possible contention managers.

We now provide, as examples, nondeterministic DSTM and nondeterministic
TL2, combined with the universal contention manager. We then verify their
correctness.

4.2 Nondeterministic DSTM

Dynamic software transactional memory (DSTM) [6] is one of the most popular
transactional memories. DSTM faces a conflict when a transaction wants to own
a variable which is owned by another thread. We define the nondeterministic
DSTM algorithm Adstm as 〈Q, qinit , D, γ, δdstm〉. A state q ∈ Q is defined as a
3-tuple 〈Status, rs , os〉, where Status : T → {aborted, validated, invalid, finished}
is the status function, and rs : T → V is the read set, and os : T → V is the
ownership set.

The initial state qinit = 〈Status0, rs0, os0〉, where for all threads t ∈ T , we have
Status0(t) = finished and rs0(t) = os0(t) = ∅. The set of extended commands is
D = C ∪ ({own}×V )∪{validate}. The transition relation δdstm is obtained from
Algorithm 2. For all states q ∈ Q, all commands c ∈ C, all extended commands
d ∈ D ∪ {abort}, all threads t ∈ T , and all responses r ∈ Resp, we have: (i)
if dstmTransition(q, c, d, t, r) =⊥, then there does not exist a state q′ ∈ Q such
that (q, c, (d, t), r, q′) ∈ δdstm , and (ii) if dstmTransition(q, c, d, t, r) = q′ for some
state q′ ∈ Q, then (q, c, (d, t), r, q′) ∈ δdstm .

Our second example is a model of another popular transactional memory,
transactional locking 2 (TL2) [2] with the universal contention manager. We give
an informal description of the role of ucm in TL2. TL2 uses locks for ensuring
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Algorithm 2. dstmTransition(〈Status, rs , os〉, c, d, t, r)
if c is not enabled in q for thread t then return ⊥
if c = (read, v) then

if d = c and v ∈ os(t) and r = 1 and Status(t) �= aborted then return q
if d = c and v /∈ os(t) and r = 1 and Status(t) = finished then

rs(t) := rs(t) ∪ {v}
return q

if c = (write, v) then
if d = c and v ∈ os(t) and r = 1 and Status(t) �= aborted then return q
if d = (own, v) and r =⊥ and Status(t) �= aborted then

os(t) := os(t) ∪ {v}
for all threads u �= t such that v ∈ os(u) do

Status(u) := aborted rs(u) := ∅ os(u) := ∅
return q

if c = commit then
if d = validate and r =⊥ and Status(t) = finished then

Status(t) := validated
for all threads u �= t such that rs(t) ∩ os(u) �= ∅ do

Status(u) := aborted rs(u) := ∅ os(u) := ∅
return q

if d = c and r = 1 and Status(t) = validated then
Status(t) := finished rs(t) := ∅ os(t) := ∅
for all threads u �= t such that rs(u) ∩ os(t) �= ∅ do Status(u) := invalid
return q

if d = abort and r = 0 then
Status(t) := finished rs(t) := ∅ os(t) := ∅
if c is abort enabled in q and d = abort and r = 0 then return q
if c = (write, v) and v /∈ os(t) and v ∈ os(u) s.t. u �= t then return q
if c = commit and Status(t) = finished and rs(t) ∩ os(u) �= ∅ s.t. u �= t then

return q
return ⊥

opacity. A thread locks all the variables in the write set at the time of commit.
With TL2 algorithm using the universal contention manager, whenever a thread t
conflicts due to a variable being locked by another thread u, the nondeterministic
TL2 algorithm has the following transitions: one to abort t, and others to allow
the thread t to proceed by setting the abort flag of some thread u.

We note that nondeterministic DSTM and nondeterministic TL2, combined
with the universal contention manager satisfy the transactional projection prop-
erty, as aborting or unfinished transactions can influence committing transac-
tions only by forcing them to abort. The remaining structural properties depend
on the transactional projection property, but are not influenced by a contention
manager. Thus, all required structural properties do hold for nondeterministic
DSTM and nondeterministic TL2 obtained with the universal contention man-
ager. We check whether the language of these nondeterministic STMs is included
in the language of the deterministic TM specifications. Our results, shown in
Table 1, establish that DSTM and TL2 ensure opacity for an arbitrary number



Completeness and Nondeterminism 35

of threads and variables for all contention managers. We observe that the number
of states in the nondeterministic TM algorithm using the universal contention
manager is nearly double the number of states in the corresponding determinis-
tic TM algorithm. We note that the nondeterministic specifications are unable
to verify the correctness properties for the nondeterministic TL2 algorithm.

5 Conclusion

We presented deterministic specifications for two key correctness properties,
strict serializability and opacity, in transactional memories. Our deterministic
specifications make the model checking procedure for transactional memories
complete and efficient. We formalized the notion of nondeterministic transac-
tional memories to capture realistic contention management. We proved that
DSTM and TL2 ensure opacity with arbitrary numbers of threads and variables
for all possible contention managers.

Acknowledgment. We are thankful to Laurent Doyen for his kind support in
checking language inclusion with his antichain based tool.
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Abstract. We investigate a general model of concurrency for shared-memory
systems. We introduce some intuitive interleaving semantics within the general
framework of automata with concurrency relations and connect it to some partial
order approach. Then our main result identifies the expressive power of finite
deterministic shared-memory systems with the notion of regular consistent sets
of labeled partial orders. We characterize also by means of a coherence property
the languages recognized by deadlock-free systems.

Introduction

The concurrent executions of Petri nets or asynchronous systems, and more generally
Mazurkiewicz traces, can be regarded as labeled partial orders [4, 6, 19]. Besides other
models of distributed systems such as message-passing systems are provided with a
partial order view of their executions called message sequence charts [12]. In this paper
we investigate a general model for shared-memory systems and we show that such
systems can be given a natural partial order semantics as well. We will observe that
these systems are a generalization of 1-safe Petri nets [19], asynchronous automata
[24], and asynchronous cellular automata [5]. To a certain extent this model subsumes
the framework of channel-bounded message-passing systems [12], too.

Basically the partial order approach of concurrent executions that we adopt respects
the following point of view: Two events must be ordered if they occur on the same
process or if one event reads the value or writes a new value in a register that is also
modified by the other. In other words we consider Concurrent-Read-Exclusive-Write
systems. This point of view is actually a simple generalization of the way events are
ordered in the restricted case of Mazurkiewicz traces and asynchronous automata. The
variant of asynchronous cellular automata models a kind of shared-memory systems
where each process communicates with a fixed subset of neighbors. In this paper we
study a more general model where the communication connectivity evolves dynam-
ically along executions. As a result the labeled partial orders associated with these
shared-memory systems are no longer Mazurkiewicz traces. Still our approach differs
from the setting of [1] and [9] which adopt a more relaxed notion of dependency.

The analysis of a distributed protocol is often easier to understand with the visual
description of the interactions between processes and the causality between events by
means of a partial order. For instance Peterson’s mutual exclusion protocol for two
processes can be formalized by the automaton from Figure 1 and a typical execution

� Supported by the ANR project SOAPDC.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 36–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Semantics of Deterministic Shared-Memory Systems 37

of this system is depicted in the top-down usual way by the labeled partial order from
Fig. 2. In Section 1 we introduce a partial order semantics of shared-memory systems
based on the formalization of the May-Occur-Concurrently relation between transitions
rules and the Must-Happen-Before relation between occurrences of actions.

Mazurkiewicz traces are labeled partial orders that arise in a natural manner from
partial commutations of actions [4, 6]. In that way the intuitive interleaving of actions
along an execution corresponds exactly to a particular labeled partial order. A similar
duality appears with message sequence charts which can be regarded as labeled partial
orders or equivalence classes of words with respect to some configuration-dependent
independence relation [12]. We show in Section 2 that our partial order view of the
executions of a shared-memory system corresponds to a natural interleaving approach
based on the notion of automata with concurrency relations [8].

The concurrent executions of some finite deterministic asynchronous automaton form
a regular set of Mazurkiewicz traces. Zielonka’s celebrated theorem asserts the converse
property [5, 24]: Any regular set of Mazurkiewicz traces is accepted by some finite de-
terministic asynchronous automaton. A similar relationship holds between regular sets
of message sequence charts and finite deterministic message-passing systems [12]. Both
connections admit also a variant that characterizes which regular languages can be ac-
cepted by some deadlock-free systems [3, 18, 22]. We establish here similar relation-
ships in Corollaries 4.1 and 4.2 between finite deterministic shared-memory systems
and regular consistent sets of pomsets, a notion borrowed from [2].

Preliminaries. A labeled partial order or pomset (for partially ordered multiset) over
an alphabet Σ is a triple t = (E,�, ξ) where (E,�) is a finite partial order and ξ is a
mapping from E to Σ without autoconcurrency: ξ(x) = ξ(y) implies x � y or y � x
for all x, y ∈ E. We denote by P(Σ) the class of all pomsets over Σ. A pomset can
be seen as an abstraction of an execution of a concurrent system [6, 14, 19, 20]. In this
view, the elements x ofE are events and their label ξ(x) describes the action performed
when event x occurs. Moreover the ordering x � y means that x must happen before y.

Let t = (E,�, ξ) be a pomset and x, y ∈ E. Then y covers x (denoted x−≺y) if
x ≺ y and x ≺ z � y implies y = z. An order extension of a pomset t = (E,�, ξ) is
a pomset t′ = (E,�′, ξ) such that �⊆�′. A linear extension of t is an order extension
that is linearly ordered. It corresponds to a sequential view of the concurrent execution
t. Linear extensions of a pomset t over Σ can naturally be regarded as words over Σ.
By LE(t) ⊆ Σ�, we denote the set of linear extensions of a pomset t over Σ. For any
subset of pomsets L ⊆ P(Σ), we put LE(L) =

⋃
t∈L LE(t).

Two isomorphic pomsets admit the same set of linear extensions. Noteworthy the
converse property holds [23]: If LE(t) = LE(t′) then t and t′ are two isomorphic
pomsets. In the sequel of this paper we do not distinguish between isomorphic pom-
sets any longer because they are used as representative of sets of words. In particular,
LE(t) = LE(t′) implies t = t′.

An ideal of a pomset t = (E,�, ξ) is a subset H ⊆ E such that x ∈ H and y � x
imply y ∈ H . The restriction t|H = (H,� ∩(H ×H), ξ ∩ (H ×Σ)) is called a prefix
of t and we write t′ � t. For all z ∈ E, we denote by ↓z the ideal of events below z, i.e.
↓z = {y ∈ E | y � z}. For any set of pomsets L, Pref(L) denotes the set of prefixes
of pomsets from L. We say that L is prefix-closed if Pref(L) = L.
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Fig. 1. Process i of Peterson’s protocol Fig. 2. A sample scenario

1 A General Model for Communicating Systems

Throughout the paper we fix some (possibly infinite) alphabet Σ. The notion of a
shared-memory system we consider is based on a set I of processes together with a
distribution Loc : Σ → 2I which assigns to each a ∈ Σ a fixed subset of processes
Loc(a) ⊆ I. Intuitively each occurrence of action a induces a synchronized step of
all processes from Loc(a). For that reason we assume that Loc(a) is non-empty for all
a ∈ Σ. In many examples, such as safe Petri nets [19] and asynchronous cellular au-
tomata [5, 9], each action turns out to occur on a single process so that processes never
synchronize and the process alphabets Loc−1({i}) ⊆ Σ are disjoint. Still in this paper
we allow processes to share actions in order to take the classical models of asynchro-
nous automata [24] and mixed product of automata [10] into account.

1.1 Shared-Memory Systems

Processes of a shared-memory system can communicate by means of a set R of shared
variables (or registers) taking values from a common set of data D; in particular the
initial contents of this shared memory is formalized by a memory-state χinit : R → D
that associates to each register r ∈ R a value χinit(r) ∈ D. Intuitively each action
corresponds to the reading of the values of a subset of registers (a guard) and the writing
of new values in some other registers. For convenience, we shall allow a concurrent
reading of the value of a register by distinct processes; but we forbid the writing of a
new value in the same register by two different processes simultaneously, that is, we
shall consider Concurrent-Read Exclusive-Write systems, only. A valuation is a partial
function ν : R⇀ D; it will correspond to the reading or the writing of some values in
a subset of registers. The domain dom(ν) of a valuation ν is the set of registers r such
that ν(r) is defined. We denote by V the set of all valuations.

Now each process i ∈ I is provided with a set of local states Si together with an
initial local state ıi ∈ Si. A global state s = (si)i∈I consists of one local state si for
each process i ∈ I and a configuration q = (χ, s) is a pair made of a memory-state
χ : R → D and a global state s. We let the Cartesian product Q = DR ×

∏
i∈I Si

denote the set of all configurations. The initial configuration ı = (χinit, s) corresponds
to the initial memory-stateχinit and the initial global state s = (ıi)i∈I . Given a memory-
state χ : R → D and a subset of registersR ⊆ R, we let χ|R denote the valuation with
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domain R such that χ|R(r) = χ(r) for all r ∈ R. Given some action a, some process
j and some global state s = (si)i∈I , we denote by s|a the partial state (si)i∈Loc(a) and
by s|j the local state sj . For each a ∈ Σ we denote by Sa the set of partial states Sa =∏

i∈Loc(a) Si. A transition rule is a quintuple (ν, s, a, ν′, s′) where a ∈ Σ, ν, ν′ ∈ V
are two valuations and s, s′ ∈ Sa are two partial states.

Definition 1.1. A shared-memory system (for short, an SMS) over some distributed al-
phabet (Σ,Loc), some initial memory-state χinit : R → D, and local states (Si, ıi)i∈I
consists of a set of transition rulesΔ.

Intuitively action a can occur synchronously on all processes from Loc(a) in some
configuration q◦ = (χ◦, s◦) if there exists a transition rule (ν, s, a, ν′, s′) ∈ Δ such
that ν = χ◦|dom(ν) and s = s◦|a. In that case processes from Loc(a) may perform a
joint move to the new partial state s′ and write the new values ν′(r) in registers from
the domain of ν′. The step consisting of all these moves and all these changes is atomic.
For convenience we put ρ = (νρ, sρ, aρ, ν

′
ρ, s

′
ρ), Rρ = dom(νρ) and Wρ = dom(ν′ρ)

for each transition rule ρ.

Example 1.2. Recall that a 1-safe Petri net is a structure N = (B,E, F,m) where B
is a set of conditions, E is a set of events with E ∩ B = ∅, F ⊆ (B × E) ∪ (E × B)
is the flow relation, and m ⊆ B is an initial marking. Such a structure can be seen
as an SMS where we have R = B, D = {0, 1}, Σ = I = E, Loc(a) = {a},
and Sa = {ıa} is a singleton. Then each subset of conditions (called a marking) is
identified with a memory-state χ : B → {0, 1}. For each event e, the flow relation
defines a preset of conditions •e = {b ∈ B | (b, e) ∈ F} and a postset of conditions
e• = {b ∈ B | (e, b) ∈ F}. Then the transition rule (ν, ıe, e, ν′, ıe) belongs to Δ if the
two next requirements are fulfilled:

– ν has domain •e ∪ e•, ν(b) = 1 for all b ∈ •e and ν(b) = 0 for all b ∈ e• \ •e;
– ν′ has domain •e ∪ e•, ν′(b) = 1 for all b ∈ e• and ν′(b) = 0 for all b ∈ •e \ e•.

1.2 Pomset Semantics of Shared-Memory Systems

Following a classical trend in concurrency theory [14, 19, 20] we want to describe the
concurrent executions of a shared-memory system S by means of labeled partial orders
in such a way that the ordering of events represents the must-happen-before relation be-
tween occurrences of actions. Since each process works sequentially, events occurring
on the same process must be comparable. Furthermore any two events that change the
value of some register should be comparable, that is, we consider Exclusive-Write sys-
tems. Now if one event writes a new value in some register read by another event then
these two events should be comparable as well; otherwise it would be unclear which
value is actually read by the second event. In that way we have characterized which pairs
of transition rules may occur concurrently. We formalize this May-Occur-Concurrently
relation by means of a binary relation ‖ ⊆ Δ × Δ. Let ρ, ρ′ ∈ Δ be two transitions
rules. We put ρ‖ρ′, and we say that ρ and ρ′ are independent, if Loc(aρ)∩Loc(aρ′ ) = ∅,
Wρ ∩ (Rρ′ ∪Wρ′) = ∅, and Wρ′ ∩ (Rρ ∪Wρ) = ∅. Thus two transition rules are inde-
pendent if they correspond to actions occurring on disjoint sets of processes and if each
transition rule does not modify the registers read or written by the other.
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In order to reason about which registers are read by each event and how events
change the local states of processes and the values of registers, we make use of the
notion of run. Let t = (E,�, ξ) be a pomset over Σ. A run of t over S is a mapping
ρ : E → Δ which maps each event e from E to some transition rule ρ(e) ∈ Δ such
that aρ(e) = ξ(e). In order to reflect the May-Occur-Concurrently relation, two events
are incomparable in t only if their transition rules are independent. This is formalized
by Axiom V1 below. The partial order of events in t results from the transitive closure
of the covering relation −≺ and can be represented by its Hasse diagram. Since we
want the partial order to reflect the Must-Happen-Before relation, any edge from the
covering relation must represent some dependence between the corresponding transi-
tion rules. This is formalized by Axiom V2 below. As a consequence the run ρ is called
valid if V1 and V2 are satisfied:

V1: For all events e1, e2 ∈ E with ρ(e1)� ‖ρ(e2), we have e1 � e2 or e2 � e1;
V2: For all events e1, e2 ∈ E with e1−≺e2, we have ρ(e1)� ‖ρ(e2).
In particular if e and e′ are two events that change the value of some register r then e
and e′ are comparable w.r.t. �. Similarly if e and e′ are two events that occur on some
process i ∈ I then e and e′ are comparable w.r.t. �.

We assume now that ρ is a valid run for t. Let H ⊆ E be an ideal of t. The configu-
ration qρ,H at H corresponds intuitively to a snapshot of the system after all events of
H have occurred along the execution of t w.r.t. ρ: The value of each register is the value
written by the last event that has modified this value and the local state of each process
is the local state reached after the last joint move performed by that process. Formally
qρ,H is the configuration qρ,H = (χρ,H , sρ,H) defined by the next two conditions:

– For all registers r ∈ R, we put χρ,H(r) = ν′ρ(e)(r) if e is the greatest event in H
such that r ∈ Wρ(e), and χρ,H(r) = χinit(r) if there is no such event.

– For all i ∈ I, we put sρ,H |i = s′ρ(e)|i if e is the greatest event in H such that
i ∈ Loc(ξ(e)), and sρ,H |i = ıi if there is no such event.

Due to V1 events satisfying r ∈ Wρ(e) are totally ordered so there exists at most one
maximal event satisfying this condition. A similar observation holds for events satis-
fying i ∈ Loc(ξ(e)). Therefore qρ,H is well-defined. Note here that qρ,∅ corresponds
to the initial configuration ı. Now we say that a valid run ρ is compatible with S if the
configuration reached after all events below e enables the execution of the rule ρ(e).
Formally a valid run ρ of t is compatible with S if for all events e ∈ E the configuration
(χ, s) at ↓e \ {e} satisfies χ|Rρ(e) = νρ(e) and s|ξ(e) = sρ(e). A pomset that admits a
compatible run corresponds to a potential execution of S.

Definition 1.3. A pomset over Σ is accepted by S if it admits a compatible run. The
language L(S) ⊆ P(Σ) recognized by S collects all pomsets accepted by S.

Note that if t admits a compatible run then any prefix of t admits a compatible run, too.
Therefore the pomset language L(S) is prefix-closed. We say that a configuration q is
reachable in S if there exists a pomset t ∈ L(S) and a compatible run ρ of t such that
q = qρ,E , that is, q describes the memory-state and the global state of the system after
all events have occurred with respect to ρ.
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1.3 Restriction to Deterministic Shared-Memory Systems

In the sequel of this paper we consider only deterministic shared-memory systems. In-
tuitively determinism means that from any reachable configuration there exists at most
one transition rule that allows an occurrence of a given action.

Definition 1.4. A shared-memory system is deterministic if for all actions a ∈ Σ and
all reachable configurations q = (χ, s) there is at most one transition rule ρ ∈ Δ such
that aρ = a, νρ = χ|Rρ, and sρ = s|a.

Most models of communicating systems fit into the formalism of deterministic shared-
memory systems. In particular any specification in the form of a system of automata
such as Peterson’s protocol in Figure 1 can be formalized in this setting by considering
each transition as a particular action.

1.4 Relationships with Asynchronous Automata

A second example of SMS from the literature is provided by asynchronous automata
[24]. The latter correspond formally to shared-memory systems such that R = ∅ = D.
Then V = {∅} and the transition rules associated with some action a form a binary
relation δa ⊆ Sa × Sa. For deterministic systems (Def. 1.4), the latter can be regarded
as a partial function δa : Sa ⇀ Sa if we remove from δa all transition rules that apply
only from unreachable configurations.

On the other hand the alternative definition of asynchronous automata investigated
in [7, chap. 7] can be identified with the class of deterministic shared-memory systems
such that Σ = I and Loc(a) = {a} for all a ∈ Σ, i.e. each action corresponds to a
process, and for each a ∈ Σ, Sa = {ıa} is a singleton — so there is a single global
state. In this approach each action is assigned a read domain Ra ⊆ R and a write domain
Wa ⊆ R such that Wa ⊆ Ra. It is required that (ν, ıa, a, ν′, ıa) ∈ Δ holds only if ν
has domain Ra and ν′ has domain Wa. Due to determinism, the set of transition rules
associated with a can be regarded as a partial function δa : DRa ⇀ DWa . In that way
the notion of deterministic shared-memory systems we consider appears as a formal
generalization of both notions of asynchronous automata. The notion of asynchronous
cellular automata from [5, 25] also fits into our framework. These systems correspond
actually to the asynchronous automata from [7] such that R = I, Wa = {a} and
b ∈ Ra implies a ∈ Rb for all a, b ∈ Σ.

Interestingly another definition of asynchronous cellular automata was investigated
in [9]. This model can be identified with a shared-memory system such that R = I,
Si = {ıi} for each process i ∈ I, (that is, each process owns a register whose value
describes its current state), Loc(a) is a singleton for each action a, (so processes do
not synchronize) and moreover (ν, ı|a, a, ν′, ı|a) ∈ Δ holds only if the domain of ν′ is
{Loc(a)} which means that each process writes only in its own register. Such a gener-
alized asynchronous cellular automaton is called deterministic if for all actions a ∈ Σ
and all valuations ν ∈ V there exists at most one transition rule (ν, ı|a, a, ν′, ı|a) ∈ Δ.
Noteworthy these deterministic generalized asynchronous cellular automata do not for-
bid the situation where several different (and possibly conflicting) transition rules to
perform a can be applied at some configuration. For that reason this approach does not
fit completely into the present setting.
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2 Interleaving Semantics of Shared-Memory Systems

In this section we fix a shared-memory system S over Σ. We present an interleaving
semantics by means of a configuration dependent independence relation and relate it to
the partial order approach from Definition 1.3.

2.1 Configuration System

The configuration system of S is the transition system C(S) = (Q, ı,Σ,−→) defined
as follows: Q is the set of configurations, ı = (χinit, (ıi)i∈I) is the initial configuration,
and −→⊆ Q × Σ × Q is the set of transitions such that for any two configurations
q = (χ, s), q′ = (χ′, s′) and any action a, we have q

a−→ q′ if there are two subsets of
registers R,W such that (χ|R, s|a, a, χ′|W, s′|a) ∈ Δ, s′|i = s|i for all i ∈ I \Loc(a),
and χ′(r) = χ(r) for all r ∈ R \W . In other words the system can evolve from q to
q′ by performing an action a provided that some transition rule ρ enables all processes
from Loc(a) to proceed a joint move from s|a to s′|a as soon as the registers from Rρ

hold the specific values χ|Rρ. Furthermore the new values χ′|Wρ are written into the
registers from Wρ in order to lead to the new configuration q′.

Example 2.1. We continue Example 1.2. Since there is a single global state, configu-
rations can be identified with memory-states — or equivalently markings. According to
the above definition, there exists a transition χ

e−→ χ′ in the configuration system C(S)
if the following requirements are fulfilled: χ(b) = 1 for all b ∈ •e; χ(b) = 0 for all
b ∈ e• \ •e; χ′(b) = 1 for all b ∈ e•; χ′(b) = 0 for all b ∈ •e \ e•; and χ′(b) = χ(b)
for all b /∈ •e ∪ e•. As a consequence the configuration system of a 1-safe Petri net
corresponds precisely to its usual marking graph.

The languageL(S) of sequential computations of S consists of all words u = a1...an ∈
Σ� for which there are some states q0, ..., qn ∈ Q such that ı = q0 and for each
i ∈ [1, n], qi−1

ai−→ qi. For short, these conditions will be denoted by q0
u−→ qn. We

can check that a configuration q is reachable if and only if ı
u−→ q for some u ∈ Σ�. In

the sequel of this section we consider implicitly only reachable configurations.

2.2 Modeling Concurrency with Independence Relations

Let us first recall some basic notions of Mazurkiewicz trace theory [7]. Let ‖ ⊆ Γ × Γ
be a binary, symmetric and irreflexive relation over some alphabet Γ . The associated
trace equivalence is the least congruence ∼ over Γ � such that for all a, b ∈ Γ , a‖b
implies ab ∼ ba. A trace [u] is the equivalence class of a word u ∈ Γ �. We denote by
M(Γ, ‖) the set of all traces w.r.t. (Γ, ‖).

In [8] Droste introduced a generalization of Mazurkiewicz traces by providing each
configuration with its own independence relation. We follow this approach verbatim in
order to identify equivalent sequential computations.

Let q = (χ, s) be a configuration and a ∈ Σ be an action such that q
a−→ q′ for

some q′. By Def. 1.4, there exists a single transition rule ρ ∈ Δ such that aρ = a,
νρ = χ|Rρ and sρ = s|a. This particular transition rule is denoted by ρq,a. Note here
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that the configuration system C(S) is deterministic: If q
a−→ q′ and q

a−→ q′′ then
q′ = q′′.

Definition 2.2. Let q ∈ Q be some configuration and a, b ∈ Σ be two actions. We put

a‖qb if there are q′, q′′ ∈ Q such that q
a−→ q′, q

b−→ q′′ and ρq,a‖ρq,b.

Thus two distinct actions are independent from each other in some configuration if they
correspond to transition rules that may occur concurrently.

Now the independence relations ‖q yield a natural equivalence relation over the set
of sequential computations L(S) as follows. The trace equivalence ∼S is the least
equivalence over L(S) such that for all words u, v ∈ Σ� and all actions a, b ∈ Σ if

ı
u−→ p

ab−→ q
v−→ r and a‖pb then u.ab.v ∼S u.ba.v. If w and w′ are two trace

equivalent words then they lead from the initial configuration to the same configura-
tion. For any word u ∈ L(S), the trace [u] consists of all words v ∈ L(S) that are
trace equivalent to u: Formally we put [u] = {v ∈ Σ� | v ∼S u}. The trace language
Lt(S) = L(S)/ ∼S consists of all traces.

2.3 From Traces to Pomsets... and Back

Consider now again the set of all Mazurkiewicz traces M(Γ, ‖). Let u ∈ Γ �; then the
trace [u] is precisely the set of linear extensions LE(t) of a unique pomset t = (E,�, ξ),
that is, [u] = LE(t). Moreover t satisfies the following additional properties:

M1: For all events e1, e2 ∈ E with ξ(e1)� ‖ξ(e2), we have e1 � e2 or e2 � e1;
M2: For all events e1, e2 ∈ E with e1−≺e2, we have ξ(e1)� ‖ξ(e2).
Conversely the linear extensions of a pomset satisfying these two axioms form a trace
of M(Γ, ‖). Thus one usually identifies M(Γ, ‖) with the class of pomsets satisfying
M1 and M2.

Recall now that each transition q
a−→ q′ corresponds to some transition rule ρq,a,

so each computation sequence u ∈ L(S) corresponds to a sequence of transition rules
ρu ∈ Δ�. Moreover two computation sequences u and v are trace equivalent w.r.t. ∼S

if and only if the corresponding words ρu and ρv are trace equivalent w.r.t. the May-
Occur-Concurrently relation. It follows that the equivalence class [u] is the set of linear
extensions of some pomset t which corresponds to the Mazurkiewicz trace [ρu]. The
next result shows that this pomset is accepted by S. Moreover any pomset from L(S)
corresponds to some trace of Lt(S).

Theorem 2.3. For each u ∈ L(S) we have [u] = LE(t) for some t ∈ L(S). Conversely
for each t ∈ L(S) we have [u] = LE(t) for some u ∈ L(S).

The following result presents an efficient way to compute the pomset associated to some
sequential computation inductively over the length of that computation.

Corollary 2.4. Let ı = q0
a1−→ q1

a2−→ ...
an−→ qn be a finite sequence of transitions in

C(S). Let t = (E,�, ξ) be a pomset such that E = {e1, ..., en}, ξ(ei) = ai for each
i ∈ [1..n], e1 � e2 � ... � en is a linear extension of t, and ρ : ei �→ ρqi−1,ai is a valid
run of t. Then LE(t) = [a1...an], ρ is a compatible run of t and qρ,E = qn.
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3 Expressive Power of Deterministic Shared-Memory Systems

In this section we aim at characterizing the class of pomset languages that arise from
shared-memory systems. We introduce first the notions of consistency and coherence in
order to identify the expressive power of shared-memory systems (Theorem 3.7). Next
we recall the definition of a regular set of pomsets from [11] and then we characterize
the languages recognized by finite shared-memory systems (Theorem 3.14).

3.1 Consistency and Coherence

We borrow first the notion of a consistent set of pomsets from [2].

Definition 3.1. A set of pomsets L is called consistent if
∀t1, t2 ∈ Pref(L) : LE(t1) ∩ LE(t2) �= ∅ ⇒ t1 = t2.

In [2] this notion of consistency is restricted to prefix-closed sets of pomsets but we
adopt here this relaxed definition in order to be able to extend this study to shared-
memory systems provided with a set of final configurations in Section 4. Observe here
that if L is a consistent set of pomsets and L′ ⊆ L then L′ is consistent, too. Moreover
L is consistent if and only if Pref(L) is consistent, too. Note also that Theorem 2.3
shows that the pomset language of any shared-memory system is consistent.

Example 3.2. Consider the two pomsets t1 and t2 from Fig. 3. The language L =
Pref{t1, t2} is not the pomset language of any SMS. Intuitively after the occurrence of
events a and b some event c may occur in two different ways.

Let (D,�) be a partial order. Two elements d, d′ ∈ D are compatible if they admit
an upper bound. A subset C ⊆ D is pairwise-compatible if any pair of elements of
C admits an upper bound. The partial order (D,�) is called coherent if any finite
pairwise-compatible subset C admits an upper-bound. Recall now that pomsets are par-
tially ordered by the prefix relation �.

Definition 3.3. A set of pomsets L over Σ is coherent if (L,�) is coherent.

Consider now a consistent set of pomsets L. The pomset equivalence ∼L over LE(L)
is such that w ∼L w′ iff {w,w′} ⊆ LE(t) for some t ∈ L. Note that ∼L is an
equivalence relation over LE(L) because L is consistent. The next proposition asserts
that Definition 3.3 coincides with the notion of coherence from [16].

t1 t2

Fig. 3. A non-consistent set of pomsets
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Proposition 3.4. A prefix-closed and consistent set of pomsets L over Σ is coherent if
and only if for all words u ∈ Σ�, all distinct actions a, b, c ∈ Σ:

u.ab ∼L u.ba ∧ u.bc ∼L u.cb ∧ u.ca ∼L u.ac implies u.abc ∼L u.acb ∼L u.cab.

For any SMS S, Theorem 2.3 shows that L(S) is consistent, L(S) = LE(L(S)) and
moreover ∼S coincides with ∼L(S). This enables us to check easily that the pomset
language L(S) is coherent. Thus the pomset language of any shared-memory system is
consistent, prefix-closed and coherent. Theorem 3.7 characterizes the expressive power
of shared-memory systems by establishing the converse property.

3.2 Characterization of SMS Languages

Let Σ1 and Σ2 be two alphabets and π : Σ1 → Σ2 a mapping from Σ1 to Σ2. This
mapping extends into a map from Σ�

1 to Σ�
2 . It extends also into a function that maps

each pomset t = (E,�, ξ) over Σ1 to the structure π(t) = (E,�, π ◦ ξ). The latter
might not be a pomset over Σ2 in case some autoconcurrency appears in it. This situ-
ation can occur if π(a) = π(b) for two distinct actions a, b ∈ Σ while there are two
events e and f in t that are labelled by a and b and that are not comparable. Refinements
allow to relate two sets of pomsets L1 and L2 that are identical up to some relabeling.

Definition 3.5. Let L1 and L2 be two prefix-closed sets of pomsets over Σ1 and Σ2

respectively. A mapping π : Σ1 → Σ2 from Σ1 to Σ2 is a refinement from L2 onto L1

if π(t) is a pomset for each t ∈ L1 and π : L1 → L2 is a bijection.

The main technical contribution of this section lies in the next lemma. A shared-memory
system is called singular if the set of local states of each process i ∈ I is a singleton
Si = {ıi}. Furthermore a singular SMS is called cellular if Σ = I and Loc(a) = {a}
for each a ∈ Σ. Asynchronous automata from [7], asynchronous cellular automata
from [5], and 1-safe Petri nets are cellular shared-memory systems whereas generalized
asynchronous cellular automata from [9] are singular shared-memory systems.

Lemma 3.6. Let L and L′ be two prefix-closed and consistent sets of pomsets over Σ
and Σ′ respectively such that there exists a refinement π : Σ′ → Σ from L to L′. If L′

is recognized by a cellular SMS S′ then L is recognized by a singular SMS S such that
S and S′ share the same configurations.

We have explained above that the pomset language of any SMS is consistent, prefix-
closed and coherent. The first result of this section establishes the converse property.

Theorem 3.7. A set of pomsets is the language of some shared-memory system if and
only if it is consistent, prefix-closed and coherent.

Proof (sketch). The partial order of pomsets accepted by some SMS is isomorphic
to the partial order traces of an asynchronous transition systems [4]. Therefore it corre-
sponds to the configuration domain of a prime event structure with binary conflict. Thus
it corresponds also to the marking graph of some occurrence net [19]. The Mazurkiewicz
trace language of such an occurrence net is a refinement of L(S). By Lemma 3.6, L(S)
is recognized by some singular SMS.
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3.3 Regular Sets of Pomsets

In the rest of this section we assume that the alphabet Σ is finite. We focus now on fi-
nite shared-memory systems, that is, we assume that any SMS consists of finitely many
processes, local states, registers, and data. Thus a finite SMS admits finitely many con-
figurations. Theorem 3.14 characterizes the class of pomset languages that arise from
finite shared-memory systems by means of a notion of regularity borrowed from [11].

Let t1 = (E1,�1, ξ1) be a pomset overΣ. The residualL\t1 consists of all pomsets
t2 = (E2,�2, ξ2) such that there exists some pomset t = (E,�, ξ) in L satisfying the
following conditions:

1. E = E1 ∪ E2, E1 ∩E2 = ∅, and E1 is an ideal of t,
2. t1 is the restriction of t to events in E1, and
3. t2 is the restriction of t to events in E2.

Definition 3.8. Let L be a set of pomsets. Given two pomsets t and t′, we put t ≡r t′ if
L \ t = L \ t′. Then L is regular if the equivalence relation ≡r is of finite index.

Observe here that if L is a regular set of pomsets then Pref(L) is regular, too. Moreover
Corollary 2.4 enables us to show that the pomset language of any finite SMS is regular.

Proposition 3.9. For any finite SMS S, the pomset language L(S) is regular.

Consider now a consistent set of pomsets L. For any two words w,w′ ∈ Σ�, we put
w ≡L w

′ if for all words u,v ∈ Σ� it holds: w.u ∼L w.v ⇔ w′.u ∼L w
′.v. It is easy

to see that≡L is a right-congruence overΣ�. The next lemma shows that Definition 3.8
corresponds to Arnold’s notion of regularity [2] which was adopted in [16].

Lemma 3.10. A consistent set of pomsets L is regular iff ≡L is of finite index.

3.4 Two Powerful Ingredients

The characterization of the pomset languages that correspond to some finite SMS relies
on two powerful ingredients, namely Zielonka’s theorem [24] and some powerful but
somewhat unrecognized result due to Arnold [2].

Definition 3.11. A prefix-closed set of Mazurkiewicz traces L ⊆ M(Γ, ‖) is forward-
stable w.r.t. (Γ, ‖) if for all words u, v ∈ Γ � and all actions a, b ∈ Γ :

[u.a] ∈ L ∧ [u.b] ∈ L ∧ a‖b implies [u.ab] ∈ L.

This condition is well-known. A forward-stable Mazurkiewicz trace language is called
safe-branching in [22], forward independence closed in [18], ideal in [4], and proper
in [15]. Let us now recall a particular version of Zielonka’s theorem [18, 22, 24]: Any
forward-stable and prefix-closed regular set of Mazurkiewicz traces is accepted by a
finite asynchronous automaton. This result can be formulated in terms of refinement
and 1-safe Petri nets as follows.

Theorem 3.12. Let L ⊆ M(Γ, ‖) be a forward-stable and prefix-closed regular set of
Mazurkiewicz traces. There exists a refinement from L to the language accepted by a
finite 1-safe Petri net.
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Now the main contribution of [2] asserts that for any prefix-closed regular consistent set
of pomsets L overΣ there exist a finite independence alphabet (Γ, ‖) and a refinement
from L to a prefix-closed and regular set of Mazurkiewicz traces L′ ⊆ M(Γ, ‖). By
means of this strong result and Zielonka’s theorem we proved in [16] the following
statement.

Theorem 3.13. [16, Cor. 4.6] LetL be a regular coherent prefix-closed consistent set of
pomsets. There exists a refinement from L to a forward-closed and prefix-closed regular
set of Mazurkiewicz traces L′.

By Theorem 3.7 and Proposition 3.9, the set of pomsets accepted by a finite SMS is
regular, consistent, prefix-closed and coherent. Our main result depends again on the
technical Lemma 3.6 and shows the converse property.

Theorem 3.14. A set of pomsets is the language of a finite shared-memory system if
and only if it is regular, consistent, prefix-closed, and coherent.

Proof. Let L be a prefix-closed, consistent, regular and coherent set of pomsets. By
Theorem 3.13, there exists a refinement π1 fromL to a forward-closed and prefix-closed
regular set of Mazurkiewicz traces L1. By Theorem 3.12, there exists a refinement π2

from L1 to the language L2 of a finite 1-safe Petri net. Then π2 ◦ π1 : L2 → L is a
refinement from L to L2. By Lemma 3.6, L is the language of a finite singular SMS.

4 Comparisons with Related Works

In this section we provide shared-memory systems with a subset of final configurations.
We derive from Theorem 3.14 two corollaries that are analoguous to some results from
the theories of asynchronous automata and message-passing systems. Although we have
considered Concurrent-Read-Exclusive-Write systems only, we explain also why our
results apply to the setting of Exclusive-Read-Exclusive-Write systems, too.

4.1 Acceptance Condition and Deadlocks

We consider now finite shared-memory systems provided with an acceptance condition
formalized by a subset of final configurations F ⊆ Q. So to say we have studied so far
shared-memory systems for which all configurations are final. A pomset t = (E,�, ξ)
is accepted by an SMS S with acceptance condition F , and we write t ∈ LF (S), if there
exists a linear extension u ∈ LE(t) such that LE(t) = [u] and moreover u leads from
the initial configuration ı to some final configuration q within the configuration system
C(S). Equivalently we require that the configuration qρ,E belongs to F for some run ρ
compatible with t. It is clear that the language LF (S) of S is consistent. It is easy to
check that LF (S) is also regular.

Corollary 4.1. A set of pomsets is the language of a finite shared-memory system with
acceptance condition if and only if it is regular and consistent.

Proof. Let L be a regular and consistent set of pomsets over Σ. We consider a new
action x /∈ Σ and build the set of pomsets Lx by adding to any pomset from L a great-
est event labeled by x. It is easy to see that Lx is regular and consistent. Furthermore
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Pref(Lx) is regular and consistent, too. By [2, Th. 6.16], there exists a refinement π
from Pref(Lx) onto a prefix-closed regular set of Mazurkiewicz traces Lx

1 over some
independence alphabet (Γ, ‖) (see also [16, Th. 3.5]). By [5], Lx

1 is the language of a
finite deterministic asynchronous cellular automaton with acceptance condition. Simi-
larly to Lemma 3.6, we claim that Pref(Lx) is the language of a finite singular SMS Sx

with acceptance condition. We consider now the SMS S obtained from Sx as follows:
First we forbid any occurrence of action x and second we consider any configuration q
to be final if x is enabled from q in Sx and leads to a final configuration of Sx. Then S

is a singular SMS that accepts L.

When dealing with a shared-memory system with acceptance condition the question
arises whether it exhibits some deadlock, that is, a reachable configuration from which
no final configuration is reachable. An SMS is deadlock-free if it admits no deadlock.
Considering again the statement of Cor. 4.1, another interesting issue is to characterize
which regular and consistent sets of pomsets are the language of some finite deadlock-
free SMS. Let S be a finite shared-memory system with acceptance condition F ⊆ Q.
Let S′ be the SMS obtained from S by considering that all configurations are final. If
S is deadlock-free then L(S′) = Pref(LF (S)) hence Pref(LF (S)) is coherent (Theo-
rem 3.7). Conversely, the next result shows that a regular and consistent set of pomsets
L is recognized by some finite deadlock-free SMS as soon as Pref(L) is coherent.

Corollary 4.2. A set of pomsets L is the language of some finite deadlock-free shared-
memory system with acceptance condition if and only if L is regular and consistent and
moreover Pref(L) is coherent.

Proof. Let L be a regular consistent set of pomsets overΣ such that Pref(L) is coher-
ent. We consider again the set of pomsets Lx obtained by adding to any pomset from
L a greatest event labeled by a fixed new action x /∈ Σ. As already observed, Lx is
regular and consistent. It follows that Pref(Lx) is regular and consistent, too. It is easy
to check that Pref(Lx) is coherent because Pref(L) is coherent. By Theorem 3.14,
Pref(Lx) is accepted by some finite SMS Sx. We consider now the SMS S with accep-
tance condition obtained from Sx as follows: We forbid any occurrence of action x and
we consider any configuration q to be final if x is enabled from q in Sx. Then S accepts
L and moreover S is deadlock-free.

These two corollaries can be regarded as an extension of Zielonka’s theorem [5, 18,
22, 24] from the framework of deterministic asynchronous (cellular) automata to the
setting of shared-memory systems. Both results can be extended to possibly infinite
shared-memory systems with acceptance condition by dropping the regular condition.
Note here also that Theorem 3.14 follows directly from Corollary 4.2.

4.2 Relationships with Communicating Finite-State Machines

Although this study does not aim at considering message-passing systems, this model
fits somehow into the formalism of shared-memory systems provided that we con-
sider only message-passing systems with bounded channels. The concurrent executions
of message-passing systems are described by partial orders called message-sequence
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charts (MSCs) [12]. When the system is regular then the number of messages in tran-
sit within channels is bounded and one can count messages within a channel modulo
that bound. As observed formally by Kuske [13], these counters allow us to consider
that messages are sent in different channels so that each channel contains at most one
message at any stage of any execution. In that way it is possible to simulate any regular
deterministic message-passing system by a finite shared-memory system.

At some more abstract level, any set of MSCs is a consistent set of pomsets. More-
over the usual notion of regularity for MSC languages [12] corresponds to the notion
of regularity of sets of pomsets (Def. 3.8). Consequently Corollary 4.1 shows that any
regular set of MSCs can be regarded as the language accepted by some finite SMS with
acceptance condition.

Note that Corollaries 4.1 and 4.2 are analogous to some results from the theory of reg-
ular MSC languages. Namely, any regular set of MSCs is accepted by some finite-state
deterministic message-passing system with bounded channels [12] whereas a characteri-
zation of the regular sets of MSCs that are accepted by some deadlock-free deterministic
message-passing system is presented in [3] by means of a notion of coherence.

4.3 Exclusive-Read-Exclusive-Write Shared-Memory Systems

In this paper we have considered Concurrent-Read-Exclusive-Write shared-memory
systems only. An alternative approach would be to consider Exclusive-Read-Exclusive-
Write systems. In that case two distinct actions cannot read the value of the same register
concurrently. This requires to add the next requirement in the definition of the May-
Occur-Concurrently relation ρ‖ρ′: Rρ ∩ Rρ′ = ∅. With no surprise the behaviours of
an EREW SMS can be represented by a regular, consistent, prefix-closed and coherent
set of pomsets, too. Similarly to [7] we observe that any CREW SMS can be translated
into some EREW SMS with the same number of reachable configurations and which
accepts the same pomset language. Consequently all results from Sections 3 and 4 hold
also in the setting of EREW shared-memory systems.

5 Conclusion

In this paper we have studied a partial-order semantics of shared-memory systems. This
study has led to a concrete interpretation of consistent sets of pomsets (Theorem 3.7).
Moreover we have identified the expressive power of finite shared-memory systems
with the notion of regular consistent sets of pomsets (Theorem 3.14). Noteworthy our
proofs rely on two major results by Arnold and Zielonka. Moreover this work depends
heavily on our restriction to deterministic shared-memory systems.

In [17] we investigate the particular case of unambiguous shared-memory systems.
An SMS is unambiguous if each pomset admits at most one compatible run. It is
clear any deterministic SMS is unambiguous. However the pomset language recog-
nized by some unambiguous SMS need not to be consistent. For instance the language
Pref{t1, t2} from Example 3.2 is recognized by some unambiguous SMS. In [17] we
establish a generalization of Arnold’s result for non-consistent sets of pomsets. This
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allows us to prove that a set of pomset is recognized by some unambiguous SMS if and
only if it is definable in monadic second-order logic and satisfies a new property called
media-boundedness.

At present we are investigating non-deterministic shared-memory systems and aim-
ing at results analoguous to Corollaries 4.1 and 4.2 in that setting. Yet it is not clear so
far whether any regular set of pomsets is recognized by some non-deterministic SMS.
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22. Ştefãnescu, A., Esparza, J., Muscholl, A.: Synthesis of distributed algorithms using asyn-
chronous automata. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761,
pp. 20–34. Springer, Heidelberg (2003)

23. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fund. Math. 16, 386–389 (1930)
24. Zielonka, W.: Notes on finite asynchronous automata. RAIRO, Theoretical Informatics and

Applications 21, 99–135 (1987)
25. Zielonka, W.: Safe executions of recognizable trace languages by asynchronous automata.

In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 278–289.
Springer, Heidelberg (1989)



A Scalable and Oblivious Atomicity Assertion

Rachid Guerraoui and Marko Vukolić�

School of Computer and Communication Sciences, EPFL,
INR, Station 14, CH-1015 Lausanne, Switzerland
{rachid.guerraoui,marko.vukolic}@epfl.ch

Abstract. This paper presents SOAR: the first oblivious atomicity as-
sertion with polynomial complexity. SOAR enables to check atomicity of
a single-writer multi-reader register implementation. The basic idea un-
derlying the low overhead induced by SOAR lies in greedily checking, in
a backward manner, specific points of an execution where register oper-
ations could be linearized, rather than exploring all possible precedence
relations among these.

We illustrate the use of SOAR by implementing it in +CAL. The per-
formance of the resulting automatic verification outperforms comparable
approaches by more than an order of magnitude already in executions
with only 6 read/write operations. This difference increases to 3-4 orders
of magnitude in the “negative” scenario, i.e., when checking some non-
atomic execution, with only 5 operations. For example, checking atom-
icity of every possible execution of a single-writer single-reader (SWSR)
register with at most 2 write and 3 read operations with the state of the
art oblivious assertion takes more than 58 hours to complete, whereas
SOAR takes just 9 seconds.

1 Introduction

With multi-core architectures becoming mainstream, concurrent programming
is expected to become the norm, even among average developers who might
not always have the right skills and experience. Concurrent programming is
however notoriously difficult. In particular, it is hard to control the interference
between concurrent threads without compromising correctness on the one hand,
or restricting parallelism on the other hand.

Among consistency criteria for concurrent programming, atomicity (also known
as linearizability [15]) is one of the most popular. This is because atomicity reduces
the difficult problem of reasoning about a concurrent program into the simpler
problem of reasoning about its sequential counterpart. Roughly speaking, atom-
icity guarantees that concurrently-executing requests on shared objects appear
sequential: namely, each request appears to be executed at some point (known as
the linearization point [15]) between its invocation and response time (real-time
ordering). An example of an atomic execution of a read/write register is depicted
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in Figure 1, along with its linearization points (assuming the register is initialized
to 0). In contrast, the execution in Figure 2 is not atomic. This is because we can-
not place linearization points such that the sequential specification of a register is
satisfied, i.e., every read returns the last value written.

Precisely because it simplifies the job of the programmers by encapsulating the
difficulty underlying synchronizing shared atomic objects, atomicity is hard to im-
plement. As pointed out in [7], an evidence of this difficulty is that several pub-
lished implementations of atomic shared memory objects have later shown to be
incorrect. Not surprisingly, tools for checking atomicity are of crucial importance,
in particular automatic ones that are suitable for machine verification [11].

writer

reader 1

reader 2

write(1) write(0)

read()−>1 read()−>0read()−>0

read()−>0

t1 t2

r21

r11 r12 r13

w12w11

Fig. 1. Example of an atomic execution

writer

reader 1

reader 2

write(1) write(0)

read()−>1 read()−>1read()−>0

read()−>0

t1 t2

r21

r11 r12 r13

w12w11

Fig. 2. Example of a non-atomic execution

So far, tools for checking atomicity have mainly been designed for specific
programming languages (e.g., Concurrent Java [10]). Some exceptions have been
proposed in the form of language-oblivious execution assertions, which enable to
check the atomicity of implementation histories. Some of these (e.g., [16, 17]) are
still non-algorithm-oblivious in the sense that a fair amount of knowledge about
the checked algorithm is needed in order to check correctness.

Genuinely oblivious assertions were proposed in [25] (Lemma 13.16) and [19].
These assertions do not require any knowledge, neither about the language nor
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about the checked algorithm. One specific such assertion is of particular interest:
the one of Chockler et al. (Property 1 of [7]) for it was especially devised for
automatic verification. This assertion, which we refer to as CLMT, can be written
as a simple logical predicate and is very appealing for automatic verification
especially when paired with a model checker such as the TLC for the +CAL
algorithm language [23, 24].

Unfortunately, the CLMT assertion does not scale well as we discuss below.
Consider the (non-atomic) execution on a single-writer multi-reader (SWMR)
read/write register depicted in Figure 2. When implemented in +CAL, the
CLMT assertion takes more than one minute on our 4 dual-core Opteron ma-
chine to verify that this execution is not-atomic. This is even without taking
into the account the operations invoked by reader2. When considering a single
operation of reader2, the verification takes hours.

On the other hand, it is very simple for a human to verify manually that
the execution of Figure 2 is not-atomic. For the execution to be atomic, the
linearization point of the write operation w1 must come before that of read r11,
since r11 does not return the initial value 0. Similarly, w2 must be linearized
before r12. This leaves r13 which violates the sequential specification of the
read/write register, meaning that the execution is not atomic.

What makes CLMT slow is the very fact that it reasons about atomicity by
identifying the adequate properties of a precedence relation among read/write
operations. Namely, CLMT checks atomicity by establishing the existence of a
precedence relation among operations that: a) is a non-reflexive partial order,
and b) satisfies certain (five different) properties. Without diving into the details
of these properties, it is easy to see that this verification scheme cannot scale for
it does imposes an exponential computational complexity on a model checker.
Namely, with 2|op|2 different possible relations over the set of |op| different op-
erations, there is simply too many relations to check, even for modest values of
|op|, regardless of the nature of the properties that are to be checked. This is
especially true when the “good” precedence relation does not exist, i.e., when
the execution is not atomic. The motivation of this paper is to ask whether it is
possible to devise an oblivious, yet scalable atomicity assertion.

We present SOAR (Scalable and Oblivious Atomicity asseRtion), the first
oblivious atomicity assertion with polynomial complexity. SOAR is devised for
single-writer multi-reader concurrent objects, of which the single-writer multi-
reader register is a very popular representative [6, 25]. Indeed, many applica-
tions of the register abstraction make use mainly of its single-writer variant.
Such applications include for example consensus [2, 5, 12] as well as snapshot
implementations [3].

Like CLMT, SOAR gives a sufficient condition for atomicity; in fact, SOAR
is equivalent to CLMT in our single-writer setting.1 Interestingly, we could also
use SOAR in +CAL to verify that some seemingly natural simplifications of
the celebrated Tromp’s algorithm [27] (implementing an atomic bit out of three
safe bits) lead to incorrect solutions. By doing this, we show that our SOAR

1 For lack of space, we omit the equivalence proof; it can be found in [14].
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implementation in +CAL can be used successfully in identifying non-atomic
executions and algorithm debugging.

SOAR has a low-degree polynomial complexity (O(|op|3) in the worst case).
It outperforms CLMT [7] by more than an order of magnitude already in ver-
ifying atomicity of executions with only 6 read/write operations.2 This differ-
ence increases to 3-4 orders of magnitude in the “negative” scenario, i.e., when
checking some non-atomic execution. For example, checking atomicity of every
possible execution of a single-writer single-reader (SWSR) register with at most
2 write and 3 read operations with CLMT takes more than 58 hours to com-
plete, whereas SOAR takes just 9 seconds. As we pointed out however, SOAR
is designed specifically for verifying atomicity of single writer objects, whereas
CLMT is a general assertion suitable also for multi-writer applications.

Underlying SOAR lies the idea of greedy linearization. Basically, SOAR looks
for linearization points in an execution ex rather than checks for precedence
relations. SOAR performs its search in a backward manner starting from the
end of the execution, linearizing the last write operation in ex (say w) and
then trying to linearize as many read operations as possible after w. Then, the
linearized operations are removed from ex and the linearization reiterates. It is
important to emphasize that the greedy linearization is without loss of generality.

While SOAR is specified with an atomic read/write data structure in mind, we
believe that it is not difficult to extend it to cover other atomic objects in which
only one process can change the state of the object (single-writer). Extending
SOAR and the underlying greedy linearization idea to optimize model checking
of multi-writer objects is very interesting open problem. This is left as future
work.

The rest of the paper is organized as follows. After giving some preliminary
definitions in Section 2, we describe our assertion in details in Section 3. In
Section 4 we illustrate how SOAR can be used for model checking Tromp’s
algorithm and its variations in +CAL/TLC. We also report on some perfor-
mance measurements. We conclude the paper with the related work overview in
Section 5.

2 Preliminaries

2.1 Processes and Objects

We model processes and shared objects using the non-deterministic I/O Au-
tomata model [26]. We simply give here the elements that are needed to recall
atomicity, state our assertion and prove its correctness. In short, an I/O automa-
ton is a state machine whose state can change by discrete atomic transitions
called actions. We consider two sets of processes: a singleton writer and a set of
processes called readers (we refer to a process belonging to the union of these
sets as client).

2 We always compare SOAR to a version of CLMT that is optimized for the single-
writer case as we discuss in Section 4.2.
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A read/write register is a shared object consisting of the following:

1. set of values D, with a special value v0 (called the initial value),
2. set of operations write(v), v ∈ D and read()
3. set of responses D ∪ {ack},
4. sequential specification of the register is any sequence of read/write opera-

tions such that the responses of operations comply with the following:
(a) write(v) � x := v; return ack (where x is initialized to v0)
(b) read() � return x

To access the register, a client issues an operation descriptor that consists
of the identifier of the operation id ∈ {‘write′, ‘read′} and the identifier of the
client; in case of a write, a value v is added to the descriptor. To simplify the
presentation, we sometimes refer to an operation descriptor op simply as an op-
eration op. A single-writer multi-reader (SWMR) register is a read/write object
in which only the process writer may issue write operations. We denote by wrs
(resp., rds) the set of write (resp., read) operations.

Clients use the actions of the form invoke(op) and response(op, v), where
op ∈ wrs ∪ rds and v ∈ D ∪ {ack}, to invoke operations and to receive re-
sponses. A sequence β of invoke and response actions is called an execution. An
invoked operation op is said to be complete (in some execution β) if β contains
response(op, v), for some v ∈ D ∪ {ack} (we say response(op, v) matches in-
voke(op)). An operation op is said to be pending in β if β contains the invoke(op)
action but not its matching response.

The execution ex is sequential if (a) the first action is an invocation, (b) each
invocation, except possibly the last, is immediately followed by its matching
response, and (c) every response is immediately followed by an invocation.

We say that an execution β is well-formed if (1) for every response(op, v)
action in β there is a unique invoke(op) action in β that precedes response(op, v),
(2) for every client c there is at most one pending operation issued by c in β.

Moreover, we assume that each well-formed execution β contains the invo-
cation and the response action of the special operation w0 = write(v0) called
the initial write, such that the response action for w0 precedes invocations of
any other operation. All executions considered in this paper are assumed to be
well-formed. A well-formed, sequential execution β is called legal, if β is in the
sequential specification of the register.

Finally, we say that a complete operation op precedes an operation op′ (or,
alternatively, that op′ follows op) in a well formed execution β if the response
action of op precedes the invocation action of op′ in β (we denote this by op <β

op′). Let op and op′ be two invoked operations in β; if neither op <β op′), nor
op′ <β op), we say that op and op′ are concurrent (in β).

2.2 Atomicity

We define atomicity (or linearizability) in the following way [6]: a (well-formed)
execution β is atomic if there is a permutation π(β) of all operations in ex such
that: (1) π(ex) is legal, and (2) if op <β op

′ then op <π(β) op
′.
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In this paper we rely on the Partial Order (PO) property [7] for proving
atomicity. As shown in Lemma 2 of [7], PO is sufficient for atomicity, i.e., if β
satisfies PO then β is atomic.

Definition 1 (PO Property). Let op be the set of all operations invoked in
the execution β that contains no pending operations and wrs (resp., rds) subset
of all writes (resp., reads) in op. An execution β satisfies a Partial Order (PO)
property if there is an irreflexive partial ordering ≺ on all elements of op, such
that, in β:

1. ∀π, φ ∈ op, if π <β φ, then ¬(φ ≺ π).
2. ∀π, φ ∈ wrs, either π ≺ φ or φ ≺ π.3

3. ∀π ∈ wrs, ∀φ ∈ rds, if π <β φ, then π ≺ φ.
4. ∀π, φ ∈ rds, if π <β φ then for each w ∈ LastPrecWrites(π,≺), w ≺ φ.
5. Let π ∈ rds and let v be the value returned by π. Then, v is written by some

write w ∈ LastPrecWrites(π,≺).

Above, LastPrecWrites(π,≺) == {w ∈ wrs : (w ≺ π) ∧ ¬(∃w′ ∈ wrs : (w ≺
w′) ∧ (w′ ≺ π)}.

The PO property can be simply written as a logical predicate (assertion), to
which we refer as CLMT.

3 A Scalable and Oblivious Atomicity asseRtion (SOAR)

3.1 Intuition: Greedy Linearization

Our SOAR assertion is motivated by the observation that it is easy to linearize (in
the single-writer case) the fragments of the execution between every two writes.
Consider for example the fragment of the execution of Figure 2 in between initial
time t0 and time t1, the time of completion of write w1, that contains only those
read operations that are invoked before t1 (i.e., r11, r12 and r21). It is clear
that only read operations that return the value written by w0 (say v0) can be
linearized between w0 and w1. Moreover, such reads cannot be preceded by reads
that return values other than v0. In other words, in the execution of Figure 2,
only r21 can be linearized between w0 and w1 while the other reads must be
linearized after w1. We can repeat this partitioning of the execution between
two writes and apply the above reasoning iteratively, until we exhaust all write
operations. When a single write operation wW is left, the remaining (still non-
linearized) read operations must return the value written by wW in order for
the execution to be atomic. In the example of Figure 2 the operations would
be linearized in the following order: w0, r21, w1, r11, w2, r12, leaving r13 which
actually violates the sequential specification of the atomic read/write register.

The greedy linearization idea described above is based on checking the frag-
ments of the execution that are between every two writes, starting from the
3 In our case, with the single writer, this property becomes (having in mind Property

1) becomes: ∀π,φ ∈ wrs, if π <β φ then π ≺ φ.
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beginning of the execution. While this is the natural way for a human to lin-
earize executions, this approach leads to reasoning about execution suffixes (that
remain after removing linearized operations). In our case, we found it more con-
venient to reason formally about execution prefixes; hence, we choose to apply
greedy linearization starting from the end of the execution, using the similar
idea. Consider, again the execution of Figure 2. It is trivial to see that the last
write to be linearized is w2. Now we can try to linearize as many reads as possible
after w2; however, this cannot be done with any of the reads. We can remove all
linearized operations from the execution (i.e., in our case, only w2) and apply the
same reasoning to the remaining execution prefix. However, before reiterating,
we must make sure that removing linearized operations indeed leaves us with
the execution prefix; more concretely, we must check that none of the reads that
will remain in the execution was invoked after the completion of the linearized
write. In the case of w2, this condition is satisfied (no operations are invoked
after w2 completes). In the next iteration, we would linearize w1 and r13. Finally,
in the last iteration we could see that the atomicity is violated since not all of
the remaining read operations return the value written by the initial write (r11
returns 1).

3.2 Description

We formalize our greedy linearization approach to obtain a generic assertion for
atomicity in the following way. We denote:

– by W the total number of writes (not counting the initial write) in some
execution ex that contains no incomplete operations,

– by wi the ith write in ex,
– by rdsW the set of all read operations in ex, and
– by exrdsi

i (i = 0 . . .W ) the prefix of the execution ex that contains only write
operations from w0 to wi, and only read operations from set rdsi.

Notice that exrdsW

W ≡ ex.
We assert the atomicity of every partial execution exrdsi

i (i = 0 . . .W ) as
follows:

1. If i = 0 (i.e., if ex′ = exrds0
0 contains only one write) then ex′ is atomic if

and only if all (read) operations from rds0 return the initial value,
2. else (i.e., if i > 0), we:

(a) remove from rdsi every read r that satisfies the following properties (we
denote the set of such reads linRds(i):
i. r returns the value written by the write wi,
ii. r does not precede wi, and
iii. if some r′ ∈ Ri follows r, then r′ returns the value written by wi.
Basically, the reads from the set linRds(i) are immediately linearizable
and SOAR greedily linearizes such reads.

(b) If there is a read in rdsi \ linRds(i) that follows wi, then exrdsi

i is not
atomic.
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(c) exrdsi

i is atomic if and only if exrdsi−1
i−1 is atomic, where rdsi−1 = rdsi \

linRds(i).

Given the recursive nature of SOAR, the assertion can be written more com-
pactly (and more precisely) as a logical predicate (Figure 3). We write it as
follows, using the TLA+ [22].

linRds(wrs, rds, Inv, Resp, Ret) == {r ∈ rds :∧
Ret[r] = Ret[lastWR(wrs)]∧
Resp[r] > Inv[lastWR(wrs)]∧
∀r′ ∈ rds : Resp[r] < Inv[r′] ⇒ Ret[r′] = Ret[lastWR(wrs)]}

SOAR(wrs, rds, Inv, Resp, Ret) ==
IF wrs = {lastWR(wrs)}
THEN ∀r ∈ rds : Ret[r] = Ret[lastWR(wrs)]
ELSE∧

∀r ∈ rds \ linRds(wrs, rds, Inv, Resp, Ret) : ¬(Inv[r] > Resp[lastWR(wrs)])∧
SOAR(wrs\{lastWR(wrs)},rds\linRds(wrs,rds,Inv,Resp,Ret),Inv, Resp, Ret)

Fig. 3. SOAR as a TLA+ predicate

In Figure 3, SOAR() takes five arguments: (i) the sets wrs and rds con-
taining the identifiers of all write and read operations in the execution ex, re-
spectively, (ii) the functions (arrays) Inv,Resp : wrs ∪ rds → Nat (where Nat
is the set of natural numbers), containing the global logical time [18] of invo-
cations and responses of operations, respectively, and (iii) the function (array)
Ret : wrs ∪ rds → D (where D is the domain of values that an implemented
read/write register can assume), which maps the operations to values which are
written/read. Moreover, SOAR makes use of the function lastWR(wrs) which
returns the write in wrs that follows all other writes in ex.4

It is not difficult to see that the very approach that underlies SOAR yields
a low degree polynomial complexity (O(|op|3) in the worst case, where op is
the number of operations in the execution), which is to be contrasted with the
exponential one of the CLMT assertion.

To establish the correctness of SOAR we rely on the CLMT assertion, defined
by the PO property, Def. 1, Section 2.2. We prove the correctness of SOAR by
showing its equivalence with CLMT (in our single writer multi-reader model),
using the following Lemmas:

Lemma 1. If the assertion SOAR of Figure 3 applied on the sequence of
read/write operations β returns TRUE, then β satisfies the PO property.

4 For simplicity, we assume that the identifiers of write operations are monotonically
increasing with the time of operation invocation. If this is not the case the lastWR()
function should also take the function Inv() as the argument.
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Lemma 2. If the sequence of read/write operations β satisfies the PO property,
then the assertion SOAR of Figure 3 applied on β returns TRUE.

Due to lack of space, the proofs of Lemmas 1 and 2 are omitted; these can be
found in [14].

4 Application to Tromp’s Algorithm

We applied SOAR and CLMT to the celebrated algorithm of Tromp [27] which
we implemented in the +CAL algorithm language. We compared SOAR and
CLMT performance, and evaluated SOAR’s applicability to detection of non-
atomic executions and, hence, to debugging.

Our +CAL implementation of Tromp’s algorithm with SOAR is given in
Figure 4.5 It consists of three parts: (1) The code used for testing (given in lines
109-120), (2) the SOAR part (comprised of lines 006-011, 037-043, 058-060, 064-
068 and 102-106), and (3) the +CAL implementation of the Tromp’s algorithm
(comprised of the remaining lines of Figure 4). We explain both parts of the code,
starting with Part 2 (Tromp’s algorithm). In the following we refer to Figure 4.

In short, Tromp’s algorithm gives an implementation of a single-writer single-
reader (SWSR) atomic bit, using 3 safe6 [19] (SWSR) bits: V,W and R, all
initialized to 0. Bits V and W are owned (written) by the writer, whereas R
is owned by the reader of the atomic bit. To simulate safe registers in +CAL,
we use the variables busy and value (lines 012-014), as well as macros in lines
020-034. The main code of the Tromp’s algorithm is given in lines 044-057 (the
write code) and 069-101 (the read code). Comments in these portions of code
(e.g., in lines 046, 050, or 070, 076, etc.) give the lines of the pseudocode as
stated in the original paper [27]. Below each such comment, there is a +CAL
translation of the corresponding pseudocode.

The SOAR part of the code in Figure 4 consists of operations on certain his-
tory variables necessary for the implementation of SOAR (as well as CLMT).
History variables [1] play no role in the algorithm and serve only for the as-
sertions. These lines are written as a wrapper around the code of the original
algorithm in an oblivious manner; namely, no lines are inserted in the main
code of Tromp’s algorithm. For example, lines 037-043 and 058-060 are wrapped
around the original write code, whereas lines 064-068 and 102-106 are wrapped
around the original read code. Below, we explain in details the history variables
required by SOAR.

First, SOAR requires history variables wrs and rds (sets of write and read
operations), as well as history arrays (functions) Inv[], Resp[] and Ret[]. Initially,
wrs = {0}, i.e., wrs contains the identifier of the initial write w0, while Inv[0] =

5 In Figure 4, ‘043:’ denotes a line number added for simplicity of presentation, whereas
‘l17:’ denotes a +CAL label.

6 Basically, a safe register ensures that a read rd returns the last value written only
if rd is not concurrent with any write. In case of concurrency, a read may return an
arbitrary value.
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001: ——————————————————- MODULE TrompSOAR2 ———————————————————
002: EXTENDS Naturals, TLC, Sequences
003: CONSTANT MAXWRITE, MAXREAD, V, W, R, WRITER, READER, SOAR( , , , , )

004: (* –algorithm Tromp 058: l8: (* Update of history variables and return*)
005: variables 059: globalClock := globalClock + 1;
006: (* 1. History variables used by SOAR and CLMT. *) 060: Resp[writeCount] := globalClock;
007: globalClock = 0, writeCount = 0, 061: return;
008: readCount = MAXW RIT E,wrs = {0},rds = {}, 062: end procedure
009: Ret = [i ∈ 0 . . . MAXW RIT E + MAXREAD �→ 0],
010: Inv = [i ∈ 0 . . . MAXW RIT E + MAXREAD �→ 0], 063: procedure read() begin l9:
011: Resp = [i ∈ 0 . . . MAXW RIT E + MAXREAD �→ 0] 064: (* Update of history variables *)

065: globalClock := globalClock + 1;
012: (* 2. Variables used to simulate safe registers. *) 066: readCount := readCount + 1;
013: busy = [i ∈ {V, W, R} �→ F ALSE], 067: rds := rds ∪ {readCount};
014: value = [i ∈ {V, W, R} �→ 0], 068: Inv[readCount] := globalClock;

015: (* 3. Tromp’s algorithm variables. *) 069: (* Tromp’s algorithm read() code*)
016: oldV alue = 0, (* Used by the writer*) 070: (* If W=R return v - line 1 *)
017: R writer = 0, (* Used by the writer to read R*) 071: l10: RW INIT(W );
018: W reader = 0, (* Used by the reader to read W*) 072: l11: READ(W ,W reader);
019: v = 0, x = 0, returnV alue = 0 (* Used by the reader*) 073: if W reader = value[R] then

074: returnV alue := v;
020: (* 4. Safe register simulation. *) 075: else
021: macro RW INIT(reg) begin 076: (* x : = Read(V) - line 2 *)
022: if

∨
((reg ∈ V, W ) ∧ (self = W RIT ER)) 077: l12: RW INIT(V );

023:
∨

((reg = R) ∧ (self = READER)) 078: l13: READ(V, x);
024: then busy[reg] := T RUE; 079: (* If W 	=R change R - line 3 *)
025: end if; 080: l14: RW INIT(W );
026: end macro 081: l15: READ(W, W reader);

082: if W reader 	= value[R] then
027: macro READ(reg, result) begin 083: l16: RW INIT(R);
028: if busy[reg] = F ALSE then result := value[reg]; 084: l17: READ(R, 1 − value[R]);
029: else either result := 0 or result := 1 end either; 085: end if;
030: end if; 086: (* v : = Read(V) - line 4 *)
031: end macro 087: l18: RW INIT(V );

088: l19: READ(V, v);
032: macro WRITE(reg, val) begin 089: (* If W=R return v - line 5 *)
033: value[reg] := val; busy[reg] := F ALSE; 090: l20: RW INIT(W );
034: end macro 091: l21: READ(W, W Reader);

092: if W reader = value[R] then
035: (* 5. Tromp’s Algorithm w. SOAR. *) 093: returnV alue := v;
036: procedure write(val) begin l1: 094: else
037: (* Update of history variables*) 095: (* v : = Read(V) - line 6 *)
038: writeCount := writeCount + 1; 096: l22: RW INIT(V );
039: globalClock := globalClock + 1; 097: l23: READ(V, v);
040: Inv[writeCount] := globalClock; 098: (* return x - line 7 *)
041: Resp[writeCount] := INF ; 099: returnV alue := x;
042: Ret[writeCount] := val; 100: end if;
043: wrs := wrs ∪ {writeCount}; 101: end if;

044: (* Tromp’s algorithm write() code*) 102: l24:(* Update of history variables and return*)
045: if oldV alue 	= val then 103: Ret[readCount] := returnV alue;
046: (* change V *) 104: globalClock := globalClock + 1;
047: l2: RW INIT(V ); 105: Resp[readCount] := globalClock;
048: l3: WRITE(V, val); 106: assert (SOAR(wrs, rds, Inv, Resp, Ret));
049: oldV alue := val; 107: return;
050: (* if W=R then change W *) 108: end procedure
051: l4: RW INIT(R);
052: l5: READ(R, R writer);
053: if value[W ] = R writer then
054: l6: RW INIT(W );
055: l7: WRITE(W, 1 − value[W ]);
056: end if;
057: end if;

109: (* 6. Code for testing. *)
110: process Writer = WRITER begin wrloop:
111: while (writeCount < MAXW RIT E) ∧ (readCount ≤ MAXW RIT E + MAXREAD) do
112: either call write(0) or call write(1) end either;
113: end while;
114: end process;

115: process Reader = READER begin rdloop:
116: while (writeCount ≤ MAXW RIT E) ∧ (readCount < MAXW RIT E + MAXREAD) do
117: call read();
118: end while;
119: end process;
120: end algorithm
*)

Fig. 4. SOAR application to Tromp’s algorithm
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Resp[0] = 0 and Ret[0] = v0 = 0 (lines 008-011). Besides, the following three
history variables are also needed (line 007): (i) globalClock to act as a global
clock and, hence, facilitate the implementation of functions Inv[] and Resp[],
and (ii) writeCount and readCount the counters for write and read operation
identifiers, respectively, which take values from non-overlapping domains. All
these variables/arrays are accessed only at the beginning (invocation) and the
end (completion) of read/write operations. We believe that the operations on
history variables are very intuitive and simple to follow. We clarify, however,
two lines: (a) in line 041, the response time of the newly invoked write is set to
INF , where INF (infinity) represents a constant that such that the globalClock
cannot get greater than INF , and (b) in line 103, the returned value of the read
is taken from the returnV alue variable in which the main read code of Tromp’s
algorithm (lines 069-101) stores the read value.

Finally, constants MAXWRITE (resp., MAXREAD) denote the maximum
number of write (resp., read) operations invoked in the checked execution.

4.1 Asserting Non-atomic Executions

We used our implementation of Figure 4 to verify that certain, seemingly plau-
sible, “optimizations” of Tromp’s algorithm lead to the incorrect solution.

For example, it is not straightforward to see why the condition ‘if W �= R’ in
line 3 of the Tromp’s read pseudocode is necessary (see line 079, Fig. 4) knowing
that this line is executed only if indeed W �= R in line 1 of the original read
pseudocode (line 070, Fig. 4). However, removing this condition (i.e., lines 080-
082 and 085 of Fig. 4) leads to a violation of atomicity, which can be detected by
SOAR. Using the error output of the TLC model checker, we were able to extract

Fig. 5. Violation of atomicity after removing the condition in line 3 of Tromp’s
algorithm
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the execution that leads to the atomicity violation (see Figure 5). Interestingly,
such “simplified” Tromp’s algorithm remains regular [19], but it is not atomic.
In a similar way, we were also able to show that the instruction in line 6 of the
original pseudocode (line 095, Fig. 4) is also necessary. This demonstrates the
usability of SOAR in debugging and asserting non-atomicity in practice.

4.2 Performance

All our performance results are obtained running TLC model checker (using
4 processors) on a 4 dual-core Opteron 8216 with 8 GB of RAM. TLC model
checker is ran on an implementation of the Tromp’s algorithm in +CAL, varying
the number of invoked read/write operations.

Model checking was done to verify the atomicity of the Tromp’s algorithm us-
ing both the CLMT and SOAR. Obtained graphs are given in Figure 6. Results
are given for a specific variation of the CLMT, optimized for a single writer
scenario. Notably the optimization modifies the condition 2 of Definition 1,
Section 2.2 to impose that for any precedence relation≺ and every i ∈ 1 . . .W−1
wi ≺ wi+1 (where W is the total number of writes, represented by the variable
writeCount in our +CAL implementation, Figure 4). Moreover, the initial write
w0 was always pre-linearized before running the CLMT assertion, which signifi-
cantly improves its performance.

From Figure 6 it can be seen that already in model checks of Tromp’s algo-
rithm with as few as 6 read/write operations (e.g., with 3 reads and 3 writes) a
model check with SOAR takes more than an order of magnitude less time than
with CLMT. The difference is even more glaring if a non-atomic execution is
checked. For example, it takes only 15 milliseconds for SOAR to state that an
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execution of 2 (without the read r21) is not atomic, whereas CLMT takes more
than 70 seconds. This represents a difference of 3-4 orders of magnitude already
for an execution with only 5 operations, and, by its design, the complexity of
CLMT grows exponentially with the number of operations in the execution.

In practice, when checking executions with a fairly small number of opera-
tions, SOAR is as fast as any assertion maintaining the global clock can be. By
maintaining the global clock, we mean maintaining the execution history in the
form of: 1) set of all operations invoked in the execution, 2) arrays of operations’
invocation and response times, and 3) the array of values written/read by oper-
ations. Indeed, our results show that, for all the points represented in Figure 6,
SOAR introduces no visible overhead with respect to a dummy assertion that
maintains the global clock.

5 Concluding Remarks

The concept of an atomic object was first introduced by Lamport [20, 21] in the
context of read/write registers. This concept was later extended to objects other
than registers by Herlihy and Wing [15], under the notion of linearizability. In
this paper, we use notions of atomicity and linearizability interchangeably.

Atomicity assertions were proposed by Hesselink [16, 17]. These assertions
are not oblivious since they are based on the history variables that are inserted
in specific places of the checked algorithm. A fair amount of knowledge of the
checked algorithm is thus required.

As we discussed in the introduction, Chockler et al., [7] proposed a genuinely
oblivious atomicity assertion (quoted CLMT) that does not require any knowl-
edge, neither on the language nor on the algorithm. In [7], CLMT has been used
as the basis for the Partial Order machine automaton, that was in turn used
in forward simulations to prove the correctness of various atomic object imple-
mentations (another simulation based atomicity proof (of a lock-free queue) can
be found in the paper by Doherty et al. [8]). However, as we show in this pa-
per, CLMT imposes exponential complexity on the model checker. This is not
surprising given the result of Alur et al. [4], showing that model checking lin-
earizability is in EXPSPACE. SOAR circumvents this result by focusing on the
single-writer implementations.

In [27], Tromp proposed an atomicity automaton suitable for designing and
verifying atomic variable constructions. The automaton nodes represent the state
of a run on the atomic variable, whereas transitions represent read and write
operations. This automaton addresses only the single-writer single-reader atomic
constructions.

Some work was also devoted to checking the atomicity of transactional blocks
of code, e.g., [9, 10, 13].

The simple greedy linearization idea that we employ in this paper is not new.
A similar idea was exploited by Wang and Stoller [28] as one of the steps in the
context of atomicity inference for programs with non-blocking synchronization.
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Abstract. We introduce R-automata – finite state machines which oper-
ate on a finite number of unbounded counters. The values of the counters
can be incremented, reset to zero, or left unchanged along the transitions.
R-automata can be, for example, used to model systems with resources
(modeled by the counters) which are consumed in small parts but which
can be replenished at once. We define the language accepted by an R-
automaton relative to a natural number D as the set of words allowing a
run along which no counter value exceeds D. As the main result, we show
decidability of the universality problem, i.e., the problem whether there
is a number D such that the corresponding language is universal. We
present a proof based on finite monoids and the factorization forest the-
orem. This theorem was applied for distance automata in [12] – a special
case of R-automata with one counter which is never reset. As a second
technical contribution, we extend the decidability result to R-automata
with Büchi acceptance conditions.

1 Introduction

We consider systems operating on resources which are consumed in small parts
and which can be (or have to be) replenished completely at once. To model such
systems, we introduce R-automata – finite state machines extended by a finite
number of unbounded counters corresponding to the resources. The counters
can be incremented, reset to zero, or left unchanged along the transitions. When
the value of a counter is equal to zero then the stock of this resource is full.
Incrementing a counter means using one unit of the resource and resetting a
counter means the full replenishment of the stock.

We define the language accepted by an R-automaton relative to a natural
number D as the set of words allowing an accepting run of the automaton such
that no counter value exceedsD in any state along the run. We study the problem
of whether there is a numberD such that the corresponding language is universal.
This problem corresponds to the fact that with stock size D, the system can
exhibit all the behaviors without running out of resources. We show that this
problem is decidable in 2-EXPSPACE. As a second technical contribution, we
extend the decidability result to R-automata with Büchi acceptance conditions.
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To prove decidability of the universality problem, we adopt the technique
from [12] and extend it to our setting. We reformulate the problem in the lan-
guage of finite monoids and solve it using the factorization forest theorem [11].
In [12], this theorem is used for solving the limitedness problem for distance au-
tomata. Distance automata are a subclass of R-automata with only one counter
which is never reset. In contrast to this model, we handle several counters and
resets. This extension cannot be encoded into the distance automata.

The decision algorithm deals with abstractions of collections of runs in order
to find and analyze the loops created by these collections. The main step in
the correctness proof is to show that each collection of runs along the same
word can be split (factorized) into short repeated loops, possibly nested. Having
such a factorization, one can analyze all the loops to check that none of the
counters is only increased without being reset along them. If none of the counters
is increased without being reset then we can bound the counter values by a
constant derived from the length of the loops. Since the length of the loops is
bounded by a constant derived from the automaton, all words can be accepted
by a run with bounded counters. Otherwise, we show that there is a +-free
regular expression such that for any bound there is a word obtained by pumping
this regular expression which does not belong to the language. Therefore, the
language cannot be universal for any D.

Related work. The concept of distance automata and the limitedness problem
were introduced by Hashiguchi [6]. The limitedness problem is to decide whether
there is a natural numberD such that all the accepted words can also be accepted
with the counter value smaller than D. Different proofs of the decidability of
the limitedness problem are reported in [7,10,12]. The last of these results [12] is
based on the factorization forest theorem [11,4]. The model of R-automata, which
we consider in this paper, extends that of distance automata by introducing
resets and by allowing several counters. Furthermore, all the works mentioned
above only consider the limitedness problem on finite words, while we here extend
the decidability result of the universality problem to the case of infinite words.
Distance automata were extended in [8] with additional counters which can be
reset following a hierarchical discipline resembling parity acceptance conditions.
R-automata relax this discipline and allow the counters to be reset arbitrarily.
Universality of a similar type of automata for tree languages is studied in [5].
A model with counters which can be incremented and reset in the same way
as in R-automata, called B-automata, is presented in [3]. B-automata accept
infinite words such that the counters are bounded along an infinite accepting
computation. Decidability of our problems can be obtained using the results
from [3]. However, this would require complementation of a B-automaton which
results in a non-elementary blowup of the automaton state space.

The fact that R-automata can have several counters which can be reset al-
lows, for instance, to capture the abstractions of the sampled semantics of timed
automata [9,1]. A sampled semantics given by a sampling rate ε = 1/f for some
positive integer f allows time to pass only in steps equal to multiples of ε. The
number of different clock valuations within one clock region (a bounded set of
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valuations) corresponds to a resource. It is finite for any ε while infinite in the
standard (dense time) semantics of timed automata. Timed automata can gen-
erate runs along which clocks are forced to take different values from the same
clock region (an increment of a counter), take exactly the same value (a counter
is left unchanged), or forget about the previously taken values (a counter reset).

2 Preliminaries

First, we introduce the model of R-automata and its unparameterized semantics.
Then, we introduce the parameterized semantics, the languages accepted by the
automaton, and the universality problem.

R-automata. R-automata are finite state machines extended with counters.
A transition may increase the value of a counter, leave it unchanged, or reset
it back to zero. The automaton on its own does not have the capability of
testing the values of the counters. However, the semantics of these automata is
parameterized by a natural number D which defines an upper bound on counter
values which may appear along the computations of the automaton. Let N denote
the set of non-negative integers.

An R-automaton with n counters is a 5-tuple A = 〈S,Σ,Δ, s0, F 〉 where

– S is a finite set of states,
– Σ is a finite alphabet,
– Δ ⊆ S ×Σ × {0, 1, r}n × S is a transition relation,
– s0 ∈ S is an initial state, and
– F ⊆ S is a set of final states.

Transitions are labeled (together with a letter) by an effect on the counters.
The symbol 0 corresponds to leaving the counter value unchanged, the symbol
1 represents an increment, and the symbol r represents a reset. We use t, t1, . . .
to denote elements of {0, 1, r}n which we call effects. A path is a sequences of
transitions (s1, a1, t1, s2),(s2, a2, t2, s3), . . . , (sm, am, tm, sm+1), such that ∀1 ≤
i ≤ m.(si, ai, ti, si+1) ∈ Δ. An example of an R-automaton is given in Figure 1.

s0 s1

s2

a, (1, 0)

b, (r, r)a, (0, 1)

b, (0, 1)

a, (0, r)

Fig. 1. An R-automaton with two counters
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Unparameterized semantics. We define an operation ⊕ on the counter val-
ues as follows: for any k ∈ N, k ⊕ 0 = k, k ⊕ 1 = k + 1, and k ⊕ r = 0.
We extend this operation to n-tuples by applying it componentwise. The oper-
ational semantics of an R-automaton A = 〈S,Σ,Δ, s0, F 〉 is given by a labeled
transition system (LTS) �A� = 〈Ŝ, Σ, T, ŝ0〉, where the set of states Ŝ contains
pairs 〈s, (c1, . . . , cn)〉, s ∈ S, ci ∈ N for all 1 ≤ i ≤ n, with the initial state
ŝ0 = 〈s0, (0, . . . , 0)〉. The transition relation is defined by (〈s, (c1, . . . , cn)〉, a, 〈s,
(c′1, . . . , c′n)〉) ∈ T if and only if 〈s, a, t, s′〉 ∈ Δ and (c′1, . . . , c′n) = (c1, . . . , cn)⊕ t.
We shall call the states of the LTS configurations.

We write 〈s, (c1, . . . , cn)〉 a−→ 〈s, (c′1, . . . , c′n)〉 if (〈s, (c1, . . . , cn)〉, a, 〈s, (c′1, . . . ,
c′n)〉) ∈ T . We extend this notation also for words, 〈s, (c1, . . . , cn)〉 w−→
〈s, (c′1, . . . , c′n)〉, where w ∈ Σ+.

Paths in an LTS are called runs to distinguish them from paths in the under-
lying R-automaton. Observe that the LTS contains infinitely many states, but
the counter values do not influence the computations, since they are not tested
anywhere. In fact, for any R-automaton A, �A� is bisimilar to A considered
as a finite automaton (without counters and effects). The LTS induced by the
R-automaton from Figure 1 is in Figure 2.

s0, (0, 0) s1, (1, 0)
a

s1, (1, 1)
b

s1, (1, 2)
b

s1, (1, 3)
b

s2, (0, 1) s2, (0, 0)
a

a b b b b

a

Fig. 2. The unparameterized semantics of the R-automaton in Figure 1

Parameterized Semantics. Now we define the D-semantics of R-automata.
We assume that the resources associated to the counters are not infinite and we
can use them only for a bounded number of times before they are replenished
again. If a machine tries to use a resource which is already completely used up,
it is blocked and cannot continue its computation.

For a givenD ∈ N, let ŜD be the set of configurations restricted to the configu-
rations which do not contain a counter exceeding D, i.e., ŜD = {〈s, (c1, . . . , cn)〉|
〈s, (c1, . . . , cn)〉 ∈ Ŝ and (c1, . . . , cn) ≤ (D, . . . ,D)} (≤ is applied component-
wise). For an R-automaton A, the D-semantics of A, denoted by �A�D, is �A�
restricted to ŜD. We write 〈s, (c1, . . . , cn)〉 a−→D 〈s, (c′1, . . . , c′n)〉 to denote the
transition relation of �A�D . We extend this notation for words, 〈s, (c1, . . . , cn)〉

w−→D 〈s, (c′1, . . . , c′n)〉 where w ∈ Σ+. The 2-semantics of the R-automaton from
Figure 1 is in Figure 3.

We abuse the notation to avoid stating the counter values explicitly when it
is not necessary. We define the reachability relations −→ and −→D over pairs
of states and words as follows. For s, s′ ∈ S and w ∈ Σ+, s w−→ s′ if and only
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s0, (0, 0) s1, (1, 0)
a

s1, (1, 1)
b

s1, (1, 2)
b

s2, (0, 1) s2, (0, 0)
a

a b b b

a

Fig. 3. The 2-semantics of the R-automaton in Figure 1

if there is a path (s, a1, t1, s1), (s1, a2, t2, s2), . . . , (s|w|−1, a|w|, t|w|, s
′) such that

w = a1 · a2 · · ·a|w|. For each D ∈ N, s w−→D s′ if also for all 1 ≤ i ≤ |w|,
t1 ⊕ t2 ⊕ · · · ⊕ ti ≤ (D, . . . ,D). It also holds that s w−→D s′ if and only if there
is a run 〈s, (0, . . . , 0)〉 w−→D 〈s′, (c1, . . . , cn)〉.

Language. The (unparameterized or D-) language of an R-automaton is the
set of words which can be read along the runs in the corresponding LTS ending
in an accepting state (in a configuration whose first component is an accepting
state). The unparameterized language accepted by an R-automaton A is L(A) =
{w|s0

w−→ sf , sf ∈ F}. For a given D ∈ N, the D-language accepted by an
R-automaton A is LD(A) = {w|s0 w−→D sf , sf ∈ F}. The unparameterized
language of the R-automaton from Figure 1 is ab∗a∗. The 2-language of this
automaton is a(ε+ b+ bb+ bbb)a∗.

Problem Definition. Now we can ask a question about language universality
of an R-automaton A parameterized by D, i.e., is there a natural number D such
that LD(A) = Σ∗. Figure 4 shows an R-automaton A such that L2(A) = Σ∗.

s0 s1

s2

a, r

a, 1
a, 1

b, 0 b, 0

b, 0

Fig. 4. A 2-universal R-automaton

The language definitions and the universality question can also be formu-
lated for infinite words with Büchi acceptance conditions. The unparameterized
ω-language of the automaton from Figure 1 is abω + ab∗aω. The 2-ω-language of
this automaton is a(ε+ b+ bb+ bbb)aω.
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3 Universality

The main result of the paper is the decidability of the universality problem for
R-automata formulated in the following theorem.

Theorem 1. For a given R-automaton A, the question whether there is D ∈ N
such that LD(A) = Σ∗ is decidable in 2-EXPSPACE.

First, we introduce and also formally define the necessary concepts (patterns, fac-
torization, and reduction) together with an overview of the whole proof. Then we
show the construction of the reduced factorization trees and state the correctness
of this construction. Finally, we present an algorithm for deciding universality.
All proofs can be found in the full version of this paper [2].

3.1 Concepts and Proof Overview

When an R-automaton A is not universal for all D ∈ N then there is an infinite
set X of words such that for each D ∈ N there is wD ∈ X and wD /∈ LD(A). We
say then that X is a counterexample. The main step of the proof is to show that
there is an X which can be characterized by a +-free regular expression. In fact,
we show that X also satisfies a number of additional properties which enable
us to decide for every such a +-free regular expression, whether it corresponds
to a counterexample or not. Another step of the proof is to show that we need
to check only finitely many such +-free regular expressions in order to decide
whether there is a counterexample at all.

Patterns. The standard procedure for checking universality in the case of finite
automata is subset construction. Whenever there are non-deterministic transi-
tions s a−→ s1 and s

a−→ s2 then we build a “summary” transition {s} a−→
{s1, s2}. This summary transition says that from the set of states {s} we get to
the set of states {s1, s2} after reading the letter a. In the case of R-automata,
subset construction is in general not guaranteed to terminate since the values
of the counters might grow unboundedly. To deal with this problem, we exploit
the fact that the values of the counters do not influence the computations of the
automaton. Therefore, we perform an abstraction which hides the actual values
of the counters and considers only the effects along the transitions instead. The
abstraction leads to a more complicated variant of summary transitions namely
so called patterns.

We define a commutative, associative, and idempotent operation ◦ on the set
{0, 1, r}: 0 ◦ 0 = 0, 0 ◦ 1 = 1, 0 ◦ r = r, 1 ◦ 1 = 1, 1 ◦ r = r, and r ◦ r = r. In fact,
if we define an order 0 < 1 < r then ◦ is the operation of taking the maximum.
We extend this operation to effects, i.e., n-tuples, by applying it componentwise
(this preserves all the properties of ◦). An effect obtained by adding several other
effects through the application of the operator ◦ summarizes the manner in which
the counters are changed. More precisely, it describes whether a counter is reset
or whether it is increased but not reset or whether it is only left untouched.
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A pattern σ : (S×S) −→ 2{0,1,r}n

is a function from pairs of automaton states
to sets of effects. Let us denote patterns by σ, σ1, σ

′, . . . . As an example, consider a
pattern σ involving states s and s′ and two counters. Let σ(s, s) = {(0, 0), (1, 1)},
σ(s′, s′) = {(1, 1), (1, 0)}, σ(s, s′) = {(1, 1)} and σ(s′, s) = {(1, 1)}. This pattern
is depicted in Figure 5a.

Clearly, for a given R-automaton there are only finitely many patterns; let us
denote this finite set of all patterns by P. We define an operation • on P as follows.
Let (σ1•σ2)(s, s′) = {t|∃s′′, t1, t2. t1 ∈ σ1(s, s′′), t2 ∈ σ2(s′′, s′), t = t1◦t2}. Note,
that • is associative and it has a unit σe, where σe(s, s′) = {(0, . . . , 0)} if s = s′

and σe(s, s′) = ∅ otherwise. Therefore, (P, •) is a finite monoid.
For each word we obtain a pattern by running the R-automaton along this

word. Formally, let Run : Σ+ −→ P be a homomorphism defined by Run(a) = σ,
where t ∈ σ(s, s′) if and only if (s, a, t, s′) ∈ Δ.

Loops. In the case of finite automata, a set of states L and a word w constitute
a loop in the subset construction if L w−→ L, i.e., starting from L and reading
w, we end up in L again. The intuition behind the concept of a loop is that
several iterations of the loop have the same effect as a single iteration. In our
abstraction using patterns, loops are wordsw such that w yields the same pattern
as w2, w3, . . . . We can skip the starting set of states, because the function Run
starts implicitly from the whole set of states S (if there are no runs between some
states then the corresponding set of effects is empty). More precisely, a word w is
a loop if Run(w) is an idempotent element of the pattern monoid. Two loops are
identical if they produce the same pattern. Observe that the pattern in Figure 5a
is idempotent.

Factorization. We show that each word can be split into short identical loops
repeated many times. The loops can possibly be nested, so that this split (fac-
torization) defines a factorization tree. The idea is that since we have such a
factorization for each word, it is sufficient to analyze only the (short) loops and
either find a run with bounded maximal value of the counters or use the loop
structure to construct a counterexample regular expression.

On a higher level we can see a factorization of words as a function which for
every word w = a1a2 · · ·al returns its factorization tree, i.e., a finite tree with
branching degree at least 2 (except for the leaves) and with nodes labeled by
subwords of w such that the labeling function satisfies the following conditions:

– if a node labeled by v has children labeled by w1, w2, . . . , wm then v =
w1 · w2 · · ·wm,

– if m ≥ 3 then σ = Run(v) = Run(wi) for all 1 ≤ i ≤ m and σ is idempotent,
– the leaves are labeled by a1, a2, . . . , al from left to right.

An example of such a tree is in Figure 5b. It follows from the factorization
forest theorem [11,4] that there is such a (total) function which returns trees
whose height is bounded by 3 · |P| where |P| is the size of the monoid.

We define the length of a loop as the length of the word (or a pattern sequence)
provided that only the two longest iterations of the nested loops are counted.



74 P.A. Abdulla, P. Krcal, and W. Yi

s s

s′ s′

(0, 0) , (1, 1)

(1, 0) , (1, 1)

(1, 1)

(1, 1)

acabbac

ac

abbac

a c

ab b ac

a b a c

Fig. 5. A pattern involving two states and two counters (a) and a factorization tree
(b). Run(abbac) = Run(ab) = Run(b) = Run(ac) and it is idempotent.

This concept is defined formally in Subsection 3.3. We say that the loops are
short if there is a bound given by the automaton so that the length of all the loops
is shorter than this bound. A consequence of the factorization forest theorem is
that there is a factorization such that all loops are short.

Reduction. We have defined the loops so that the iterations of a loop have the
same effect as the loop itself. Therefore, it is enough to analyze a single iteration
to tell how the computations look when the loop is iterated an arbitrary number
of times. By a part in an idempotent pattern σ, we mean an element (an effect)
in the set σ(s, s′) for some states s and s′. We will distinguish between two
types of parts, namely bad and good parts. A bad part corresponds only to runs
along which the increase of some counter is at least as big as the number of the
iterations of the loop. A part is good if there is a run with this effect along which
the increase is bounded by the maximal increase induced by two iterations of
the loop. Formally, we define a function reduce which for each pattern returns a
pattern containing all good parts of the original pattern, but no bad part. Then
we illustrate it on a number of examples.

For a pattern σ, core(σ) is defined as follows:

core(σ)(s, s′) =
{
σ(s, s′) ∩ {0, r}n if s = s′

∅ otherwise

Let reduce(σ) = σ • core(σ) • σ.
For an automaton with one state s, one counter, and a loop w with pattern σ,

if σ(s, s) = {(1)} then the whole pattern is bad, i.e., reduce(σ)(s, s) = ∅. Notice
that any run over wk increases the counter by k. On the other hand, if σ(s, s) =
{(0)} or σ(s, s) = {(r)} then the whole pattern is good, i.e., reduce(σ) = σ.

With more complicated patterns we need a more careful analysis. Let us con-
sider a loop w with pattern σ where σ(s, s) = {(0)}, σ(s′, s′) = {(1)}, σ(s, s′) =
{(1)}, and σ(s′, s) = {(1)}. We will motivate why the part (1) ∈ σ(s′, s′) is good.
For any k, we can take the run over wk which starts from s′, moves to s after the
first iteration, stays in s for k − 2 iterations, and finally moves back to s′ after
the kth iteration. Then, the effect of the run is (1). Furthermore, the counter
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increase along the run is bounded by twice the maximal counter increase while
reading w. In fact, using a similar reasoning, we can show that all parts of σ are
good (which is consistent with the fact that reduce(σ) = σ).

As the last example, let us consider the pattern from Figure 5a. First, we show
that the part (1, 0) ∈ σ(s′, s′) is bad. The only run over wk with effect (1, 0) is the
one which comes back to s′ after each iteration. However, this run increases the
first counter by k. On the other hand, the part (1, 1) ∈ σ(s′, s′) is good by a similar
reasoning to the previous example. In fact, we can show that all other parts of the
pattern are good (which is consistent with the value of reduce(σ) in Figure 6).

s

s′

s

s′

s

s′

s

s′

=

s

s′

s

s′

(0, 0) , (1, 1)

(1, 0) , (1, 1)

(1, 1)

(1, 1)

(0, 0) (0, 0) , (1, 1)

(1, 0) , (1, 1)

(1, 1)

(1, 1)

(0, 0) , (1, 1)

(1, 1)

(1, 1)

(1, 1)

Fig. 6. σ • core(σ) • σ = reduce(σ) where σ is the pattern from Figure 5a

Reduced Factorization Trees. For a factorization of a word w, we need to
check whether there is a run which goes through a good part in every loop. In
order to do that, we enrich the tree structure, so that each node will now be
labeled, in addition to a word, also by a pattern. The patterns are added by the
following function: given an input sequence of patterns, the leaves are labeled
by the elements of the sequence, nodes with branching degree 2 are labeled by
the composition of the children labels, and we label each node with branching
degree at least 3 by σ, where σ is the idempotent label of all its children. Now,
based on this labeling, we build a reduced factorization tree for w in several steps
(formally described in Subsection 3.2).

We start with the sequence of patterns obtained by Run from the letters of
the word. In each step, we take the resulting sequence from the previous step,
build a factorization tree from it, and label it by patterns as described above.
Then we take the lowest nodes such that they have at least 3 children and they
are labeled by a pattern σ such that reduce(σ) �= σ. We change the labels of
these nodes to reduce(σ). We pack the subtrees of these nodes into elements
of the new sequence and we leave other elements of the sequence unmodified.
This procedure eventually terminates and returns one tree with the following
properties (the important invariant is shown in Lemma 1):

– if a node labeled by σ has two children labeled by σ1, σ2 then σ = σ1 • σ2,
– if a node labeled by σ has m children labeled by σ1, . . . , σm, m ≥ 3, then
σi = σj for all 1 ≤ i, j ≤ m, σ1 is idempotent, and σ = reduce(σ1).

An example of a reduced factorization tree is in Figure 7. We show that there
is a factorization function such that the height of all reduced factorization trees
produced by it is bounded by 3 · |P|2 (Lemma 2) using the factorization forest
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σ1, abcdecc

σ2, ab reduce(σ5), cdecc

σ3, a σ4, b σ5, c σ5, de σ5, c σ5, c

σ6, d σ7, e

Fig. 7. An example reduced factorization tree. σ1 = σ2 • reduce(σ5), σ2 = σ3 • σ4, and
σ5 = σ6 • σ7. For all leaves labeled by σ̂, â, σ̂ = Run(â).

theorem and a property of the reduction function that if reduce(σ) �= σ then
reduce(σ) <J σ, where <J is the usual ordering of the J -classes on P, J is
a standard Green’s relation; σ ≤J σ′ if and only if there are σ1, σ2 such that
σ = σ1 • σ′ • σ2; σ <J σ′ if and only if σ ≤J σ′ and σ′ �J σ (Lemma 2 in [2]).

Correctness. Let σ be the label of the root of a reduced factorization tree for
a word w and let pump(r, k) for a +-free regular expression r and for a k ∈ N
be the word obtained by repeating each r1, where r∗1 is a subexpression of r,
k-times. Then

– if σ(s0, sf ) �= ∅ for some sf ∈ F then there is a run from s0 to s over w in
8|P|

2
-semantics,

– otherwise, there is a +-free regular expression r such that for all D there is
a k such that there is a counter which exceeds D along all runs from s0 to
sf , sf ∈ F , over pump(r, k).

The previous items are formulated in Subsection 3.3, Lemma 4 and Lemma 5.

Relation to Simon’s Approach. There are several important differences be-
tween the method presented in this paper and that of Simon [12]. Our notion of
pattern is a function to a set of effects, while in Simon’s case it is a function to the
set {0, 1, ω}. Because of the resets and the fact that there are several counters,
it is not possible to linearly order the effects. Thus, a collection of automaton
runs can be abstracted into several incomparable effects. The sets are necessary
in order to remember all of them. Furthermore, the different notion of pattern
requires a new notion of reduction which does not remove loops labeled also by
resets. We need to show then that application of this notion of reduction during
the construction of the reduced factorization trees preserves the correctness.

3.2 Construction of the Reduced Factorization Tree

We define labeled finite trees to capture the looping structure of pattern se-
quences. Let Γ be a set of finite trees with two labeling functions Pat and Word,
which for each node return a pattern and a word, respectively. We will abuse
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the notation and, for a tree T , we use Pat(T ) or Word(T ) to denote Pat(N) or
Word(N), respectively, where N is the root of T . We also identify nodes with the
subtrees in which they are roots. We can then say that a node T has children
T1, . . . , Tm and then use Ti’s as trees. For a tree T , we define its height h(T )
as h(T ) = 1 if T is a leaf, h(T ) = 1 + max{h(T1), . . . , h(Tm)} if T1, . . . , Tm are
children of the root of T .

By Γ+ we mean the set of nonempty sequences of elements of Γ . By (Γ+)+ we
mean the set of nonempty sequences of elements of Γ+. Let us denote elements
of Γ+ by γ, γ1, γ

′, . . . . For γ ∈ Γ+, let |γ| denote the length of γ.
Let f : Γ+ → P be a homomorphism with respect to • defined by f(T ) =

Pat(T ). We call a function d : Γ+ → (Γ+)+ a factorization function if it satisfies
the following conditions. If d(γ) = (γ1, γ2, . . . , γm) then γ = γ1 · γ2 · · · γm, if
m = 1 then |γ| = 1, and if m ≥ 3 then f(γ) = f(γi) for all 1 ≤ i ≤ m and f(γ)
is an idempotent element.

For a factorization function d we define two functions tree : Γ+ → Γ and
cons : Γ+ → Γ+ inductively as follows. Let 〈σ,w〉 denote a tree which consists
of only the root labeled by σ and w.

tree(γ)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

γ if |γ| = 1,
〈σ1 • σ2, w1 · w2〉 with children tree(γ1), tree(γ2), if d(γ) = (γ1, γ2),

σi = Pat(tree(γi)), wi = Word(tree(γi)) for i ∈ {1, 2},
〈reduce(σ), w1 · w2 · · ·wm〉 with children tree(γ1), . . . , tree(γm), if

m ≥ 3, d(γ) = (γ1, γ2, . . . , γm), σ = Pat(tree(γ1)),
and wi = Word(tree(γi)) for all 1 ≤ i ≤ m.

The function tree builds a tree (resembling a factorization tree) from the
sequence of trees according to the function d. The only difference from straight-
forwardly following the function d is that the labeling function Pat might be
changed by the function reduce. Let us color the trees in the function cons either
green or red during the inductive construction of a new sequence.

cons(γ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ if |γ| = 1. Mark γ green.
cons(γ1) · cons(γ2) · · · cons(γm)

if d(γ) = (γ1, γ2, . . . , γm) and either m = 2 or
there is 1 ≤ i ≤ m such that cons(γi) contains
a red tree or reduce(f(γ1)) = f(γ1).

tree(γ) if d(γ) = (γ1, γ2, . . . , γm),m ≥ 3, no cons(γi)
contains a red tree and reduce(f(γ1)) �= f(γ1).
Mark the tree red.

The function cons updates the sequence of trees trying to leave as much as
possible untouched, but whenever Pat would be changed by the reduce function
for the first time (on the lowest level), it packs the whole sequence into a single
tree with changed Pat label of the root using the function tree.

The important property of the construction is that for each tree in the new
sequence it holds that whenever a node has more than two children, they are all
labeled by identical idempotent patterns. Let us call a tree balanced if whenever
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TB

TA

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Fig. 8. Application of cons to T1 · · ·T15. The black nodes represent the nodes for which
reduce(σ) �= σ. The resulting sequence is T1T2T3T4TAT8T9TBT15.

a node T has children T1, T2, . . . , Tm, where m ≥ 3, then Pat(T1) = Pat(T2) =
· · · = Pat(Tm), it is an idempotent element in P, and Pat(T ) = reduce(Pat(T1)).

Lemma 1. For a γ ∈ Γ+, if all trees in γ are balanced then all trees in cons(γ)
are balanced.

Now we show how to get a sequence of trees from runs of the automaton. Let
treeRun : Σ+ −→ Γ+ be a homomorphism with respect to the word composition
defined by treeRun(a) = 〈Run(a), a〉.

Assume that there is a factorization function d fixed. Let for a word w ∈
Σ+, γw be defined as consn(treeRun(w)), where n ∈ N is the least such that
consn(treeRun(w)) = consn+1(treeRun(w)). Note that γw is always defined, be-
cause for all γ ∈ Γ+, |cons(γ)| ≤ |γ| and if |cons(γ)| = |γ| then cons(γ) = γ. Let
Tw = tree(γw). We call Tw the reduced factorization tree of w constructed by d.
From Lemma 1 it follows that Tw is balanced (note that if consn(γ) = consn+1(γ)
then consn(γ) contains only green trees).

Remark. Notice that we do not explicitly mention the factorization function d
in the definition of a reduced factorization tree Tw constructed by d from a word
w. It is always clear from the context which factorization function we mean.

We show that for each R-automaton there is a factorization function such that
for any w the height of the tree Tw is bounded by a constant computed from the
parameters of the automaton.

Lemma 2. Given an R-automaton A, there is a factorization function d such
that for all words w ∈ Σ+, h(Tw) ≤ 3 · |P|2.

3.3 Correctness

To formulate the first correctness lemma, we define the following concept of a
length function l : Γ → N inductively by

l(T ) =

⎧
⎨

⎩

1 if T is a leaf
l(T1) + l(T2) if T has two children T1, T2

2 ·max{l(T1), . . . , l(Tm)} if T has children T1, . . . , Tm,m ≥ 3
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By induction on h(Tw) and using the bound derived in Lemma 2, one can
show the following claim.

Lemma 3. Given an R-automaton A, there is a factorization function d such
that for all words w ∈ Σ+, l(Tw) ≤ 8|P|

2
.

We say that s
w−→ s′ or s

w−→D s′ realizes t if there is a witnessing path
(s, a1, t1, s1), (s1, a2, t2, s2), . . . , (s|w|−1, a|w|, t|w|, s

′) such that t = t1◦t2◦· · ·◦t|w|.
Let us define RunD(w) to be the pattern obtained by running the automaton

over w in the D-semantics. Formally, RunD(w)(s, s′) contains t if and only if
s

w−→D s′ realizes t. Note that the function RunD is not a homomorphism with
respect to the word composition. We also define a relation � on patterns by
σ � σ′ if and only if for all s, s′, σ(s, s′) ⊆ σ′(s, s′).

From Lemma 3 we show that there is a factorization function such that for
every w, Pat(Tw) corresponds to the runs of the R-automaton which can be
performed in the D-semantics for any big enough D. This is formulated in the
following lemma.

Lemma 4. Given an R-automaton, there is a factorization function such that
for all w ∈ Σ+ and for all D ∈ N, D ≥ 8|P|

2
, Pat(Tw) � RunD(w).

Of particular interest are runs starting in the initial state.

Corollary 1. Given an R-automaton A, there is a factorization function such
that for all words w, if Pat(Tw)(s0, s) �= ∅ then there is a run 〈s0, (0, . . . , 0)〉

w−→D 〈s, (c1, . . . , cn)〉 where D = l(Tw).

It remains to show that if the relation between the patterns in the previous
lemma is strict then there is a word for each D which is a witness for the
strictness, i.e., the runs over this word in the D-semantics generate a smaller
pattern than over the original word. These witness words are generated from a
+-free regular expression r by pumping r1 for all subexpressions r∗1 of r. Let
us define a function re which for a reduced factorization tree returns a +-free
regular expression inductively by

re(T ) =

⎧
⎨

⎩

Word(T ) if T is a leaf
re(T1) · re(T2) if T has two children T1, T2

(re(T1))∗ if T has children T1, T2, . . . , Tm,m ≥ 3

For a +-free regular expression r and a natural number k > 0, let the function
pump(r, k) be defined inductively as follows: pump(a, k) = a, pump(r1 · r2, k) =
pump(r1, k) · pump(r2, k), and pump(r∗, k) = pump(r, k)k.

For example, pump(a(bc∗d)∗aa∗, 2) = abccdbccdaaa.

Lemma 5. Given an R-automaton and a factorization function, for all w ∈ Σ+

and all D ∈ N there is a k ∈ N such that RunD(pump(re(Tw), k)) � Pat(Tw).

A special case are runs starting from the initial state.

Corollary 2. Given an R-automaton, for any w ∈ Σ+, if Pat(Tw)(s0, s) = ∅
then ∀D∃k such that there is no run 〈s0, (0, . . . , 0)〉 v−→D 〈s, (c1, . . . , cn)〉 where
v = pump(re(Tw), k).
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3.4 Algorithm

To check the universality of an R-automaton A, we have to check all patterns σ
such that σ = Pat(Tw) for some w ∈ Σ+ and some factorization function. If there
is a σ such that for all sf ∈ F , σ(s0, sf ) = ∅ then for all D ∈ N, LD(A) �= Σ∗.
This gives us the following algorithm. Recall that σe denotes the unit of (P, •).

The algorithm uses a set of patterns P as the data structure. Given an
R-automaton A = 〈S,Σ,Δ, s0, F 〉 on the input, it answers ‘YES’ or ‘NO’. The
set P is initialized by P = {σ|σ = Run(a), a ∈ Σ} ∪ {σe}.

While |P | increases the algorithm performs the following operations:

– pick σ1, σ2 ∈ P and add σ1 • σ2 back to P .
– pick a σ ∈ P such that σ is idempotent and add reduce(σ) back to P .

If there is σ ∈ P such that for all sf ∈ F , σ(s0, sf) = ∅, answer ‘NO’,
otherwise, answer ‘YES’.

The correctness is stated in the following theorem. See [2] for the full proof.

Theorem 2. The algorithm is correct and runs in 2-EXPSPACE.

Proof. The algorithm terminates because P is finite. Its correctness follows from
the previous two corollaries. The algorithm needs space |P| (the number of dif-
ferent patterns). The size of P is 2(3n)·|S|2 (|S|2 different pairs of states, 2(3n) dif-
ferent sets of effects). Therefore, the algorithm needs double exponential space.

4 Büchi Universality

The universality problem is also decidable for R-automata with Büchi acceptance
conditions.

Theorem 3. For a given R-automaton A, the question whether there is D ∈ N
such that Lω

D(A) = Σω is decidable in 2-EXPSPACE.

To show this result, we need to extend patterns by accepting state information. A
pattern is now a function σ : S×S −→ 2{0,1}×{0,1,r}n

, where for s, s′ and 〈a, t〉 ∈
σ(s, s′), the value of a encodes whether there is a path from s to s′ realizing t
which meets an accepting state. For instance, σ(s, s′) = {〈0, (0, r)〉, 〈1, (1, 1)〉}
means that there are two different types of paths between s and s′: they either
realize (0, r) but do not visit an accepting state, or realize (1, 1) and visit an
accepting state. We define the composition • by defining the composition on the
accepting state: 0◦0 = 0, 0◦1 = 1◦0 = 1◦1 = 1. The set of patterns (denote again
P) with • is a finite monoid. We define the function reduce in the same way as
before, i.e., the accepting state information does not play any role there. Clearly,
either reduce(σ) = σ or reduce(σ) <J σ, so the reduced factorization trees have
bounded height. Lemma 4 and Lemma 5 also hold, because (non)visiting an
accepting state does not influence the runs in the D-semantics.

This allows us to use the same algorithm as for the finite word universality
problem, except for the condition for concluding non-universality. The condition
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is whether there are σ1, σ2 ∈ P such that σ2 is idempotent and for all s such
that σ1(s0, s) �= ∅ the following holds. If 〈a, t〉 ∈ σ2(s, s) then either a = 0 or
t /∈ {0, r}n. For a full proof of Theorem 3 see [2].

5 Conclusions

We have defined R-automata – finite automata extended with unbounded coun-
ters which can be left unchanged, incremented, or reset along the transitions.
As the main result, we have shown that the following problem is decidable in
2-EXPSPACE. Given an R-automaton, is there a bound such that all words are
accepted by runs along which the counters do not exceed this bound? We have
also extended this result to R-automata with Büchi acceptance conditions.

As a future work, one can consider the (bounded) universality or limitedness
question to vector addition systems (VASS) or reset vector addition systems
(R-VASS), where the latter form a superclass of R-automata. The limitedness
problem can be shown undecidable for R-VASS for both finite word and ω-word
case, while it is an open question for VASS. The universality problem can be
shown to be undecidable for R-VASS for ω-word case, in other cases it is open.
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Abstract. We propose a model of distributed timed systems where each com-
ponent is a timed automaton with a set of local clocks that evolve at a rate in-
dependent of the clocks of the other components. A clock can be read by any
component in the system, but it can only be reset by the automaton it belongs to.

There are two natural semantics for such systems. The universal semantics
captures behaviors that hold under any choice of clock rates for the individual
components. This is a natural choice when checking that a system always sat-
isfies a positive specification. However, to check if a system avoids a negative
specification, it is better to use the existential semantics—the set of behaviors
that the system can possibly exhibit under some choice of clock rates.

We show that the existential semantics always describes a regular set of behav-
iors. However, in the case of universal semantics, checking emptiness turns out
to be undecidable. As an alternative to the universal semantics, we propose a re-
active semantics that allows us to check positive specifications and yet describes
a regular set of behaviors.

1 Introduction

In today’s world, it is becoming increasingly important to look at networks of timed
systems, which allow real-time systems to operate in a distributed manner. Many real-
life systems, such as mobile phones, computer servers, and railway crossings, depend
crucially on timing while usually consisting of many interacting systems. In general,
there is no reason to assume that different timed systems in the networks refer to the
same time or evolve at the same rate.

Timed automata [2] are a well-studied formalism to describe systems that require
timing. However, networks of timed automata, under the assumption of knowledge of a
global time, as done in [5, 10], do not really reflect the distributed model. In this paper,
we provide a framework to look at distributed systems with independently evolving
local clocks. Each constituent system is modeled by a timed automaton. All clocks
belonging to this timed automaton evolve at the same rate. However clocks belonging
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to different processes are allowed to evolve at rates that are independent of each other.
We allow clocks belonging to one process to be read/checked by another but we require
that a clock can only be reset by the automaton it belongs to. In addition, since we have
differing time values on different processes, we are interested in the underlying untimed
behaviors of these distributed timed automata rather than their timed behaviors. Thus,
the clocks (and time itself) are implementation or synchronization tools rather than
being a part of the observation. To ensure that we focus on this problem of varying
local time rates, we move to a more general setting with shared memory, which allows
us to describe more general systems such as networks of timed asynchronous automata.

It is now natural to look at different semantics depending on the specifications that
we want our system to satisfy. When we want to guarantee that our system exhibits
a positive specification, we look at the universal semantics. This semantics describes
the behaviors exhibited by the system no matter how time evolves in the constituent
processes. However, if we want to check that our system avoids a negative specifica-
tion, then we prefer to look at the existential semantics. This is the set of behaviors that
the system might exhibit under some (bad) choice of local time rates in the constituent
processes. We perform a region construction on our distributed timed automata to show
that the existential semantics always gives a regular set of untimed behaviors. Thus the
model checking problem of distributed timed automata against regular negative speci-
fications is decidable as well. On the other hand, we show that checking emptiness for
the universal semantics is undecidable. This is done by a reduction from Post’s corre-
spondence problem (PCP) by encoding a PCP instance in terms of the local time rates
and ensuring that there is a solution to the PCP instance if and only if there is a valid
behavior under all local time rates. This result is further strengthened to a bounded case,
where we have restrictions on the relative time rates. Finally, to be able to synthesize
and check for positive specifications, we introduce a more intuitive reactive semantics,
which has the additional advantage of ensuring decidability. This model corresponds to
being able to make sure, step by step, that a positive specification is exhibited by our
system. This is formally done by defining an equivalent alternating automaton, gener-
ating a regular behavior.

Related work. In [6, 12], classical timed automata are equipped with an additional
parameter Δ, which allows a clock to diverge over a period t from its actual value by
Δt. This model conforms, in a sense, to our existential semantics, where we restrict
the set of clock rates to those corresponding to Δ (see Section 5). Syntactically, our
model coincides with that from [7]: A clock can only be reset by the owner process,
whereas it can be read by any process. However, the above works differ from ours since
they consider timed words rather than untimed languages. This also explains why our
automata differ from hybrid automata [9]. In the model of [3], clocks are not shared and
clocks on different processes drift only as long as the processes do not communicate.
These assumptions make partial-order–reduction techniques applicable. A fundamental
difference between all these approaches and our work is that we do not restrict to system
configurations that can be reached under some local-time behavior. We also tackle the
problem of checking positive specifications by providing semantics that can check if a
system exhibits some behavior under all relative clock speeds.
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Structure of the paper. In Section 2, we introduce our distributed automaton model
with independently evolving clocks, and define its existential and universal semantics.
Section 3 extends the regions of a timed automaton to our distributed setting, allow-
ing us to compute a finite automaton recognizing the existential semantics. Section 4
shows that checking emptiness of the universal semantics is undecidable. This result is
sharpened towards bounded clock drifts in Section 5. Section 6 deals with the reactive
semantics, and Section 7 identifies some directions for future work.

A full version of this paper is available [1].

2 Distributed Timed Automata

Preliminaries. For a setΣ, we letΣ∗ andΣω denote the set of finite and, respectively,
infinite words over Σ. The empty word is denoted by ε. We set Σ∞ = Σ∗ ∪ Σω and
Σ+ = Σ∗ \ {ε}. The concatenation of words u ∈ Σ∗ and v ∈ Σ∞ is denoted by u · v.
An alphabet is a non-empty finite set. Given an alphabet Σ, we denote by Σε the set
Σ ·∪ {ε}. The set of non-negative real numbers is denoted by R≥0. For t ∈ R≥0, �t� and
fract(t) refer to the integral and, respectively, fractional part of t, i.e., t = �t�+fract(t).

The set Form(Z) of clock formulas over a set of clocks Z is given by the grammar
ϕ ::= true | false | x �� C | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 where x is a clock from Z ,
�� ∈ {<,≤, >,≥,=}, and C ranges over N. A clock valuation over Z is a mapping
ν : Z → R≥0. We say that ν satisfies ϕ ∈ Form(Z), written ν |= ϕ, if ϕ evaluates to
true using the values given by ν. For R ⊆ Z , ν[R] denotes the clock valuation defined
by ν[R](x) = 0 if x ∈ R and ν[R](x) = ν(x), otherwise.

The model. Let us recall the fundamental notion of timed automata [2]. These will
constitute the building blocks of our distributed timed automata. A timed automaton is
a tuple A = (S,Σ,Z, δ, I, ι, F ) where S is a finite set of states, Σ is the alphabet of
actions, Z is a finite set of clocks, δ ⊆ S × Σε × Form(Z) × 2Z × S is the finite
set of transitions, I : S → Form(Z) associates with each state an invariant, ι ∈ S is
the initial state, and F ⊆ S is the set of final states. We let Reset(A) = {x ∈ Z |
there is (s, a, ϕ,R, s′) ∈ δ such that x ∈ R} be the set of clocks that might be reset in
A. Without loss of generality, we will assume in this paper that I(ι) is satisfied by the
clock valuation over Z that maps each clock to 0.

We will now extend the above definition to a distributed setting. First, we fix a non-
empty finite set Proc of processes (unless otherwise stated). For a tuple t that is indexed
by Proc, tp refers to the projection of t onto p ∈ Proc.

Definition 1. A distributed timed automaton (DTA) over the set of processes Proc is a
structure D = ((Ap)p∈Proc, π) where the Ap = (Sp, Σp,Zp, δp, Ip, ιp, Fp) are timed
automata and π is a mapping from

⋃
p∈Proc Zp to Proc such that, for each p ∈ Proc,

we have Reset(Ap) ⊆ π−1(p) ⊆ Zp.

Note that Zp is the set of clocks that might occur in the timed automaton Ap, either
as clock guard or reset. The same clock may occur in both Zp and Zq , since it may be
read as a guard in both processes. However, any clock evolves according to the time
evolution of some particular process. This clock is then said to belong to that process,
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Ap:

s0 s1 s2
a, y ≤ 1 a, {x}

Aq:

r0 r1 r2

y ≤ 1
b, x ≥ 1 b, 0 < x < 1

Fig. 1. A distributed timed automaton over {p, q}

and the owner map, π, formalizes this in the above definition. This will become more
clear when we describe the formal semantics later in this section. Further, we assume
that a clock can only be reset by the process it belongs to.

Example 2. Suppose Proc = {p, q}. Consider the DTA D as given by Figure 1. It
consists of two timed automata, Ap and Aq . In both automata, we suppose all states to
be final. Moreover, the owner mapping π maps clock x to p and clock y to q. Note that
Reset(Ap) = {x} and Reset(Aq) = ∅. Before we define the semantics of D formally
and in a slightly more general setting, let us give some intuitions on the behavior of D.
If both clocks are completely synchronized, i.e., they follow the same local clock rate,
then our model corresponds to a standard network of timed automata [5]. For example,
we might execute a within one time unit, and, after one time unit, execute b, ending up
in the global state (s1, r1) and a clock valuation ν(x) = ν(y) = 1. If we now wanted
to perform a further b, this should happen instantaneously. But this also requires a reset
of x in the automaton Ap and, in particular, a time elapse greater than zero, violating
the invariant at the local state r1. Thus, the word abab will not be in the semantics that
we associate with D wrt. synchronized local-time evolution. Now suppose clock y runs
slower than clock x. Then, having executed ab, we might safely execute a further a
while resetting x and, then, let some time elapse without violating the invariant. Thus,
abab will be contained in the existential semantics, as there are local time evolutions
that allow for the execution of this word. Observe that a and aa are the only sequences
that can be executed no matter what the relative time speeds are: the guard y ≤ 1 is
always satisfied for a while. But we cannot guarantee that the guard x ≥ 1 and the
invariant y ≤ 1 are satisfied at the same time, which prevents a word containing b from
being in the universal semantics of D.

The semantics. The semantics of a DTA depends on the (possibly dynamically chang-
ing) time rates at the processes. To model this, we assume that these rates depend
on some absolute time, i.e., they are given by a tuple τ = (τp)p∈Proc of functions
τp : R≥0 → R≥0. Thus, each local time function maps every point in global time to
some local time instant. Then, we require (justifiably) that these functions are continu-
ous, strictly increasing, and divergent. Further, they satisfy τp(0) = 0 for all p ∈ Proc.
The set of all these tuples τ is denoted by Rates . We might consider τ as a mapping
R≥0 → (R≥0)Proc so that, for t ∈ R≥0, τ(t) denotes the tuple (τp(t))p∈Proc .

A distributed system can usually be described with an asynchronous product of au-
tomata. Indeed, the semantics of a DTA can be defined with such a product and a
mapping that assigns any clock to its owner process: Let D = ((Ap)p∈Proc, π) with
Ap = (Sp, Σp,Zp, δp, Ip, ιp, Fp) be some DTA. We assign to D the asynchronous
product BD = (S,Σ,Z, δ, I, ι, F, π) as one might expect: We set S =

∏
p∈Proc Sp,

Σ =
⋃

p∈Proc Σp, Z =
⋃

p∈Proc Zp, ι = (ιp)p∈Proc , and F =
∏

p∈Proc Fp. More-
over, for any s ∈ S, we let I(s) =

∧
p∈Proc Ip(sp). Finally, for s, s′ ∈ S, a ∈ Σε,
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ϕ ∈ Form(Z), and R ⊆ Z , we let (s, a, ϕ,R, s′) ∈ δ if there is p ∈ Proc such that
(sp, a, ϕ,R, s

′
p) ∈ δp and sq = s′q for each q ∈ Proc \ {p}.

Actually, most variants of a shared-memory model and their semantics can be unified
by considering one single state space. This motivates the following definition:

Definition 3. A timed automaton with independently evolving clocks (icTA) over Proc
is a tuple B = (S,Σ,Z, δ, I, ι, F, π) where (S,Σ,Z, δ, I, ι, F ) is a timed automaton
and π : Z → Proc maps each clock to a process.

Thus, the structure BD that we assigned to a DTA D is an icTA. Most of the following
definitions and results are based on this more general notion of a timed system and
therefore automatically carry over to the special case of DTAs. We will now define a
run of an icTA. Intuitively, this is done in the same spirit as a run of a timed automaton
over a timed word except for one difference. The time evolution, though according to
absolute time, is perceived by each process as its local time evolution. So let B =
(S,Σ,Z, δ, I, ι, F, π) be an icTA. Given a clock valuation ν over Z and a tuple t ∈
RProc , we let the valuation ν+t be given by (ν+t)(x) = ν(x)+tπ(x) for all x ∈ Z . For

τ ∈ Rates, a τ -run of B is a sequence (s0, ν0)
a1,t1−−−→ (s1, ν1) . . . (sn−1, νn−1)

an,tn−−−→
(sn, νn) where n ≥ 0, si ∈ S, ai ∈ Σε, and (ti)1≤i≤n is a non-decreasing sequence of
values from R≥0. Further, νi : Z → R≥0 with ν0(x) = 0 for all x ∈ Z . Finally, for
all i ∈ {1, . . . , n}, there are ϕi ∈ Form(Z) and Ri ⊆ Z such that the following hold:
(si−1, ai, ϕi, Ri, si) ∈ δ, νi−1 + τ(t′) − τ(ti−1) |= I(si−1) for each t′ ∈ [ti−1, ti],
νi−1 +τ(ti)−τ(ti−1) |= ϕi, νi = (νi−1 +τ(ti)−τ(ti−1))[Ri], and νi |= I(si). In that

case, we write (B, τ) : s0
a1·...·an−−−−−→ sn or also (B, τ) : s0

a1·...·ai−−−−−→ si
ai+1·...·an−−−−−−−→ sn to

abstract from the time instances. The latter thus denotes that B can, reading w, go from
s0 via si to sn, while respecting the local-time behavior τ .

Definition 4. Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA and τ ∈ Rates. The language
of B wrt. τ , denoted by L(B, τ), is the set of words w ∈ Σ∗ such that (B, τ) : ι w−→ s
for some s ∈ F . Moreover, we define L∃(B) =

⋃
τ∈Rates L(B, τ) to be the existential

semantics and L∀(B) =
⋂

τ∈Rates L(B, τ) to be the universal semantics of B.

If |Proc| = 1, then an icTA B actually reduces to an ordinary timed automaton and we
have L∀(B) = L(B, τ) = L∃(B) for any τ ∈ Rates. Moreover, if |Proc| > 1 and
τ ∈ Rates exhibits, for all p ∈ Proc, the same local time evolution, then L(B, τ) is the
language of B considered as an ordinary timed automaton.

Example 5. A sample icTA B over set of processes {p, q} and Σ = {a, b, c} is depicted
in Figure 2. Assuming π−1(p) = {x} and π−1(q) = {y}, we have L∀(B) = {a, ab},
L(B, id) = {a, ab, b}, and L∃(B) = {a, ab, b, c} where idp is the identity on R≥0 for
all p ∈ Proc (i.e., id models synchronization of any process with the absolute time).

It is worthwhile to observe that L(B, τ) can, in general, have bizarre (non-regular) be-
havior, if τ is itself a “weird” function. This is one more reason to look at the existential
and universal semantics. Let us quantify this with an example. Consider the simple
icTA B over Proc = {p, q} fom Figure 3, where Σ = {a, b}, π−1(p) = {x}, and
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s0

s1

s2

s3

t1

t2

a

0 < x < 1
∧ 0 < y < 1

a

0 < x < 1
∧ 0 < y < 1

b

y ≤ 1 ≤ x

b

x < 1 = y

b

y ≤ 1 ≤ x

c

x < 1 < y

Fig. 2. An icTA B with independent clocks x and y

a
x = 1
{x}

b
y = 1
{y}x, y ≤ 1

Fig. 3. A “weird” icTA

π−1(q) = {y}. Further, let τ = (idp, τq), where τq is any continuous, strictly increas-
ing function such that τq(0) = 0 and τq(n) = 2n − 0.1 for any n ≥ 1. Then, L(B, τ) is
the set of finite prefixes of the infinite word bab2ab4ab8ab16a . . ., which is not regular.

Finally, the semantics of a DTA is formally described in terms of its icTA.

Definition 6. For a DTA D and τ ∈ Rates , we set L(D, τ) = L(BD, τ) to be the
language of D wrt. τ , and we define L∃(D) =

⋃
τ∈Rates L(D, τ) as well as L∀(D) =⋂

τ∈Rates L(D, τ) to obtain its existential and universal semantics, respectively.

Example 7. For the DTA D from Figure 1, we can formalize what we had described
intuitively: L(D, id) = Pref ({aab, aba, baa}), L∃(D) = Pref ({aab, abab, baab}),
and L∀(D) = Pref ({aa}) where, for L ⊆ Σ∗, Pref (L) = {u | u, v ∈ Σ∗, u · v ∈ L}.

3 Region Abstraction and the Existential Semantics

Given an icTA B and a set Bad of undesired behaviors, it is natural to ask if B is robust
against the (unknown) relative clock speeds and faithfully avoids executing action se-
quences from Bad . This corresponds to checking if L∃(B) ∩ Bad = ∅. In this section,
we show that this question is indeed decidable, given that Bad is a regular language.
To this aim, we define a partitioning of clock valuations into finitely many equivalence
classes and generalize the well-known region construction for timed automata [2].

Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA. For a clock x ∈ Z , let Cx ∈ N be the
largest value the clock x is compared with in B (we assume that such a value exists).
We say that two clock valuations ν and ν′ over Z are equivalent if the following hold:

– for each x ∈ Z , ν(x) > Cx iff ν′(x) > Cx,
– for each x ∈ Z , ν(x) ≤ Cx implies both �ν(x)� = �ν′(x)� and (fract(ν(x)) = 0

iff fract(ν′(x)) = 0), and
– for each p ∈ Proc and x, y ∈ π−1(p) such that ν(x) ≤ Cx and ν(y) ≤ Cy , we

have fract(ν(x)) ≤ fract(ν(y)) iff fract(ν′(x)) ≤ fract(ν′(y)).
Note that this constraint only applies to clocks that belong to the same process.

An equivalence class of a clock valuation is called a clock region (of B). For a valuation
ν, [ν] denotes the clock region that contains ν. The set of clock regions of B is denoted
by Regions(B). Let γ and γ′ be two clock regions, say with representatives ν and ν′,
respectively. We say that γ′ is a accessible from γ, written γ ! γ′, if γ′ = γ or if
there is t ∈ (R>0)Proc such that ν′ = ν + t. Note that ! is a partial-order relation.
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x1

y

x2

γ0

γ2

γ1
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γ0

γ′
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γ′
1

Fig. 4. Accessible and non-accessible regions

0 1 2 3 p

1

2

3

q

Fig. 5. dir(τ ) = 010 . . .

The successor relation, written γ ≺· γ′, is as usual defined by γ ≺ γ′ and γ′′ = γ or
γ′′ = γ′ for all clock regions γ′′ with γ ! γ′′ ! γ′.

Example 8. The accessible-regions relation is illustrated in Figure 4. Suppose we deal
with two processes, one owning clocks x1 and x2, the other owning a single clock y.
Suppose furthermore that, in the icTA at hand, all clocks are compared to the constant
2. Consider the prisms γ0, γ1, γ2, γ

′
1, γ

′
2, each representing a non-border clock region,

which are given by the clock constraints γ0 = (0 < x2 < x1 < 1) ∧ (0 < y < 1),
γ′1 = (0 < x2 < x1 − 1 < 1)∧ (0 < y < 1), γ1 = (1 < x2 < x1 < 2) ∧ (0 < y < 1),
γ′2 = (1 < x1 < x2 < 2)∧ (1 < y < 2), and γ2 = (1 < x2 < x1 < 2)∧ (1 < y < 2).
We have γ0 ! γ1 ! γ2. However, γ0 �! γ′1 and γ0 �! γ′2.

Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA over Proc. We associate with B a non-
deterministic finite automaton RB = (S′, Σ, δ′, ι′, F ′), called the region automaton of
B, which is defined as follows: S′ = S×Regions(B), ι′ = (ι, [ν]) where ν(x) = 0 for
all x ∈ Z , F ′ = F × Regions(B), and for a ∈ Σε, s, s′ ∈ S, and γ, γ′ ∈ Regions(B),
δ′ contains ((s, γ), a, (s′, γ′)) if

– a = ε, s = s′, γ ≺· γ′, and ν′ |= I(s) for some ν′ ∈ γ′

(we then call ((s, γ), a, (s′, γ′)) a time-elapse transition), or
– there are ν ∈ γ and (s, a, ϕ,R, s′) ∈ δ such that ν |= ϕ ∧ I(s), ν[R] |= I(s′), and
ν[R] ∈ γ′ (we then call ((s, γ), a, (s′, γ′)) a discrete transition).

A part of the region automaton for the icTA from Figure 2 is shown in Figure 10.
Indeed, the language L(RB) of the non-deterministic finite automatonRB, which is

defined as usual, coincides with the existential semantics of B:

Lemma 9. Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA and let C be the largest constant
a clock is compared with in B. Then, the number of states of RB is bounded by |S| ·
(2C + 2)|Z| · |Z|! and we have L(RB) = L∃(B).

Thus, we solved the verification problem stated at the beginning of this section:

Theorem 10. Model checking icTAs wrt. regular negative specifications is decidable.
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4 The Universal Semantics

While the existential semantics allows us to verify negative specifications, the universal
semantics is natural when we want to check if our system has some good behavior.
By good we mean a behavior that is robust against clock variations. Unfortunately, this
problem is undecidable. This is shown for icTAs first and then will be extended to DTAs.
Moreover, it turns out to be undecidable if, for a positive specification Good containing
the behaviors that a system must exhibit and an icTA B, we have Good ⊆ L∀(B).

Theorem 11. The following problem is undecidable if |Proc| ≥ 2: Given an icTA B
over Proc, does L∀(B) �= ∅ hold?

Proof. The proof is by reduction from Post’s correspondence problem (PCP). An in-
stance Inst of the PCP consists of an alphabet A and two morphisms f and g from A+

to {0, 1}+. A solution of Inst is a word w ∈ A+ such that f(w) = g(w).
Suppose Proc = {p, q} and let τ ∈ Rates . One may associate with τ two sequences

t -dir (τ) = t1t2 . . . ∈ (R≥0)ω of time instances and dir (τ) = d1d2 . . . ∈ {0, 1, 2}ω of
directions as follows: for i ≥ 1, we let first (assuming t0 = 0) ti = min{t > ti−1 |
τr(t)− τr(ti−1) = 2 for some r ∈ Proc}. With this, we set

di =

⎧
⎪⎨

⎪⎩

0 if τp(ti)− τp(ti−1) = 2 and 1 < τq(ti)− τq(ti−1) < 2
1 if τq(ti)− τq(ti−1) = 2 and 1 < τp(ti)− τp(ti−1) < 2
2 otherwise

The construction of dir(τ) is illustrated in Figure 5. The idea is to allow the shape of the
relative time-rate function (from τ ) to encode a word in {0, 1, 2}ω. We do this using 2×
2-square regions, each consisting of 4 sub-squares as shown. If the rate function leaves
this region by the upper boundary or right boundary of the right-upper sub-square, then
we write 1 or 0, respectively. If it leaves by any other boundary or by end-points of any
sub-square, then we write 2. A new square region is started at the point where the rate
function left the old one. Thus, the direction sequences partition the space of time rates.

Roughly speaking, a word is accepted universally by an icTA iff it is accepted for all
directions. Our trick will be to define an icTA such that, the PCP instance has a solution
w iff the word wb is accepted by the icTA for all directions. Thus, if there is no solution
to the PCP, there will be some direction sequence (respectively, local time rates) for
which the icTA does not accept.

Let an instance Inst of the PCP be given by an alphabet A = {a1, . . . , ak} with
k ≥ 1 and two corresponding morphisms f and g. We will construct an icTA B =
(S,Σ,Z, δ, I, ι, F, π) over the set of processes Proc = {p, q} andΣ = {a1, . . . , ak, b}
such that L∀(B) = {wb | w ∈ A+ and f(w) = g(w)}. First, let Z = {x, y} with
π(x) = p and π(y) = q. For d ∈ {0, 1, 2}, we set

guard(d) =

⎧
⎪⎨

⎪⎩

x = 2 ∧ 1 < y < 2 if d = 0

y = 2 ∧ 1 < x < 2 if d = 1

((x ≤ 1 ∨ x = 2) ∧ y = 2) ∨ (y ≤ 1 ∧ x = 2) if d = 2

Moreover, let guard(d) =
∨

d′∈{0,1,2}\{d} guard(d′).
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s si

ri

a, guard(d1) ε, guard(d2) ε, guard(dn)

{x, y} {x, y} {x, y}

a, guard(d1) ε, guard(d2)
ε, guard(d3) ε, guard(dn)

. . .

Fig. 6. Transition macro

s1

s0

s2

sf

r1 r2

(ai, f(ai)) (ai, g(ai))

b

guard(2)
b

guard(2)

b

A Σ
(ai, f(ai)) (ai, g(ai))

Fig. 7. Encoding of PCP

The final encoding of the given PCP instance in terms of the icTA is given by
Figure 7. Hereby, given a ∈ A and σ = d1 . . . dn ∈ {0, 1, 2}+ (with dj ∈ {0, 1, 2} for
any j ∈ {1, . . . , n}), a transition of the form

s

ri

si

(a, σ)

will actually stand for the sequence of transitions that is depicted in Figure 6, say, with
intermediate states s(i,a,τ,1), . . . , s(i,a,τ,n−1).

Example 12. Consider the PCP instance Inst given by A = {a1, a2}, f(a1) = 101,
g(a1) = 1, f(a2) = 1, g(a2) = 01110 with the obvious solution w = a1a2a1. One can
check that a1a2a1b ∈ L∀(B). This is illustrated in Figure 8. In the tree depicted, any
path corresponds to a finite prefix (of length |w| + 1) of some sequence of directions.
The edges are labeled by this sequence, where a left-edge is 0, downward is 2 and right-
edge is 1. Thus, intuitively, a word wb is in the universal language iff all paths of the
tree correspond to accepting runs in B. Now, lets verify that the word wb is accepted
by B. If clock rate τ is such that dir(τ) ∈ f(w) · d · {0, 1, 2}ω with d ∈ {0, 1}, then
the accepting run of B is the path shown in the left figure, which assigns states s1 to
nodes of the tree and finishes at sf . If d = 2, then the accepting run of B is the path
in the figure on right, which assigns states s2 appropriately, crucially using the fact that
f(w) = g(w), and finally ends at sf . If the clock rate τ has dir (τ) different from above
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s0

s1

s1

s1

sf sf

0 2 1

0 2 1

0 1

f(w)

a1

a2

a1

b

1

0

1

1

1

0

1

0 ∨ 1

s0

s2

s2

s2

sf

0 2
1

2

a1

a2

a1

b

g(w)

1

0

1

1

1

0

1

2

Fig. 8. The tree generated by w = a1a2a1b with respect to f and g

case, it is easy to see that there is an accepting run in which B reaches state sf by
passing through state r1.

Let us show that our reduction is indeed correct. In the following, let≤ denote the usual
prefix relation on words.

Claim 13. For τ ∈ Rates and w ∈ A+, the following hold:

(1) f(w) ≤ dir(τ) iff (B, τ) : s0
w−→ s1

(2) g(w) ≤ dir(τ) iff (B, τ) : s0
w−→ s2

(3) f(w) �≤ dir(τ) iff (B, τ) : s0
w−→ r1

With Claim 13, whose proof can be found in the full version [1], we can now show both
directions of the correctness of the construction of B.

Let τ ∈ Rates and suppose f(w) = g(w). We distinguish three cases: If dir (τ) ∈
f(w) · {0, 1} · {0, 1, 2}ω, then, by (1), (B, τ) : s0

w−→ s1
b−→ sf . If dir (τ) ∈ f(w) · 2 ·

{0, 1, 2}ω, then (B, τ) : s0
w−→ s2

b−→ sf . This follows from (2), since g(w) = f(w). If

f(w) �≤ dir (τ), then, by (3), (B, τ) : s0
w−→ r1

b−→ sf . Hence, wb ∈ L∀(B).
Let w ∈ A+ and suppose wb ∈ L∀(B). Pick τ ∈ Rates such that dir (τ) ∈ f(w) ·

2 · {0, 1, 2}ω. As f(w) ≤ dir (τ), we have, by (3), (B, τ) : s0 � w−→ r1 and (B, τ) : s0
w−→

s1 � b−→. Thus, we must have (B, τ) : s0
w−→ s2

b−→ sf . Hence, by (2), g(w) · 2 ≤ dir (τ).
As f(w), g(w) ∈ {0, 1}∗, we have both f(w) · 2 ≤ dir (τ) and g(w) · 2 ≤ dir (τ),
which implies f(w) = g(w). "#

Our result can be strengthened and extended to the distributed setting as follows:

Theorem 14. Suppose |Proc| ≥ 2. For DTAs D over Proc, the emptiness of L∀(D) is
undecidable.

Proof. We fix Proc = {p, q} and the clock distribution Zp = {x} and Zq = {y}. Each
process will be a copy of the automaton that is depicted in Figure 7, except for one
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s si

ri

x ≤ 1
y ≤ 1

x ≤ 1
y ≤ 1

x ≤ 1
y ≤ 1

x ≤ 1
y ≤ 1

x ≤ 1
y ≤ 1

ε ε εε L, guard(d1) ε, guard(d2) ε, guard(d2)

R R R

L, guard(d1) ε, guard(d2) ε, guard(d3) ε, guard(dn)

. . .

Fig. 9. Transition macro for the distributed setting

difference: for process p, the transition macro from Figure 6 is replaced with that from
Figure 9 where L is the letter a ∈ A and R is the singleton set {x}; for process q, we
use the same new macro, but now we have L = ε and R = {y}.

To see how this works, we will just point out the difficulties and why the additional
states with invariants and ε-transitions fix them. In the transition macro in Figure 6,
clocks x and y belonging to different processes are reset at the same time. So, here
we have two copies of the same automaton doing the same simulation but reset x in
the automaton for process p, and y in the other. But this is not enough, since in the
truly distributed setting, we cannot ensure that the clock resets are in sync. This might
allow one process to wait while the other has reset its clock and thereby enable (wrong)
transitions to state ri, thus allowing the two automata copies to differ in the simulation.
To ensure that the same path is followed, we split each state (except si and ri) into two.
The invariant on the first part then ensures that, before the next transition is enabled by
the guard (which happens in the second part), both have been reset.

Let us examine this in more detail. Being in two identical copies of a state with
an outgoing ε-transition, the ε-transitions might indeed be taken asynchronously by
p and q. However, the following transitions will be performed synchronously by both
processes. Assume first that p follows a transition of the form (sp, a, guard(d), {x}, s′p)
before process q moves. As guard(d), where d ∈ {0, 1}, is satisfied when p goes to s′p,
the value of both clocks exceeds 1. But as x is reset at the same time whereas y is not,
the invariant associated with s′p is violated, which is a contradiction. Thus, q has to take
the corresponding transition, which is of the form (sq, a, guard(d), {y}, s′q), simultane-
ously. This explains why we use 2×2-squares as in Figure 5 and corresponding guards.
In DTAs, they allow us to check when one clock has been reset and other has not. Now
consider the case where p performs a transition of the form (sp, a, guard(d), ∅, s′p).
When p executes its transition, at least one clock has reached the value 2. As this clock
cannot be reset anymore, q is obliged to follow instantaneously the corresponding tran-
sition of the form (sq, a, guard(d), ∅, s′q), to reach a final state. "#

Along the lines of the proofs of Theorems 11 and 14, we can show the following theo-
rem, from which we derive the subsequent negative result (see [1] for details):

Theorem 15. Suppose that |Proc| ≥ 2. For DTAs D over Proc, it is undecidable if
L∀(D) = Σ∗ (where Σ is the set of actions of BD).
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Theorem 16. Model checking DTAs over at least two processes against regular posi-
tive specifications is undecidable.

5 Playing with Local Time Rates

We have shown that it is undecidable to check if there is some word that is accepted
under all clock rates by a given icTA B. It is natural to ask if it is possible to restrict
the independence of local time rates in some way to get decidability. For instance, we
could insist that the ratio or the difference of local times in different processes must
always be bounded. Unfortunately, this does not help. In fact, it turns out that our proof
in Section 4 can be used to show that both these restrictions are already undecidable.

Let us formalize this. We will restrict to two processes, Proc = {p, q}. We note
however that the following definitions can be easily generalized to more processes. For
a rational number k ≥ 1, we define Rates rat(k) = {τ = (τp, τq) ∈ Rates | 1

k ≤
τp(t)
τq(t) ≤ k for all t ∈ R>0}. This is the set of all rate-function tuples such that the ratio
of the local times in the two processes are always bounded by fixed rationals. Further,
for a rational number � ≥ 0, Ratesdif(�) = {τ = (τp, τq) ∈ Rates | |τp(t)− τq(t)| ≤ �
for all t ∈ R≥0}. These are the rate function tuples for which the difference between
the local times in the two processes are bounded by some constant. Accordingly, for
an icTA or a DTA B, we define Lrat,k

∀ (B) =
⋂

τ∈Ratesrat(k) L(B, τ) and Ldif,�
∀ (B) =

⋂
τ∈Ratesdif(�)

L(B, τ).

Theorem 17. For icTAs or DTAs B over Proc = {p, q},

1. the emptiness of Lrat,1
∀ (B) = Ldif,0

∀ (B) is decidable.
2. the emptiness of Lrat,k

∀ (B) is undecidable for every rational k > 1.
3. the emptiness of Ldif,�

∀ (B) is undecidable for every rational � > 0.

To prove the theorem, we need the following lemma.

Lemma 18. Let k > 1, � > 0 be some fixed rationals. For all σ ∈ {0, 1, 2}∗, there
exists τ ∈ Rates rat(k) ∩ Ratesdif(�) such that σ is a prefix of dir (τ).

Proof. Let σ = d1d2 . . . dn ∈ {0, 1, 2}∗ be of length n. We define τ (in terms of
n + 1 points) as follows: τp is the piecewise linear function with τp(2i) = xi for
i ∈ {0, . . . , n} and τp(2n+ t) = xn + t for all t ∈ R≥0. Similarly, τq is defined as the
piecewise linear function with τq(2i) = yi for i = {0, . . . , n} and τq(2n+ t) = yn + t
for t ∈ R≥0. The points (xi, yi) are defined by x0 = y0 = 0 and, for i ∈ {1, . . . , n},
xi = 2i − α|d1 . . . di|1 and yi = 2i − α|d1 . . . di|0 (|σ′|d denoting the number of
occurrences of d in σ′), where α is a rational parameter to be fixed.

With the above definition, we observe that, for all i, we have |xi − yi| ≤ iα, and, for
i > 0, we have 1 − α

2 ≤
xi

yi
≤ 1

1−α/2 . Thus, by choosing α = min { �
n , 2(1 − 1

k )}, we
can check that τ ∈ Rates rat(k) ∩ Ratesdif(�). Also it is easy to see that dir(τ) = σ ·2ω,
which proves the lemma. "#
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Now, we can prove Theorem 17. For k = 1 or � = 0, the sets Rates rat(k) and
Ratesdif(�) consist of exactly the tuples in which time evolves at the same rate in both
processes. Thus the sets are identical and correspond to an ordinary timed automaton
so that emptiness is decidable.

Now, let k > 1 and � > 0. Given a PCP instance as before, we again consider
the icTA (or DTA) B from Section 4. We want to show that w ∈ A+ is solution iff
wb ∈ L∀(B) = Lrat,k

∀ (B) = Ldif,�
∀ (B). One direction is trivial. If, for w ∈ A+, we

have f(w) = g(w), then wb ∈ L∀(B), and this implies that wb ∈ Lrat,k
∀ (B) and wb ∈

Ldif,�
∀ (B). On the other hand, if wb ∈ Lrat,k

∀ (B) or wb ∈ Ldif,�
∀ (B), then, by Lemma 18,

we pick τ ∈ Rates rat(k)∩Ratesdif(�) such that dir (τ) = f(w)·2·2ω , and the remaining
part of the proof follows as before.

6 The Reactive Semantics

The universal semantics described in the previous section is a possible way to imple-
ment positive specifications, i.e, to make sure that our system must satisfy some behav-
ior irrespective of the time/clock evolution. Unfortunately, since emptiness is undecid-
able even for bounded restrictions, it is not of any practical use. We would indeed like
a semantics that describes only regular behaviors.

There is another subtle point for looking for other semantics. When we want to check
if the system satisfies a positive specification, we would like to be able to design a
controller which can actually do this. For this, the semantics has to be “reactive” in
some sense. The universal semantics fails in this, in the sense that, to choose a correct
run in the system, we might need to know the future time rates.

In this section, we introduce a new game-like semantics that solves both the above
mentioned worries. It is regular and it is “reactive”. Formally, we will describe it us-
ing an alternating automaton, which is based on the region automaton introduced in
Section 3. Intuitively, time-elapse transitions are controlled by the environment whereas
discrete transitions are controlled by the system that aims at exhibiting some behavior.
This game is not turn-based because the system should be able to execute several dis-
crete transitions while staying in the same region. After moving from some region to a
successor region, the environment hands over the control to the system so that the sys-
tem always has a chance to execute some discrete transition. On the other hand, after
executing some discrete transition, the system may either keep the control or hand it
over to the environment.

As suggested, our reactive semantics will be described by alternating automata. Since
icTAs or DTAs have ε-transitions, we define an alternating automaton with ε-transitions
(ε-AA) as a tupleA = (S,Σ, δ, ι, F ) where S is a finite set of states, ι ∈ S is the initial
state, F ⊆ S is the set of final states, and δ : S × Σε → B+(S) is the alternat-
ing transition function. Here, B+(S) denotes positive boolean combinations of states
from S.

As usual, a run of an ε-AA will be a (doubly) labeled finite tree. We assume the reader
to be familiar with the notion of trees and only mention that we deal with structures
(V, σ, μ) where V is the finite set of nodes with a distinguished root, and both σ and μ
are node-labeling functions. Given a node u ∈ V , the set of children of u is denoted
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children(u). Let w = a1 . . . a|w| ∈ Σ∗ be a finite word. A run of A on w is a doubly
labeled finite tree ρ = (V, σ, μ) where σ : V → S is the state-labeling function and
μ : V → {0, . . . , |w|} is the position-labeling function such that, for each node u ∈ V ,
the following hold:

– if u is the root, then σ(u) = ι and μ(u) = 0 (we start in the initial state at the
beginning of the word),

– if u is not a leaf (i.e., children(u) �= ∅), then we have
• either μ(u′) = μ(u) for all u′ ∈ children(u) and in this case
{σ(u′) | u′ ∈ children(u)} |= δ(σ(u), ε)

• or μ(u′) = μ(u) + 1 = i ≤ n for all u′ ∈ children(u) and in this case
{σ(u′) | u′ ∈ children(u)} |= δ(σ(u), ai).

The run is accepting if all leaves are labeled with F ×{|w|}. The set of words from Σ∗

that come with an accepting run is denoted by L(A).

Lemma 19 (cf. [4]). Given an ε-AAA with n states, one can construct a non-determin-
istic finite automaton with 2O(n2) states that recognizes L(A).

Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA over Proc. We associate with B an ε-AA
AB = (S′, Σ, δ′, ι′, F ′) as follows: First, let S′ = S×Regions(B)×{0, 1}. Intuitively,
tag 0 is for system positions while tag 1 is for environment positions (recall that the
environment controls how time elapses whereas the system wants to accept some word).
Then, ι′ = (ι, [ν], 0) where ν(x) = 0 for each x ∈ Z , and F ′ = F × Regions(B) ×
{0, 1}. Finally, for (s, γ) ∈ S × Regions(B) and a ∈ Σε, we let

δ′((s, γ, 1), a) = False if a �= ε δ′((s, γ, 1), ε) =
∧
{(s, γ′, 0) | γ ≺· γ′}

δ′((s, γ, 0), a) =

{∨
{(s′, γ′, 0) | (s, γ) a−→d (s′, γ′)} if a �= ε or γ maximal

(s, γ, 1) ∨
∨
{(s′, γ′, 0) | (s, γ) ε−→d (s′, γ′)} otherwise

where
a|ε−−→d denotes a discrete transition of the region automatonRB (Section 3).

Definition 20. For an icTA B, let Lreact(B) = L(AB) be the reactive semantics of B.
Moreover, for a DTA D, Lreact(D) = Lreact(BD) is the reactive semantics of D.

Example 21. Consider the icTA B from Figure 2. A part of its ε-AA AB is shown in
Figure 10. States with tag 0 are depicted as ovals and are existential (non-deterministic)
states and states with tag 1 are depicted as rectangles and are universal states. We have,
e.g., δ′(r1, ε) = r3∧r4∧r5. Note, however, that a transition from an oval to a rectangles
should actually be split into two transitions, which is omitted in the picture. For exam-
ple, there is a state r′1 between r0 and r1 which resembles r1 but is tagged 0. Similarly,
there is another state r′2 between r0 and r2, and we have δ′(r0, a) = r′1 ∨ r′2.

The following theorem follows from Lemma 19:

Theorem 22. Let B = (S,Σ,Z, δ, I, ι, F, π) be an icTA and let n be the number of
states ofRB (which is bounded by |S|·(2C+2)|Z| ·|Z|! whereC is the largest constant
a clock is compared with in B). Then, Lreact(B) is regular and one can compute a non-
deterministic finite automaton with 2O(n2) states that recognizes Lreact(B).
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s0s1 s2

s1 s1 s1 s2 s2 s2

s3 s3 s3

a a

ε ε ε ε ε ε

b b b
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r1 r2

r3 r4 r5

Fig. 10. Part of the region/alternating automaton for the icTA from Figure 2

The following inclusion property, whose proof can be found in [1], allows us to check
an icTA for positive specifications. The subsequent proposition then establishes that
inclusion actually forms a strict hierarchy of our semantics.

Proposition 23. For any icTA B, Lreact(B) ⊆ L∀(B).

Proposition 24. Suppose that |Proc| ≥ 2. There are some DTA D over Proc and some
τ ∈ Rates such that Lreact(D) � L∀(D) � L(D, τ) � L∃(D).

Proof. Consider the icTA B from Figure 2. Recall that Lreact(B) = {a}, L∀(B) =
{a, ab}, L(B, id) = {a, ab, b}, and L∃(B) = {a, ab, b, c}. As B does not employ any
reset, we may view it as a DTA where B models a process owning clock x, and where
a second process, owning clock y, does nothing, but is in a local accepting state. "#

7 Future Work

We plan to investigate the expressive power of DTAs and, in particular, the synthesis
problem: For which (global) specifications Spec can we generate a DTA D (over some
given system architecture) such that Lreact(D) = Spec? A similar synthesis problem
has been studied in [8] in the framework of untimed distributed channel systems. There,
additional messages are employed to achieve a given global behavior. In this context,
it would be favorable to have partial-order based specification languages and a partial-
order semantics for DTAs (see, for example, [11]).
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Abstract. A well-known theorem in automata theory states that every
context-free language is accepted by a pushdown automaton. We inves-
tigate this theorem in the setting of processes, using the rooted branch-
ing bisimulation and contrasimulation equivalences instead of language
equivalence. In process theory, different from automata theory, interac-
tion is explicit, so we realize a pushdown automaton as a regular process
communicating with a stack.

1 Introduction

Automata and formal language theory have a place in every undergraduate com-
puter science curriculum, as this provides students with a simple model of compu-
tation, and an understanding of computability. This simple model of computation
does not include the notion of interaction, which is more and more important at
a time when computers are always connected.

Adding interaction to automata theory leads to concurrency theory. The two
models of computation are strongly related, and have much in common. Still,
research into both models has progressed more or less independently. We are
embarked on a program that studies similarities and differences between the
two models, and that shows how concepts, notations, methods and techniques
developed in one of the fields can be beneficial in the other field.

This paper studies, in a concurrency theoretic setting, the relation between
the notion of a context-free process [4,18,9], and that of a pushdown automaton
(i.e. a regular process that interacts with a stack) [17]. In order to obtain a full
correspondence with automata theory, we extend the definition of context-free
processes of [9] with deadlock (0, as in [18]) and termination (1, studied here for
the first time). The goal of this paper, is to show how every context-free process
can be translated into a pushdown automaton. The main difference with the
work of [17], is that we do this while explicitly modeling the interaction between
the regular process and the stack in this automaton. As it turns out, the addition
of termination leads to additional expressivity of context-free processes, which in
turn leads to a case distinction in the translation. Finally, the results in [17], show
that the translation in the other direction is not always possible for context-free
processes without termination, but as 1 gives us additional expressivity, it might
hold in the new setting. However, as the translation in one direction is already
not trivial, we leave the other direction as future work.

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 98–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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This paper is structured as follows. We first introduce our definitions of regu-
lar and context-free processes, and the associated equational theory, in Sects. 2
and 3, respectively. Then, in Sect. 4, we give the general structure of our transla-
tion, and study the different cases mentioned before as instances of this structure.
We conclude the paper in Sect. 5, and give recommendations for future work.

2 Regular Processes

Before we introduce context-free processes, we first consider the notion of a
regular process and its relation to regular languages in automata theory. We start
with a definition of the notion of transition system from process theory. A finite
transition system can be thought of as a non-deterministic finite automaton. In
order to have a complete analogy, the transition systems we study have a subset
of states marked as final states.

Definition 1 (Transition system). A transition system M is a quintuple
(S,A,→, ↑, ↓) where:

1. S is a set of states,
2. A is an alphabet,
3. → ⊆ S ×A× S is the set of transitions or steps,
4. ↑ ∈ S is the initial state,
5. ↓ ⊆ S is a set of final states.

For (s, a, t) ∈ → we write s a−→ t. For s ∈ ↓ we write s↓. A finite transition
system or non-deterministic finite automaton is a transition system of which the
sets S and A are finite.

In accordance with automata theory, where a regular language is a language
equivalence class of a non-deterministic finite automaton, we define a regular
process to be a bisimulation equivalence class [13] of a finite transition system.
Contrary to automata theory, it is well-known that not every regular process has
a deterministic finite transition system (i.e. a transition system for which the
relation → is functional). The set of deterministic regular processes is a proper
subset of the set of regular processes.

Next, consider the automata theoretic characterization of a regular language
by means of a right-linear grammar. In process theory, a grammar is called a
recursive specification: it is a set of recursive equations over a set of variables. A
right-linear grammar then coincides with a recursive specification over a finite
set of variables in the Minimal Algebra MA. (We use standard process algebra
notation as propagated by [2,5]).

Definition 2. The signature of Minimal Algebra MA is as follows:

1. There is a constant 0; this denotes inaction, a deadlock state; other names
are δ or stop.

2. There is a constant 1; this denotes termination, a final state; other names
are ε, skip or the empty process.
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3. For each element of the alphabet A there is a unary operator a. called action
prefix; a term a.x will execute the elementary action a and then proceed as x.

4. There is a binary operator + called alternative composition; a term x+y will
either execute x or execute y, a choice will be made between the alternatives.

The constants 0 and 1 are needed to denote transition systems with a single
state and no transitions. The constant 0 denotes a single state that is not a final
state, while 1 denotes a single state that is also a final state.

Definition 3. Let V be a set of variables. A recursive specification over V with
initial variable S ∈ V is a set of equations of the form X = tX , exactly one
for each X ∈ V, where each right-hand side tX is a term over some signature,
possibly containing elements of V. A recursive specification is called finite, if V
is finite.

We find that a finite recursive specification over MA can be seen as a right-
linear grammar. Now each finite transition system corresponds directly to a finite
recursive specification over MA, using a variable for every state. To go from a
term over MA to a transition system, we use structural operational semantics [1],
with rules given in Table 1.

Table 1. Operational rules for MA and recursion (a ∈ A, X ∈ V)

1↓ a.x
a−→ x

x
a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

x↓
x + y↓

y↓
x + y↓

tX
a−→ x X = tX

X
a−→ x

tX↓ X = tX

X↓

3 Context-Free Processes

Considering the automata theoretic notion of a context-free grammar, we find a
correspondence in process theory by taking a recursive specification over a finite
set of variables, and over the Sequential Algebra SA, which is MA extended with
sequential composition · . We extend the operational rules of Table 1 with rules
for sequential composition, in Table 2.

Now consider the following specification

S = 1 + S · a.1.

Our first observation is that, by means of the operational rules, we derive an
infinite transition system, which moreover is infinitely branching. All the states
of this transition system are different in bisimulation semantics, and so this
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Table 2. Operational rules for sequential composition (a ∈ A)

x
a−→ x′

x · y a−→ x′ · y
x↓ y

a−→ y′

x · y a−→ y′

x↓ y↓
x · y↓

is in fact an infinitely branching process. Our second observation is that this
recursive specification has infinitely many different (non-bisimilar) solutions in
the transition system model, since adding any non-terminating branch to the
initial node will also give a solution. This is because the equation is unguarded,
the right-hand side contains a variable that is not in the scope of an action-prefix
operator, and also cannot be brought into such a form. So, if there are multiple
solutions to a recursive specification, we have multiple processes that correspond
to this specification. This is an undesired property.

These two observations are the reason to restrict to guarded recursive specifi-
cations only. It is well-known that a guarded recursive specification has a unique
solution in the transition system model (see [7,6]). This restriction leads to the
following definition.

Definition 4. A context-free process is the bisimulation equivalence class of
the transition system generated by a finite guarded recursive specification over
Sequential Algebra SA.

In this paper, we use equational reasoning to manipulate recursive specifications.
The equational theory of SA is given in Table 3. Note that the axioms x·(y+z) =
x · y + x · z and x · 0 = 0 do not hold in bisimulation semantics (in contrast
to language equivalence). The given theory constitutes a sound and ground-
complete axiomatization of the model of transition systems modulo bisimulation
(see [6,5]). Furthermore, we often use the aforementioned principle, that guarded
recursive specifications have unique solutions [6].

Table 3. Equational theory of SA (a ∈ A)

x + y = y + x
(x + y) + z = x + (y + z)
x + x = x
(x + y) · z = x · z + y · z
(x · y) · z = x · (y · z)

x + 0 = x
0 · x = 0
1 · x = x
x · 1 = x
(a.x) · y = a.(x · y)

Using the axioms, any guarded recursive specification can be brought into
Greibach normal form [4]:

X =
∑

i∈IX

ai.ξi (+ 1).
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In this form, every right-hand side of every equation consists of a number of
summands, indexed by a finite set IX (the empty sum is 0), each of which is
1, or of the form ai.ξi, where ξi is the sequential composition of a number of
variables (the empty sequence is 1). We define I as the multiset resulting of the
union of all index sets. For a recursive specification in Greibach normal form,
every state of the transition system is given by a sequence of variables. Note
that we can take the index sets associated with the variables to be disjoint,
so that we can define a function V : I → V that gives, for any index that
occurs somewhere in the specification, the variable of the equation in which it
occurs.

As an example, we consider the important context-free process stack. Suppose
D is a finite data set, then we define the following actions in A, for each d ∈ D:

– ?d: push d onto the stack;
– !d: pop d from the stack.

Now the recursive specification is as follows:

S = 1 +
∑

d∈D

?d.S · !d.S.

In order to see that the above process indeed defines a stack, define processes
Sσ, denoting the stack with contents σ ∈ D∗, as follows: the first equation for
the empty stack, the second for any nonempty stack, with top d and tail σ:

Sε = S, Sdσ = S · !d.Sσ.

Then it is straightforward to derive the following equations:

Sε = 1 +
∑

d∈D

?d.Sd, Sdσ = !d.Sσ +
∑

e∈D

?e.Sedσ.

We obtain the following specification for the stack in Greibach normal form:

S = 1 +
∑

d∈D

?d.Td · S, Td = !d.1 +
∑

e∈D

?e.Te · Td.

Finally, we define the forgetful stack, which can forget a datum it has received
when popped, as follows:

S = 1 +
∑

d∈D

?d.S · (1 + !d.S).

Due to the presence of 1, a context-free process may have unbounded branch-
ing [8] that we need to mimic with our pushdown automaton. One possible
solution is to use forgetfulness of the stack to get this unbounded branching
in our pushdown automaton, as we will show in the next section. Note that
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when using a more restrictive notion of context-free processes we have bounded
branching, and thus we don’t need the forgetfulness property.

The above presented specifications are still meaningful when D is an infinite
data set (see e.g. [15,14]), but does not represent a term in SA anymore. In
this paper, we use infinite summation in some intermediate results, but the
end results are finite. Note that the infinite sums also preserve the notion of
congruence we are working with.

Now, consider the notion of a pushdown automaton. A pushdown automaton
is just a finite automaton, but at every step it can push a number of elements
onto a stack, or it can pop the top of the stack, and take this information into
account in determining the next move. Thus, making the interaction explicit, a
pushdown automaton is a regular process communicating with a stack.

In order to model the interaction between the regular process and the stack,
we briefly introduce communication by synchronization. We introduce the Com-
munication Algebra CA, which extends MA and SA with the parallel composition
operator ‖. Parallel processes can execute actions independently (called inter-
leaving), or can synchronize by executing matching actions. In this paper, it is
sufficient to use a particular communication function, that will only synchronize
actions !d and ?d (for the same d ∈ D). The result of such a synchronization
is denoted ?!d. CA also contains the encapsulation operator ∂∗( ), which blocks
actions !d and ?d, and the abstraction operator τ∗( ) which turns all ?!d actions
into the internal action τ . We show the operational rules in Table 4.

Table 4. Operational rules for CA (a ∈ A)

x
a−→ x′

x ‖ y
a−→ x′ ‖ y

y
a−→ y′

x ‖ y
a−→ x ‖ y′

x↓ y↓
x ‖ y↓

x
?d−→ x′ y

!d−→ y′

x ‖ y
?!d−→ x′ ‖ y′

x
!d−→ x′ y

?d−→ y′

x ‖ y
?!d−→ x′ ‖ y′

x
a−→ x′ a �= !d, ?d

∂∗(x)
a−→ ∂∗(x

′)

x↓
∂∗(x)↓

x
?!d−→ x′

τ∗(x)
τ−→ τ∗(x

′)

x
a−→ x′ a �= ?!d

τ∗(x)
a−→ τ∗(x

′)

x↓
τ∗(x)↓

Our finite axiomatization of transition systems of CA modulo rooted branch-
ing bisimulation uses the auxiliary operators � and | [7,16]. See Table 5
for the axioms and [5] for an explanation of these axioms.

The given equational theory is sound and ground-complete for the model of
transition systems modulo rooted branching bisimulation [13]. This is the pre-
ferred model we use, but all our reasoning in the following takes place in the
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Table 5. Equational theory of CA (a ∈ A ∪ {τ})

x ‖ y = x � y + y � x + x | y

0 � x = 0
1 � x = 0
a.x � y = a.(x ‖ y)
(x + y) � z = x � z + y � z
0 | x = 0
(x + y) | z = x | z + y | z
1 | 1 = 1
a.x | 1 = 0
!d.x | ?d.y = ?!d.(x ‖ y)
a.x | b.y = 0 if {a, b} �= {!d, ?d}

∂∗(0) = 0
∂∗(1) = 1
∂∗(!d.x) = ∂∗(?d.x) = 0
∂∗(a.x) = a.∂∗(x) if a �∈ {!d, ?d}
∂∗(x + y) = ∂∗(x) + ∂∗(y)

a.(τ.(x + y) + x) = a.(x + y)

x | y = y | x
x ‖ 1 = x
1 | x + 1 = 1
(x ‖ y) ‖ z = x ‖ (y ‖ z)
(x | y) | z = x | (y | z)
(x � y) � z = x � (y ‖ z)
(x | y) � z = x | (y � z)
x � τ.y = x � y
x | τ.y = 0

τ∗(0) = 0
τ∗(1) = 1
τ∗(?!d.x) = τ.τ∗(x)
τ∗(a.x) = a.τ∗(x) if a �= ?!d
τ∗(x + y) = τ∗(x) + τ∗(y)

equational theory, so is model-independent provided the models preserve validity
of the axioms and unique solutions for guarded recursive specifications.

4 Pushdown Automata

The main goal of this paper, is to prove that every context-free process is equal
to a regular process communicating with a stack. Thus, if P is any context-free
process, then we want to find a regular process Q such that

P = τ∗(∂∗(Q ‖ Sσ)),

where Sσ is a state of a stack process. Without loss of generality, we assume in
this section that P is given in Greibach normal form.

The first, intermediate, solution we present uses a potentially infinite data type
D. If D is infinite, then the stack is not a context-free process. Also, we define
Q in the syntax of Minimal Algebra, but it may have infinitely many different
variables, so it may not be a regular process. Later, we specialize to cases where
the data type is finite, and these problems do not occur. We do this by reducing
the main solution using several assumptions, that categorize the possibilities for
P into three classes: opaque, bounded branching, and unrestricted specifications.

4.1 Intermediate Solution

The infinite data type D we use for our intermediate solution, consists of pairs.
The first element of the pair is a variable of P . The second element is a multiset



A Context-Free Process as a Pushdown Automaton 105

over I, i.e. a multiset over V , plus an indication of a termination option. So,
D = V × (I ∪ {1} → N).

For multisets A,B, we write A(a) = n if the element a occurs n times in A, and
we write A%B to denote union of multisets such that (A%B)(a) = A(a)+B(a).
We use the subscript c in a process term (p)c to denote that p only occurs
in the term if condition c holds. Finally, we call a variable transparent if its
equation has an 1-summand. We denote the set of transparent variables of P
with V+1.

Now, we prove the main theorem by first stating the specification of our
solution and introducing some formalisms, before giving the main proof. The
proof will provide insight in how and why our solution works.

Theorem 1. For every context-free process P there exists a process Q given by
a recursive specification over MA such that P = τ∗(∂∗(Q ‖ Sσ)) for some state
Sσ of the (partially) forgetful stack.

Proof. Let E be a finite recursive specification of P in Greibach normal form.
Now, let F be a recursive specification that contains the following equations for
every variable X ∈ V of the specification E, i ∈ IX and multiset A over I:

X̂(i, A) = Push(ξi, A),

with Push(ξ, A) recursively defined as

Push(1, A) = Ctrl(A),

Push(ξ′Y, A) =

�
!〈Y, A〉.Push(ξ′, IY ) if Y �∈ V+1,

!〈Y, A〉.Push(ξ′, IY � A) if Y ∈ V+1.

where Y is a variable at the end of the original sequence and ξ′ is the sequence
that is left over when Y has been removed. So, Push(ξ, A) is defined backwards
with respect to sequence ξ, necessary to preserve the correct structure on the
stack while pushing.

In addition, let F also contain the following equations of a partially forgetful
stack and a (regular) finite control.

S = 1 +
�

〈V,A〉∈D

V �∈V+1

?〈V, A〉.S · !〈V, A〉.S +
�

〈V,A〉∈D

V ∈V+1

?〈V, A〉.S · (1 + !〈V, A〉.S),

Ctrl(A) =
�
i∈I

�
0<l≤A(i)

ai.Pop(i, l) (+ 1)A(1)≥1,

Pop(i, l) =

������
�����

�
〈V,A〉∈D

i∈IV

?〈V, A〉.V̂ (i, A) if V (i) �∈ V+1,

�
〈V,A〉∈D

i∈IV ∧A(i)=l−1

?〈V, A〉.V̂ (i, A) if V (i) ∈ V+1,
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The process Ctrl(A) allows for a choice to be made among the possible enabled
actions ai, referred to by the indices in the multiset A. It can also terminate if
the termination option 1 is present in A. Once an action has been chosen, Ctrl
calls Pop with the index i of the action that was executed and the occurrence
l of the variable belonging to that index, V (i), on the stack that needs to be
popped. Once that variable, say V (i) = X , has been popped, X̂(i, A) is executed
to mimic the rest of the behavior when ai has been executed, namely pushing
ξi on the stack. Note that this means that A, the multiset of possible actions,
always has to correspond with the contents of the partially forgetful stack.

Before we show how the above specification mimics the specification of P , we
first study the structure of P itself more closely. In Greibach normal form, every
state in P is labeled with a sequential composition of variables Xξ (or in the
trivial case, 1). Substituting the Greibach normal form of the leading variable
X gives us the following:

Xξ =
( ∑

i∈IX

ai.ξi (+ 1)
)
· ξ =

∑

i∈IX

ai.ξi · ξ (+ ξ).

Introducing a fresh variable P (ξ) for each possible sequence ξ, we obtain the
following equivalent infinite recursive specification.

P (1) = 1, P (Xξ) =
∑

i∈IX

ai.P (ξiξ) (+ P (ξ)).

Note that this specification is still guarded, as the unfolding of the unguarded
recursion will always terminate.

In order to link the sequences that make up the states of P to the contents of
the stack in our specification F , we use two functions h and e. The function h
determines, for a given sequence Xξ, the multiset that contains for each index
i ∈ I the number of occurrences of the process variable V (i) in a sequence that is
reachable through termination of preceding variables. It also determines whether
a termination is possible through the entire sequence.

h(1) = {1},

h(Xξ) =

{
IX if X �∈ V+1,
IX % h(ξ) if X ∈ V+1.

The function e, defined by e(1) = 1 and e(Xξ) = 〈X,h(ξ)〉e(ξ), then represents
the actual contents of the stack.

Lemma 1. Let i ∈ I. Then h(Xξ)(i) = h(ξ)(i) iff i �∈ IX .

Having characterized the relationship between states of P and the partially for-
getful stack of F , we define Q = Ctrl(h(X)), where X is the initial variable
of E, and we continue to prove P = τ∗(∂∗(Q ‖ Se(X))) =

[
Q ‖ Se(X)

]
∗.

1 More
precisely, we will prove for any sequence of variables ξ, that
1 From here on, [p]∗ is used as a shorthand notation for τ∗(∂∗(p)).
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P (ξ) =
[
Ctrl(h(ξ)) ‖ Se(ξ)

]
∗ .

1. If ξ = 1, then P (1) =
[
Ctrl(h(1)) ‖ Se(1)

]
∗ = [1 ‖ S1]∗ = 1

2. If ξ = Xξ′, then there are two cases.
(a) Assume that X �∈ V+1. First, apply the definition of h(Xξ′) and then

the definition of Ctrl(IX).

P (Xξ′)
?
=
�
Ctrl(h(Xξ′)) ‖ Se(Xξ′)

�
∗

=
�
Ctrl(IX) ‖ Se(Xξ′)

�
∗

=
�
i∈I

�
0<l≤IX (i)

ai.
�
Pop(i, l) ‖ Se(Xξ′)

�
∗ (+

�
1 ‖ Se(Xξ′)

�
∗)IX (1)≥1

Note that IX is a set, so it follows that IX(i) = 1 for i ∈ IX and IX(i) = 0
for all i ∈ I − IX . Therefore, the first two summations can be written as∑

i∈IX
when we instantiate l = 1. Because it also follows that IX(1) = 0,

we remove the conditional summand
[
1 ‖ Se(Xξ′)

]
∗.

=
�
i∈IX

ai.
�
Pop(i, 1) ‖ Se(Xξ′)

�
∗

Unfold the definition of Se(Xξ′) once, then perform the pop by applying
the definitions of Pop(i, 1) and X̂(i, h(ξ′)).

=
�
i∈IX

ai.τ.
	
X̂(i, h(ξ′)) ‖ Se(ξ′)



∗

=
�
i∈IX

ai.τ.
�
Push(ξi, h(ξ′)) ‖ Se(ξ′)

�
∗

Finally, perform |ξi| pushes by repeatedly applying the definitions of
Push(ξ, A) and Se(ξ).

=
�
i∈IX

ai.τ
|ξi|+1.

�
Ctrl(h(ξiξ

′)) ‖ Se(ξiξ′)
�
∗

=
�
i∈IX

ai.
�
Ctrl(h(ξiξ

′)) ‖ Se(ξiξ′)
�
∗

=
�
i∈IX

ai.P (ξiξ
′).

(b) Assume that X ∈ V+1. First, substitute the definition of Ctrl(h(Xξ′)).

P (Xξ′)
?
=
�
Ctrl(h(Xξ′)) ‖ Se(Xξ′)

�
∗

=
�
i∈I

�
0<l≤h(Xξ′)(i)

ai.
�
Pop(i, l) ‖ Se(Xξ′)

�
∗
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Split off the case that will pop the top element of the stack, namely when
i ∈ IX and l = h(Xξ′)(i). By the same argument as in the previous case,
we can write the first two summations as

∑
i∈IX

.

=
�
i∈IX

ai.
�
Pop(i, h(Xξ′)(i)) ‖ Se(Xξ′)

�
∗

+
�
i∈I

�
0<l≤h(Xξ′)(i)

i�∈IX∨l�=h(Xξ′)(i)

ai.
�
Pop(i, l) ‖ Se(Xξ′)

�
∗

(+
�
1 ‖ Se(Xξ′)

�
∗)h(Xξ′)(1)≥1

Consider the first summation. If i ∈ IX and l = h(Xξ′)(i), then h(ξ′)(i) =
l− 1 by Lemma 1 and therefore by the definitions of Pop(i, l) and Se(Xξ′):

=
�
i∈IX

ai.

�
��
 �

〈V,A′〉∈D

i∈Iv∧A′(i)=l−1

?〈V, A′〉.X̂(i, A′) ‖ S〈X,h(ξ′)〉e(ξ′)

�
���

∗

+
�
i∈I

�
0<l≤h(Xξ′)(i)

i�∈IX∨l�=h(Xξ′)(i)

ai.
�
Pop(i, l) ‖ Se(Xξ′)

�
∗

(+
�
1 ‖ Se(Xξ′)

�
∗)h(Xξ′)(1)≥1

The stack may contain a series of transparent variables with multisets
in which the occurrence of index i is strictly smaller than at the top. So,
only the top element can be popped.

=
�
i∈IX

ai.τ.
	
X̂(h(ξ′)) ‖ Se(ξ′)



∗

+
�
i∈I

�
0<l≤h(Xξ′)(i)

i�∈IX∨l�=h(Xξ′)(i)

ai.
�
Pop(i, l) ‖ Se(Xξ′)

�
∗

(+
�
1 ‖ Se(Xξ′)

�
∗)h(Xξ′)(1)≥1

Now, consider the second summation and optional summand. Given
that 0 < l ≤ h(Xξ′)(i), it follows from the combination of Lemma 1
(in case i �∈ IX) or l �= h(Xξ)(i) (in case i ∈ IX), that 0 < l ≤
h(ξ′)(i). Because we have forgetfulness of the stack Se(Xξ′), it holds that[
Pop(i, l) ‖ Se(Xξ′)

]
∗ =

[
Pop(i, l) ‖ Se(ξ′)

]
∗ and that if h(Xξ′)(1) ≥ 1,

then h(ξ′)(1) ≥ 1.

=
�
i∈IX

ai.τ.
	
X̂(h(ξ′)) ‖ Se(ξ′)



∗

+
�
i∈I

�
0<l≤h(ξ′)(i)

ai.
�
Pop(i, l) ‖ Se(ξ′)

�
∗

(+
�
1 ‖ Se(ξ′)

�
∗)h(ξ′)(1)≥1
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Apply the definition of X̂(i, h(ξ′)) on the first summation. Substitute
the second summation and the optional summand with the definition of
Ctrl(ξ′).

=
�
i∈IX

ai.τ.
�
Push(ξi, h(ξ′)) ‖ Se(ξ′)

�
∗ +

�
Ctrl(ξ′) ‖ Se(ξ′)

�
∗

Perform |ξi| pushes by repeatedly applying the definitions of Push(ξ, A)
and Se(ξ).

=
�
i∈IX

ai.τ
|ξi|+1.

�
Ctrl(h(ξiξ

′)) ‖ Se(ξiξ′)
�
∗ +

�
Ctrl(ξ′) ‖ Se(ξ′)

�
∗

=
�
i∈IX

ai.
�
Ctrl(h(ξiξ

′)) ‖ Se(ξiξ′)
�
∗ +

�
Ctrl(ξ′) ‖ Se(ξ′)

�
∗

=
�
i∈IX

ai.P (ξiξ
′) + P (ξ′).

This concludes our proof that there exists a, possibly infinite, recursive spec-
ification over MA that, in parallel with a partially forgetful stack, is equivalent
to a context-free process P . "#
In the following subsections, we will study under which conditions this specifi-
cation reduces to a finite recursive specification over MA.

4.2 Opacity

In [18], context-free processes with 0 but without 1 were presented. Related
to the absence of 1, we find that the intermediate solution reduces to a finite
recursive specification, if none of the variables are transparent (V+1 = ∅), i.e.
the specification is opaque.

From the specification of Push(ξ, A) we observe that now only sets are pushed
on the stack (i.e. multisets in which each element occurs at most once). Hence,
we can use a data set D′ = V ×P(I ∪ {1}) that no longer is infinite. We obtain
a new, finite recursive specification, by replacing the equations for S, Ctrl(A),
Pop(i, l) and Push(ξ, A) by the following ones:

S = 1 +
�

〈V,A〉∈D′

?〈V, A〉.S · !〈V, A〉.S,

Ctrl(A) =
�
i∈A

ai.Pop(i) (+ 1)1∈A,

Pop(i) =
�

〈V,A〉∈D′

i∈IV

?〈V, A〉.V̂ (i, A),

Push(1, A) = Ctrl(A),

Push(ξY, A) = !〈Y, A〉.Push(ξ, IY ).

Corollary 1. For any context-free process P with recursive specification E that
is opaque, there exists a regular process Q such that P =

[
Q ‖ Se(X)

]
∗.
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4.3 Bounded Branching

Consider the following example, in which the variable Y is transparent.

X = a.X · Y + b.1, Y = 1 + c.1.

By executing a n times followed by b, the system gets to state Y n. Here we have
unbounded branching, since Y n c−→ Y k for every k < n. This means state Y n has
n different outgoing c-steps, since none of the states Y k are bisimilar. Thus, we
cannot put a bound on the number of summands in the entire specification. The
observation that the presence of 1-summands can cause unbounded branching
is due to [8].

In case we have unbounded branching, it can be shown that there is no finite
solution modulo rooted branching bisimulation. The reason for this, is that a
regular process is certainly boundedly branching, so that the introduction of
unbounded branching must take place through communication with the stack
(in any solution, not only ours). This will result in internal τ transitions to states
that are not rooted branching bisimilar, which makes that the τ transitions
cannot be eliminated.

Assume now, that we have a specification for P that results in boundedly
branching behavior, then the intermediate solution (see Sect. 4.1) does reduce to
a finite recursive specification. In that case, the number of variables in a sequence
ξ that can perform a certain action is bounded by some natural number N . The
stack itself is an example of such a process. Hence, h(ξ)(i) ≤ N for any i ∈ I, so
the multisets in the data type D will never contain more than N occurrences for
each index. We can reduce our specification by replacing Ctrl(A) by the following
equation:

Ctrl(A) =
�
i∈I

�
0<l≤A(i)≤N

ai.Pop(i, l) (+ 1)A(1)≥1.

Corollary 2. For any context-free process P with recursive specification E that
has bounded branching, there exists a regular processQ such thatP =

[
Q ‖ Se(X)

]
∗.

4.4 Unrestricted

In the previous subsection, we showed that there is no suitable pushdown au-
tomaton for the context-free process P , if P has unbounded branching. However,
this observation relies on the fact that certain τ transitions cannot be elimi-
nated. In this subsection, we show that the intermediate solution reduces to a
finite recursive specification, for any P , if we accept the axiom of contrasimula-
tion [12,19]:

a.(τ.x + τ.y) = a.x+ a.y (a ∈ A).

By this we weaken the equivalence on our transition systems. We do not know
whether there is a stronger equivalence in the linear-time – branching-time spec-
trum II [12] for which a solution exists.

Starting from the intermediate solution (see Sect. 4.1), we can derive the
following using the axiom of contrasimulation. In the first step, we use the
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observation that, given some i ∈ I and 0 < l ≤ h(ξ)(i), there exists a ξi,l
such that 〈V (i), h(ξi,l)〉e(ξi,l) is a suffix of the stack contents e(ξ), reachable
through the forgetfulness of the stack. In the last step, we use the claim that∑

0<l≤h(ξ)(i)

[
Pop(i, l) ‖ Se(ξ)

]
∗ =

[
Pop(i) ‖ Se(ξ)

]
∗.�

Ctrl(h(ξ)) ‖ Se(ξ)

�
∗ =

�
i∈I

�
0<l≤h(ξ)(i)

ai.
�
Pop(i, l) ‖ Se(ξ)

�
∗ (+ . . . )

=
�
i∈I

�
0<l≤h(ξ)(i)

ai.τ.
	

ˆV (i)(i, h(ξi,l)) ‖ Se(ξi,l)



∗

(+ . . . )

=
�
i∈I

h(ξ)(i)≥1

ai.
� �

0<l≤h(ξ)(i)

τ.τ.
	

ˆV (i)(i, h(ξi,l)) ‖ Se(ξi,l)



∗

�
(+ . . . )

=
�
i∈I

h(ξ)(i)≥1

ai.
� �

0<l≤h(ξ)(i)

τ.
	

ˆV (i)(i, h(ξi,l)) ‖ Se(ξi,l)



∗

�
(+ . . . )

=
�
i∈I

h(ξ)(i)≥1

ai.
� �

0<l≤h(ξ)(i)

�
Pop(i, l) ‖ Se(ξ)

�
∗

�
(+ . . . )

=
�
i∈I

h(ξ)(i)≥1

ai.
�
Pop(i) ‖ Se(ξ)

�
∗ (+ . . . ).

We can reduce our specification by replacing Ctrl(A) and introducing Pop(i):

Ctrl(A) =
�
i∈I

A(i)≥1

ai.Pop(i) (+ 1)A(1)≥1,

Pop(i) =
�

〈V,A〉∈D
i∈IV

?〈V, A〉.V̂ (i, A).

Finally, because we never inspect the multiplicity of an index in a multiset
nor remove an element, we can replace multisets by sets and use i ∈ A instead
of A(i) ≥ 1 and ∪ instead of %.

Corollary 3. For any context-free process P with recursive specification E,
there exists a regular process Q such that P =

[
Q ‖ Se(X)

]
∗, assuming the axiom

of contrasimulation.

5 Concluding Remarks

Every context-free process can be realized as a pushdown automaton. A push-
down automaton in concurrency theory is a regular process communicating with
a stack.

We define a context-free process as the bisimulation equivalence class of a
transition system given by a finite guarded recursive specification over Sequential
Algebra. This algebra is needed for a full correspondence with automata theory,
and includes constants 0,1 not included in previous definitions of a context-free
process.
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The most difficult case is when the given context-free process has unbounded
branching. This can only happen when a state of the system is given by a se-
quence of variables that have 1-summands. In this case, there is no solution in
rooted branching bisimulation semantics. We have found a solution in contrasim-
ulation semantics, but do not know whether there are stronger equivalences in
the spectrum of [12] for which a solution exists.

Concerning the reverse direction, not every regular process communicating
with a stack is a context-free process. First of all, one must allow τ steps in
the definition of context-free processes, because not all τ -steps of a pushdown
automaton can be removed modulo rooted branching bisimulation or contrasim-
ulation. Moreover, even if we allow τ steps, the theory of [17] shows that push-
down automata are more expressive than context-free processes without 1. It is
not trivial whether this result is still true when the expressivity of context-free
processes is enlarged by adding termination. Research in this direction is left as
future work.

The other famous result concerning context-free processes is the fact that
bisimulation equivalence is decidable on this class, see [11]. Again, this result
has been established for processes not including 0,1. We expect that addition
of 0 will not cause any difficulties, but addition of 1 will. We leave as an open
problem whether bisimulation is decidable on the class of context-free processes
as we have defined it.

Most questions concerning regular processes are settled, as we discussed in
Sect. 2. A very important class of processes to be considered next are the com-
putable processes. In [3], it was demonstrated that a Turing machine in con-
currency theory can be presented as a regular process communicating with two
stacks. By this means, it was established that every computable process can be
realized as the abstraction of a solution of a finite guarded recursive specifica-
tion over communication algebra. This result also holds in the presence of the
constant 1.

There are more classes of processes to be considered. The class of so-called
basic parallel processes is given by finite guarded recursive specifications over
Minimal Algebra extended with parallel composition (without communication).
A prime example of such a process is the bag. Does the result of [10], that
bisimulation is decidable on this class, still hold in the presence of 1? Can we
write every basic parallel process as a regular process communicating with a
bag?
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Abstract. For many cryptographic protocols, security relies on the as-
sumption that adversarial entities have limited computational power.
This type of security degrades progressively over the lifetime of a pro-
tocol. However, some cryptographic services, such as timestamping ser-
vices or digital archives, are long-lived in nature; they are expected to
be secure and operational for a very long time (i.e., super-polynomial).
In such cases, security cannot be guaranteed in the traditional sense: a
computationally secure protocol may become insecure if the attacker has
a super-polynomial number of interactions with the protocol.

This paper proposes a new paradigm for the analysis of long-lived
security protocols. We allow entities to be active for a potentially un-
bounded amount of real time, provided they perform only a polynomial
amount of work per unit of real time. Moreover, the space used by these
entities is allocated dynamically and must be polynomially bounded. We
propose a new notion of long-term implementation, which is an adapta-
tion of computational indistinguishability to the long-lived setting. We
show that long-term implementation is preserved under polynomial par-
allel composition and exponential sequential composition. We illustrate
the use of this new paradigm by analyzing some security properties of
the long-lived timestamping protocol of Haber and Kamat.

1 Introduction

Computational security in long-lived systems: Security properties of cryptogra-
phic protocols typically hold only against resource-bounded adversaries. Con-
sequently, mathematical models for representing and analyzing security of such
protocols usually represent all participants as resource-bounded computational
entities. The predominant way of formalizing such bounds is by representing
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all entities as time-bounded machines, specifically, polynomial-time machines (a
partial list of works representative of this direction includes [1,2,3,4,5]).

This modeling approach has been successful in capturing the security of pro-
tocols for many cryptographic tasks. However, it has a fundamental limitation:
it assumes that the analyzed system runs for only a relatively “short” time. In
particular, since all entities are polynomially-bounded (in the security parame-
ter), the system’s execution must end after a polynomial amount of time. This
type of modeling is inadequate for analyzing security properties of protocols that
are supposed to run for a “long” time, that is, an amount of time that is not
bounded by a polynomial.

There are a number of natural tasks for which one would indeed be interested
in the behavior of systems that run for a long time. Furthermore, a number of
protocols have been developed for such tasks. Examples of such tasks include
proactive security [6], forward secure signatures [7,8], forward secure encryp-
tion [7,9], and timestamping [10,11,12]. None of the existing models for analyzing
security against computationally bounded adversaries is adequate for asserting
and proving security properties of protocols for such “long-lived” tasks.
Related work: A first suggestion for an approach might be to use existing models,
such as the PPT calculus [13], the Reactive Simulatability [14], or the Univer-
sally Composable security frameworks [3], with a sufficiently large value of the
security parameter. However, this would be too limited for our purpose in that
it would force protocols to protect against an overly powerful adversary even
in the short run, while not providing any useful information in the long run.
Similarly, turning to information theoretic security notions is not appropriate in
our case because unbounded adversaries would be able to break computationally
secure schemes instantaneously. We are interested in a notion of security that
can protect protocols against an adversary that runs for a long time, but is only
“reasonably powerful” at any point in time.

Recently, Müller-Quade and Unruh proposed a notion of long-term security
for cryptographic protocols [15]. However, they consider adversaries that try
to derive information from the protocol transcript after protocol conclusion.
This work does not consider long-lived protocol execution and, in particular,
the adversary of [15] has polynomially bounded interactions with the protocol
parties, which is not suitable for the analysis of long-lived tasks such as those
we described above.
Our approach: In this paper, we propose a new mathematical model for ana-
lyzing the security of such long-lived systems. To the best of our knowledge our
work is the first one to tackle the issue of modeling computational security in
long-lived systems. Our understanding of a long-lived system is that some pro-
tocol parties, including adversaries, may be active for an unbounded amount of
real time, subject to the condition that only a polynomial amount of work can
be done per unit of real time. Other parties may be active for only a short time,
as in traditional settings. Thus, the adversary’s interaction with the system is
unbounded, and the adversary may perform an unbounded number of computa-
tion steps during the entire protocol execution. This renders traditional security
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notions insufficient: computationally and even statistically secure protocols may
fail if the adversary has unbounded interactions with the protocol.

Modeling long-lived systems requires significant departures from standard
cryptographic modeling. First and foremost, unbounded entities cannot be mod-
eled as probabilistic polynomial time (PPT) Turing machines. In search of a suit-
able alternative, we see the need to distinguish between two types of unbounded
computation: steps performed steadily over a long period of time, versus those
performed very rapidly in a short amount of time. The former conforms with
our understanding of boundedness, while the latter does not. Guided by this
intuition, we introduce real time explicitly into a basic probabilistic automata
model, the Task-PIOA model [5], and impose computational restrictions in terms
of rates, i.e., number of computation steps per unit of real time.

Another interesting challenge is the restriction on space, which traditionally
is not an issue because PPT Turing machines can, by their nature, access only a
polynomially bounded amount of space. In the long-lived setting, space restric-
tion warrants explicit consideration. During the lifetime of a long-lived security
protocol, we expect some components to die and other new ones to become ac-
tive, for example, due to the use of cryptographic primitives that have a shorter
life time than the protocol itself. Therefore, we find it important to be able to
model dynamic allocation of space. We achieve this by restricting the use of state
variables. In particular, all state variables of a dormant entity (either not yet in-
voked or already dead) are set to a special null value ⊥. A system is regarded as
bounded only if, at any point in its execution, only a bounded amount of space
is needed to maintain all variables with non-⊥ values. For example, a sequen-
tial composition (in the temporal sense) of an unbounded number of entities is
bounded if each entity uses a bounded amount of space.

Having appropriate restrictions on space and computation rates, we then de-
fine a new long-term implementation relation, ≤neg,pt, for long-lived systems.
This is intended to extend the familiar notion of computational indistinguisha-
bility, where two systems (real and ideal) are deemed equivalent if their behaviors
are indistinguishable from the point of view of a computationally bounded en-
vironment. However, notice that, in the long-lived setting, an environment with
super-polynomial run time can typically distinguish the two systems trivially,
e.g., by launching brute force attacks. This is true even if the environment has
bounded computation rate. Therefore, our definition cannot rule out significant
degradation of security in the overall lifetime of a system. Instead, we require
that the rate of degradation is small at any point in time; in other words, the
probability of a new successful attack during any polynomial-bounded window
of time remains bounded during the lifetime of the system.

To capture this intuition, we extend the ideal systems traditionally used in
cryptography by allowing them to take some designated failure steps, which
allow an ideal system to take actions that could only occur in the real world, e.g.,
accepting forgeries as valid signatures, or producing ciphertexts that could allow
recovering the corresponding plaintext. However, if failure steps do not occur
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starting from some time t, then the ideal system starts following the specified
ideal behavior.

Our long-term implementation relation ≤neg,pt requires that the real system
approximates the ideal’s system’s handling of failures. More precisely, we quan-
tify over all real time points t and require that the real and ideal systems are
computationally indistinguishable up to time t+ q (where q is polynomial in the
security parameter), even if no failures steps are taken by the ideal system in
the interval [t, t + q]. Notice that we do allow failure steps before time t. This
expresses the idea that, despite any security breaches that may have occurred
before time t, the success probability of a fresh attack in the interval [t, t+ q] is
small. Our formal definition of ≤neg,pt includes one more generalization: it con-
siders failure steps in the real system as well as the ideal system, in both cases
before the same real time t. This natural extension is intended to allow repeated
use of ≤neg,pt, in verifying protocols using several levels of abstraction.

We show that ≤neg,pt is transitive, and is preserved under the operations of
polynomial parallel composition and exponential sequential composition. The
sequential composition result highlights the power of our model to formulate
and prove properties of an exponential number of entities in a meaningful way.

Example: Digital timestamping: As a proof of concept, we analyze some security
properties of the digital timestamping protocol of Haber et al. [10,11,12], which
was designed to address the problem of content integrity in long-term digital
archives. In a nutshell, a digital timestamping scheme takes as input a document
d at a specific time t0, and produces a certificate c that can be used later to
verify the existence of d at time t0. The security requirement is that timestamp
certificates are difficult to forge. Haber et al. note that it is inadvisable to use
a single digital signature scheme to generate all timestamp certificates, even if
signing keys are refreshed periodically. This is because, over time, any single
signature scheme may be weakened due to advances in algorithmic research
and/or discovery of vulnerabilities. Haber et al. propose a solution in which
timestamps must be renewed periodically by generating a new certificate for the
pair 〈d, c〉 using a new signature scheme. Thus, even if the signature scheme used
to generate c is broken in the future, the new certificate c′ still provides evidence
that d existed at the time t0 stated in the original certificate c.

We model the protocol of Haber et al. as the composition of a dispatcher
component and a sequence of signature services. Each signature service “wakes
up” at a certain time and is active for a specified amount of time before be-
coming dormant again. This can be viewed as a regular update of the signature
service, which may entail a simple refresh of the signing key, or the adoption of
a new signing algorithm. The dispatcher component accepts various timestamp
requests and forwards them to the appropriate signature service. We show that
the composition of the dispatcher and the signature services is indistinguishable
from an ideal system, consisting of the same dispatcher composed with ideal
signature functionalities. Specifically, this guarantees that the probability of a
new forgery is small at any given point in time, regardless of any forgeries that
may have happened in the past.
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2 Task-PIOAs

We build our new framework using task-PIOAs [5], which are a version of Proba-
bilistic Automata [16], augmented with an oblivious scheduling mechanism based
on tasks. A task is a set of related actions (e.g., actions representing the same ac-
tivity but with different parameters). We view tasks as basic groupings of events,
both for real time scheduling and for imposing computational bounds (cf.
Sections 3 and 4). In this section, we review basic notations related to task-PIOAs.

Notation: Given a set S, let Disc(S) denote the set of discrete probability mea-
sures on S. For s ∈ S, let δ(s) denote the Dirac measure on s, i.e., δ(s)(s) = 1.
Let V be a set of variables. Each v ∈ V is associated with a (static) type type(v),
which is the set of all possible values of v. We assume that type(v) is countable
and contains the special symbol ⊥. A valuation s for V is a function mapping
every v ∈ V to a value in type(v). The set of all valuations for V is denoted
val(V ). Given V ′ ⊆ V , a valuation s′ for V ′ is sometimes referred to as a par-
tial valuation for V . Observe that s′ induces a (full) valuation ιV (s′) for V ,
by assigning ⊥ to every v �∈ V ′. Finally, for any set S with ⊥ �∈ S, we write
S⊥ := S ∪ {⊥}.
PIOA: We define a probabilistic input/output automaton (PIOA) to be a tuple
A = 〈V, S, sinit, I, O,H,Δ〉, where:

(i) V is a set of state variables and S ⊆ val (V ) is a set of states ;
(ii) sinit ∈ S is the initial state;
(iii) I, O and H are countable and pairwise disjoint sets of actions, referred to

as input, output and hidden actions, respectively;
(iv) Δ ⊆ S × (I ∪O ∪H)× Disc(S) is a transition relation.

The set Act := I ∪ O ∪H is the action alphabet of A. If I = ∅, then A is said
to be closed. The set of external actions of A is I ∪ O and the set of locally
controlled actions is O ∪ H . An execution is a sequence α = q0a1q1a2 . . . of
alternating states and actions where q0 = sinit and, for each 〈qi, ai+1, qi+1〉, there
is a transition 〈qi, ai+1, μ〉 ∈ Δ with qi+1 ∈ Support(μ). A sequence obtained
by restricting an execution of A to external actions is called a trace. We write
s.v for the value of variable v in state s. An action a is enabled in a state s if
〈s, a, μ〉 ∈ Δ for some μ. We require that A satisfy the following conditions.

– Input Enabling: For every s ∈ S and a ∈ I, a is enabled in s.
– Transition Determinism: For every s ∈ S and a ∈ Act , there is at most

one μ ∈ Disc(S) with 〈s, a, μ〉 ∈ Δ. We write Δ(s, a) for such μ, if it exists.

Parallel composition for PIOAs is based on synchronization of shared actions.
PIOAs A1 and A2 are said to be compatible if Vi∩Vj = Act i ∩Hj = Oi∩Oj = ∅
whenever i �= j. In that case, we define their composition A1‖A2 to be 〈V1 ∪
V2, S1 × S2, 〈sinit

1 , sinit
2 〉, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2, H1 ∪ H2, Δ〉, where Δ is

the set of triples 〈〈s1, s2〉, a, μ1 × μ2〉 satisfying: (i) a is enabled in some si, and
(ii) for every i, if a ∈ Act i, then 〈si, a, μi〉 ∈ Δi, otherwise μi = δ(si). It is easy
to check that input enabling and transition determinism are preserved under
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composition. Moreover, the definition of composition can be generalized to any
finite number of components.

Task-PIOA: To resolve nondeterminism, we make use of the notion of tasks
introduced in [17,5]. Formally, a task-PIOA is a pair 〈A,R〉 where A is a PIOA
andR is a partition of the locally-controlled actions ofA. The equivalence classes
in R are called tasks. For notational simplicity, we often omit R and refer to the
task-PIOA A. The following additional axiom is assumed.

– Action Determinism: For every state s and every task T , at most one
action a ∈ T is enabled in s.

Unless otherwise stated, terminologies are inherited from the PIOA setting. For
instance, if some a ∈ T is enabled in a state s, then T is said to be enabled in s.

Example 1 (Clock automaton). Figure 1 describes a simple task-PIOA Clock(T),
which has a tick(t) output action for every t in some discrete time domain T.
For concreteness, we assume that T = N, and write simply Clock. Clock has a
single task tick, consisting of all tick(t) actions. These clock ticks are produced in
order, for t = 1, 2, . . .. In Section 3, we will define a mechanism that will ensure
that each tick(t) occurs exactly at real time t.

Clock(T)

Signature Tasks: tick = {tick(∗)}
Output: tick(t : T), t > 0 States: count ∈ T, initially 0

Transitions
tick(t)
Precondition: count = t − 1 Effect: count := t

Fig. 1. Task-PIOA Code for Clock(T)

Operations: Given compatible task-PIOAs A1 and A2, we define their composi-
tion to be 〈A1‖A2,R1∪R2〉. Note thatR1∪R2 is an equivalence relation because
compatibility requires disjoint sets of locally controlled actions. Moreover, it is
easy to check that action determinism is preserved under composition.

We also define a hiding operator: given A = 〈V, S, sinit, I, O,H,Δ〉 and S ⊆ O,
hide(A, S) is the task-PIOA given by 〈V, S, sinit, I, O′, H ′, Δ〉, where O′ = O \
S and H ′ = H ∪ S. This prevents other PIOAs from synchronizing with A
via actions in S: any PIOA with an action in S in its signature is no longer
compatible with A.

Executions and traces: A task schedule for a closed task-PIOA 〈A,R〉 is a finite
or infinite sequence ρ = T1, T2, . . . of tasks in R. This induces a well-defined run
of A as follows.

(i) From the start state sinit, we apply the first task T1: due to action- and
transition-determinism, T1 specifies at most one transition from sinit; if
such a transition exists, it is taken, otherwise nothing happens.

(ii) Repeat with remaining Ti’s.
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Such a run gives rise to a unique probabilistic execution, which is a probability
distribution over executions in A. For finite ρ, let lstate(A, ρ) denote the state
distribution of A after executing according to ρ. A state s is said to be reachable
under ρ if lstate(A, ρ)(s) > 0. Moreover, the probabilistic execution induces
a unique trace distribution tdist(A, ρ), which is a probability distribution over
the set of traces of A. We refer the reader to [5] for more details on these
constructions.

3 Real Time Scheduling Constraints

In this section, we describe how to model entities with unbounded lifetime but
bounded processing rates. A natural approach is to introduce real time, so that
computational restrictions can be stated in terms of the number of steps per-
formed per unit real time. Thus, we define a timed task schedule τ for a closed
task-PIOA 〈A,R〉 to be a finite or infinite sequence 〈T1, t1〉, 〈T2, t2〉, . . . such
that: Ti ∈ R and ti ∈ R≥0 for every i, and t1, t2, . . . is non-decreasing. Given a
timed task schedule τ = 〈T1, t1〉, 〈T2, t2〉, . . . and t ∈ R≥0, let trunc≥t(τ) denote
the result of removing all pairs 〈Ti, ti〉 with ti ≥ t.

Following [18], we associate lower and upper real time bounds to each task.
If l and u are, respectively, the lower bound and upper bound for a task T , then
the amount of time between consecutive occurrences of T is at least l and at
most u. To limit computational power, we impose a rate bound on the number
of occurrences of T within an interval I, based on the length of I. A burst bound
is also included for modeling flexibility.

Formally, a bound map for a task-PIOA 〈A,R〉 is a tuple 〈rate, burst, lb, ub〉 such
that: (i) rate, burst, lb : R → R≥0, (ii) ub : R → R∞

>0, and (iii) for all T ∈ R,
lb(T ) ≤ ub(T ). To ensure that rate and ub can be satisfied simultaneously, we re-
quire rate(T ) ≥ 1/ ub(T ) whenever rate(T ) �= 0 and ub(T ) �= ∞. From this point
on, we assume that every task-PIOA is associated with a particular bound map.

In the long version of this paper [19, Section 3], we formally define what it
means for a timed task schedule τ to be valid for an interval under a given
bound map. This definition states the technical conditions that simultaneously
ensure that: (i) Consecutive appearances of a task T must be at least lb(T ) apart,
(ii) Consecutive appearances of a task T must be at most ub(T ) apart, (iii) For
any d ∈ R≥0 and any interval I ′ of length d, τ contains at most rate(T ) · d +
burst(T ) elements with 〈T, t〉 with t ∈ I ′.

Note that every timed schedule τ projects to an untimed schedule ρ by
removing all real time information ti, thereby inducing a trace distribution
tdist(A, τ) := tdist(A, ρ).

In a parallel composition A1‖A2, the composite bound map is the union of
component bound maps: 〈rate1 ∪ rate2, burst1 ∪ burst2, lb1 ∪ lb2, ub1 ∪ ub2〉.

Example 2 (Bound map for Clock). We use upper and lower bounds to ensure
that Clock’s internal counter evolves at the same rate as real time. Namely, we
set lb(tick) = ub(tick) = 1. The rate and burst bounds are also set to 1. It is
not hard to see that, regardless of the system of automata with which Clock is
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composed, we always obtain the unique sequence 〈tick, 1〉, 〈tick, 2〉, . . . when we
project a valid schedule to the task tick.

Note that we use real time solely to express constraints on task schedules. We
do not allow computationally-bounded system components to maintain real-time
information in their states, nor to communicate real-time information to each
other. System components that require knowledge of time will maintain discrete
approximations to time in their states, based on inputs from Clock.

4 Complexity Bounds

We are interested in modeling systems that run for an unbounded amount of real
time. During this long life, we expect that a very large number of components
will be active at various points in time, while only a small proportion of them
will be active simultaneously. Defining complexity bounds in terms of the total
number of components would then introduce unrealistic security constraints.
Therefore, we find it more reasonable to define complexity bounds in terms of
the characteristics of the components that are simultaneously active at any point
in time.

To capture these intuitions, we define a notion of step bound, which limits the
amount of computation a task-PIOA can perform, and the amount of space it
can use, in executing a single step. By combining the step bound with the rate
and burst bounds of Section 3, we obtain an overall bound, encompassing both
bounded memory and bounded computation rates.

Note that we do not model situations where the rates of computation, or the
computational power of machines, increases over time. This is an interesting
direction in which the current research could be extended.
Step Bound: We assume some standard bit string encoding for Turing machines
and for the names of variables, actions, and tasks. We also assume that variable
valuations are encoded in the obvious way, as a list of name/value pairs. Let A be
a task-PIOA with variable set V . Given state s, let ŝ denote the partial valuation
obtained from s by removing all pairs of the form 〈v,⊥〉. We have ιV (ŝ) = s,
therefore no information is lost by reducing s to ŝ. This key observation allows
us to represent a “large” valuation s with a “condensed” partial valuation ŝ.

Let p ∈ N be given. We say that a state s is p-bounded if the encoding of ŝ is
at most p bits long. The task-PIOAA is said to have step bound p if (a) the value
of every variable is representable by at most p bits, (b) the name of every action
name has length at most p bits, (c) the initial state sinit is p-bounded, (d) there
are probabilistic Turing machines able to (i) determine which tasks are enabled
in a given state of A, (ii) determine which action a of a given task is enabled in
a given state s of A, and output a new state of A according to the distribution
of Δ(s, a), (iii) determine if a candidate action a is an input action of A and,
given a state s of A, output a new state of A according to the distribution of
Δ(s, a). Furthermore, those Turing Machines terminate after at most p steps on
every input and they can be encoded using at most p bits.
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Given a closed (i.e., no input actions) task-PIOA A with step bound p, one
can easily define a Turing machine MA with a combination of nondeterministic
and probabilistic branching that simulates the execution of A. It can be showed
that the amount of work tape needed by MA is polynomial in p.

It can also be shown that, when we compose task-PIOAs in parallel, the
complexity of the composite is proportional to the sum of the component com-
plexities. The proof is similar to that of the full version of [5, Lemma 4.2]. We
also note that the hiding operator introduced in Section 2 preserves step bounds.
Overall Bound: We now combine real time bounds and step bounds. To do so,
we represent global time using the clock automaton Clock (Figure 1). Let p ∈ N
be given and let A be a task-PIOA compatible with Clock. We say that A is
p-bounded if the following hold:

(i) A has step bound p.
(ii) For every task T of A, rate(T ) and burst(T ) are both at most p.
(iii) For every t ∈ N, let St denote the set of states s of A‖Clock such that s is

reachable under some valid schedule τ and s.count = t. There are at most
p tasks T such that T is enabled in some s ∈ St. (Here, s.count is the value
of variable count of Clock in state s).

We say that A is quasi-p-bounded if A is of the form A′‖Clock where A′ is
p-bounded.

Conditions (i) and (ii) are self-explanatory. Condition (iii) is a technical condi-
tion that ensures that the enabling of tasks does not change too rapidly. Without
such a restriction, A could cycle through a large number of tasks between two
clock ticks, without violating the rate bound of any individual task.
Task-PIOA Families: We now extend our definitions to task-PIOA families, in-
dexed by a security parameter k. More precisely, a task-PIOA family Ā is an
indexed set {Ak}k∈N of task-PIOAs. Given p : N → N, we say that Ā is p-bounded
just in case: for all k, Ak is p(k)-bounded. If p is a polynomial, then we say that
Ā is polynomially bounded. The notions of compatibility and parallel composi-
tion for task-PIOA families are defined pointwise. We now present an example
of a polynomially bounded family of task-PIOAs—a signature service that we
use in our digital timestamping example. The complete formal specification for
these task-PIOAs can be found in the long version of this paper [19].

Example 3 (Signature Service). A signature scheme Sig consists of three algo-
rithms: KeyGen, Sign and Verify. KeyGen is a probabilistic algorithm that out-
puts a signing-verification key pair 〈sk , vk〉. Sign is a probabilistic algorithm that
produces a signature σ from a message m and the key sk . Finally, Verify is a
deterministic algorithm that maps 〈m,σ, vk 〉 to a boolean. The signature σ is
said to be valid for m and vk if Verify(m,σ, vk ) = 1.

Let SID be a domain of service identifiers. For each j ∈ SID , we build a signa-
ture service as a family of task-PIOAs indexed by security parameter k. Specif-
ically, we define three task-PIOAs, KeyGen(k, j), Signer(k, j), and Verifier(k, j)
for every pair 〈k, j〉, representing the key generator, signer, and verifier, respec-
tively. The composition of these three task-PIOAs gives a signature service. We
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assume a function alive : T → 2SID such that, for every t, alive(t) is the set
of services alive at discrete time t. The lifetime of each service j is then given
by aliveTimes(j) := {t ∈ T|j ∈ alive(t)}; we assume this to be a finite set of
consecutive numbers.

Assuming the algorithms KeyGenj , Signj and Verifyj are polynomial time, it
not hard to check that the composite KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j) has
step bound p(k) for some polynomial p. If rate(T ) and burst(T ) are at most p(k)
for every T , then the composite is p(k)-bounded. The family {KeyGen(k, j)‖
Signer(k, j)‖Verifier(k, j)}k∈N is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistin-
guishability. For instance, an encryption algorithm is (chosen-plaintext) secure
if the ciphertexts of two distinct but equal-length messages are indistinguishable
from each other, even if the plaintexts are generated by the distinguisher itself.
The key assumption is that the distinguisher is computationally bounded, so
that it cannot launch a brute force attack. In this section, we adapt this notion
of indistinguishability to the long-lived setting.

We define an implementation relation based on closing environments and ac-
ceptance probabilities. Let A be a closed task-PIOA with output action acc and
task acc = {acc}. Let τ be a timed task schedule forA. The acceptance probability
of A under τ is: Pacc(A, τ) := Pr[β contains acc : β ←R tdist(A, τ)]; that is, the
probability that a trace drawn from the distribution tdist(A, τ) contains the action
acc. If A is not necessarily closed, we include a closing environment. A task-PIOA
Env is an environment for A if it is compatible with A and A‖Env is closed. From
here on, we assume that every environment has output action acc.

In the short-lived setting, we say that a systemA1 implements another system
A2 if every run of A1 can be “matched” by a run of A2 such that no polynomial
time environment can distinguish the two runs. As we discussed in the introduc-
tion, this type of definition is too strong for the long-lived setting, because we
must allow environments with unbounded total run time (as long as they have
bounded rate and space).

For example, consider the timestamping protocol of [11,12] described in
Section 1. After running for a long period of real time, a distinguisher envi-
ronment may be able to forge a signature with non-negligible probability. As a
result, it can distinguish the real system from an ideal timestamping system, in
the traditional sense. However, the essence of the protocol is that such failures
can in fact be tolerated, because they do not help the environment to forge new
signatures, after a new, uncompromised signature service becomes active.

This timestamping example suggests that we need a new notion of long-term
implementation that makes meaningful security guarantees in any polynomial-
bounded window of time, in spite of past security failures. Our new implemen-
tation relation aims to capture this intuition.
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First we define a comparability condition for task-PIOAs: A1 and A2 are said
to be comparable if they have the same external interface, that is, I1 = I2 and
O1 = O2. In this case, every environment E for A1 is also an environment for
A2, provided E is compatible with A2.

Let A1 and A2 be comparable task-PIOAs. To model security failure events
in both automata, we let F 1 be a set of designated failure tasks of A1, and let
F 2 be a set of failure tasks of A2. We assume that each task in F 1 and F 2 has
∞ as its upper bound.

Given t ∈ R≥0 and an environment Env for both A1 and A2, we consider two
experiments. In the first experiment, Env interacts with A1 according to some
valid task schedule τ1 of A1‖Env, where τ1 does not contain any tasks from F 1

from time t onwards. In the second experiment, Env interacts with A2 according
to some valid task schedule τ2 of A2‖Env, where τ2 does not contain any tasks
from F 2 from time t onwards. Our definition requires that the first experiment
“approximates” the second one, that is, if A1 acts ideally (does not perform any
of the failure tasks in F 1) after time t, then it simulates A2, also acting ideally
from time t onwards.

More specifically, we require that, for any valid τ1, there exists a valid τ2 as
above such that the two executions are identical before time t from the point of
view of the environment. That is, the probabilistic execution is the same before
time t. Moreover, the two executions are overall computationally indistinguish-
able, namely, the difference in acceptance probabilities in these two experiments
is negligible provided Env is computationally bounded.

If τ is a schedule of A‖B, then we define projB(τ) to be the result of removing
all 〈Ti, ti〉 where Ti is not a task of B. Moreover, let ExecsB(A‖B, τ) denote the
distribution of executions of B when executed with A under schedule τ .

Definition 1. Let A1 and A2 be comparable task-PIOAs that are both compati-
ble with Clock. Let F 1 and F 2 be sets of tasks of, respectively, A1 and A2, such
that for any T ∈ (F 1 ∪ F 2), ub(T ) = ∞. Let p, q ∈ N and ε ∈ R≥0 be given.
Then we say that (A1, F 1) ≤p,q,ε (A2, F 2) provided that the following is true:
For every t ∈ R≥0, every quasi-p-bounded environment Env, and every valid
timed schedule τ1 for A1‖Env for the interval [0, t+ q] that does not contain any
pairs of the form 〈Ti, ti〉 where Ti ∈ F 1 and ti ≥ t, there exists a valid timed
schedule τ2 for A2‖Env for the interval [0, t+ q] such that:

(i) projEnv(τ1) = projEnv(τ2);
(ii) τ2 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F 2 and ti ≥ t;

(iii) ExecsEnv(A1‖Env, trunc≥t(τ1)) = ExecsEnv(A2‖Env, trunc≥t(τ2));
(iv) |Pacc(A1‖Env, τ1)−Pacc(A2‖Env, τ2)| ≤ ε.

It can be observed that the ≤p,q,ε is transitive up to additive errors [19].
The relation ≤p,q,ε can be extended to task-PIOA families as follows. Let

Ā1 = {(Ā1)k}k∈N and Ā2 = {(Ā2)k}k∈N be pointwise comparable task-PIOA
families. Let F̄ 1 be a family of sets such that each (F̄ 1)k is a set of tasks of (Ā1)k

and let F̄ 2 be a family of sets such that each (F̄ 2)k is a set of tasks of (Ā2)k,
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satisfying the condition that each task of those sets has an infinite upper bound.
Let ε : N → R≥0 and p, q : N → N be given. We say that (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2)
just in case ((Ā1)k, (F̄ 1)k) ≤p(k),q(k),ε(k) ((Ā2)k, (F̄ 2)k) for every k.

Restricting our attention to negligible error and polynomial time bounds, we
obtain the long-term implementation relation ≤neg,pt. Formally, a function ε :
N → R≥0 is said to be negligible if, for every constant c ∈ N, there exists k0 ∈ N
such that ε(k) < 1

kc for all k ≥ k0. (That is, ε diminishes more quickly than the
reciprocal of any polynomial.) Given task-PIOA families Ā1 and Ā2 and task
set families F̄ 1 and F̄ 2, respectively, of Ā1 and Ā2, we say that (Ā1, F̄ 1) ≤neg,pt

(Ā2, F̄ 2) if ∀p, q ∃ε : (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2), where p, q are polynomials and ε
is a negligible function.

Example 4 (Ideal Signature Functionality). In order to illustrate the use of the
relation≤neg,pt in our example, we specify an ideal signature functionality SigFunc,
and show that it is implemented by the real signature service of Section 4.

As with KeyGen, Signer, and Verifier, each instance of SigFunc is parameter-
ized with a security parameter k and an identifier j. It is very similar to the
composition of Signer(k, j) and Verifier(k, j). The important difference is that
SigFunc(k, j) maintains an additional variable history , which records the set of
signed messages. In addition, SigFunc(k, j) has an internal action failj , which sets
a boolean flag failed . If failed = false, then SigFunc(k, j) uses history to answer
verification requests: a signature is rejected if the submitted message is not in
history , even if Verifyj returns 1. If failed = true, then SigFunc(k, j) bypasses
the check on history , so that its answers are identical to those from the real
signature service.

Let us define RealSig(j)k =hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj)
and IdealSig(j)k = hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj). We define families
from those automata in the obvious way:RealSig := {RealSigk}k∈N and IdealSig :=
{IdealSigk}k∈N. We show that the real signature service implements the ideal sig-
nature functionality. The proof, which relies on a reduction to standard properties
of a signature scheme, can be found in [19].

Theorem 1. Let j ∈ SID be given. Suppose that 〈KeyGenj , Signj ,Verifyj〉 is a
complete and EUF-CMA secure signature scheme. Then (RealSig(j), {}) ≤neg,pt

(IdealSig(j), {failj}).

6 Composition Theorems

In practice, cryptographic services are seldom used in isolation. Usually, different
types of services operate in conjunction, interacting with each other and with
multiple protocol participants. For example, a participant may submit a docu-
ment to an encryption service to obtain a ciphertext, which is later submitted
to a timestamping service. In such situations, it is important that the services
are provably secure even in the context of composition.

In this section, we consider two types of composition. The first, parallel com-
position, is a combination of services that are active at the same time and may
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interact with each other. Given a polynomially bounded collection of real services
such that each real service implement some ideal service, the parallel composition
of the real services is guaranteed to implement that of the ideal services.

The second type, sequential composition, is a combination of services that are
active in succession. The interaction between two distinct services is much more
limited in this setting, because the earlier one must have finished execution before
the later one begins. An example of such a collection is the signature services in
the timestamping protocol of [12,11], where each service is replaced by the next
at regular intervals.

As in the parallel case, we prove that the sequential composition of real ser-
vices implements the sequential composition of ideal services. We are able to
relax the restriction on the number of components from polynomial to exponen-
tial.1 This highlights a unique aspect of our implementation relation: essentially,
from any point t on the real time line, we focus on a polynomial length interval
starting from t.

Parallel Composition: Using a standard hybrid argument, as exemplified in [20]
for instance, it is possible to show that the relation ≤neg,pt is preserved under
polynomial parallel composition. The theorem contains a technicality: instead
of simply assuming ≤neg,pt relationships for all the components, we assume a
slightly stronger property, in which the same negligible function ε is assumed
for all of the components; that is, ε is not allowed to depend on the component
index i.

Theorem 2 (Parallel Composition Theorem for ≤neg,pt). Let Ā1
1, Ā1

2, . . .
and Ā2

1, Ā2
2, . . . be two infinite sequences of task-PIOA families, with Ā1

i compa-
rable to Ā2

i for every i. Suppose that Āα1
1 , Āα2

2 , . . . are pairwise compatible for
any combination of αi ∈ {1, 2}. Let b be any polynomial, and for each k, let
(Â1)k and (Â2)k denote ‖b(k)

i=1 (Ā1
i )k and ‖b(k)

i=1 (Ā2
i )k, respectively. Let r and s be

polynomials, r, s : N → N, such that r is nondecreasing, and for every i, k, both
(Ā1

i )k and (Ā2
i )k are bounded by s(k) · r(i).

For each i, let F̄ 1
i be a family of sets such that (F̄ 1

i )k is a set of tasks of (Ā1
i )k

for every k, and let F̄ 2
i be a family of sets such that (F̄ 2

i )k is a set of tasks of
(Ā2

i )k for every k, where all these tasks have infinite upper bounds. Let (F̂ 1)k

and (F̂ 2)k denote
⋃b(k)

i=1 (F̄ 1
i )k and

⋃b(k)
i=1 (F̄ 2

i )k, respectively.
Assume:

∀p, q ∃ε ∀i (Ā1
i , F̄

1
i ) ≤p,q,ε (Ā2

i , F̄
2
i ), (1)

where p, q are polynomials and ε is a negligible function.
Then (Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2).

Sequential Composition: Wenow treat themore interesting case, namely, exponen-
tial sequential composition. The first challenge is to formalize the notion of sequen-
tiality. On a syntactic level, all components in the collection are combined using
1 In our model, it is not meaningful to exceed an exponential number of components,

because the length of the description of each component is polynomially bounded.



Modeling Computational Security in Long-Lived Systems 127

the parallel composition operator. To capture the idea of successive invocation, we
introduce some auxiliary notions. Intuitively, we distinguish between active and
dormant entities. Active entities may perform actions and store information in
memory.Dormant entities have no availablememory and do not enable locally con-
trolled actions.2 In Definition 2, we formalize the idea of an entity A being active
during a particular time interval. Then we introduce sequentiality in Definition 3.

Definition 2. Let A be a task-PIOA and let reals t1 ≤ t2 be given. We say that
A is restricted to the interval [t1, t2] if for every t /∈ [t1, t2], environment Env
for A of the form Env′‖Clock, valid schedule τ for A‖Env for [0, t], and state
s reachable under τ , no locally controlled actions of A are enabled in s, and
s.v = ⊥ for every variable v of A.

Definition 3 (Sequentiality). Let A1,A2, . . . be pairwise compatible task-
PIOAs. We say that A1,A2, . . . are sequential with respect to the the nonde-
creasing sequence t1, t2, . . . of nonnegative reals provided that for every i, Ai is
restricted to [ti, ti+1].

Note the slight technicality that each Ai may overlap with Ai+1 at the boundary
time ti+1.

Theorem 3 (Sequential Composition Theorem for≤neg,pt). Let Ā1
1, Ā1

2, . . .
and Ā2

1, Ā2
2, . . . be two infinite sequences of task-PIOA families, with Ā1

i compara-
ble to Ā2

i for every i. Suppose that Āα1
1 , Āα2

2 , . . . are pairwise compatible for any
combination of αi ∈ {1, 2}. Let L : N → N be an exponential function and, for
each k, let (Â1)k and (Â2)k denote ‖L(k)

i=1 (Ā1
i )k and ‖L(k)

i=1 (Ā2
i )k, respectively. Let p̂

be a polynomial such that both Â1 and Â2 are p̂-bounded.
Suppose there exists an increasing sequence of nonnegative reals t1, t2, . . . such

that, for each k, both (Ā1
1)k, . . . , (Ā1

L(k))k and (Ā2
1)k, . . . , (Ā2

L(k))k are sequential
for t1, t2, . . . Assume there is a constant real number c such that consecutive ti’s
are at least c apart.

For each i, let F̄ 1
i be a family of sets such that (F̄ 1

i )k is a set of tasks of (Ā1
i )k

for every k and let F̄ 2
i be a family of sets such that (F̄ 2

i )k is a set of tasks of
(Ā2

i )k for every k, where all these tasks have infinite upper bounds. Let (F̂ 1)k

and (F̂ 2)k denote
⋃L(k)

i=1 (F̄ 1
i )k and

⋃L(k)
i=1 (F̄ 2

i )k, respectively.
Assume:

∀p, q ∃ε ∀i (Ā1
i , F̄

1
i ) ≤p,q,ε (Ā2

i , F̄
2
i ), (2)

where p, q are polynomials and ε is a negligible function.
Then (Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2).

This sequential composition theorem can be easily extended to the case where
a bounded number of components of the system are active concurrently [19].

Application to Digital Timestamping: In this section, we present a formal
model of the digital timestamping protocol of Haber et al. (cf. Section 1). Recall
2 For technical reasons, dormant entitiesmust synchronize on input actions. Some inputs

cause dormant entities to become active, while all others are trivial loops on the null
state.
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the real and ideal signature services from Sections 4 and 5. The timestamping
protocol consists of a dispatcher component and a collection of real signature
services. Similarly, the ideal protocol consists of the same dispatcher with a
collection of ideal signature services. Using the sequential composition theorem
(Thm. 3) and its extension to a bounded number of concurrent components, we
prove that the real protocol implements the ideal protocol with respect to the
long-term implementation relation ≤neg,pt. This result implies that, no matter
what security failures (forgeries, guessed keys, etc.) occur up to any particular
time t, new certifications and verifications performed by services that awaken
after time t will still be correct (with high probability) for a polynomial-length
interval of time after t.

Note that this result does not imply that any particular document is reliably
certified for super-polynomial time. In fact, Haber’s protocol does not guarantee
this: even if a document certificate is refreshed frequently by new services, there
is at any time a small probability that the environment guesses the current
certificate, thus creating a forgery. That probability, over super-polynomial time,
becomes large. Once the environment guesses a current certificate, it can continue
to refresh the certificate forever, thus maintaining the forgery.

Dispatcher: We define Dispatcherk for each security parameter k and set SID ,
the domain of service names, to be N. If the environment sends a first-time
certificate request, Dispatcherk requests a signature from signature service j,
where j is the service active at the time where this request is transmitted. After
service j returns the new certificate, Dispatcherk transmits it to the environment.

If a renew request for a certificate issued by the j-th signing service comes
in, Dispatcherk first checks to see if service j is still usable. If not, it sends a
notification to the environment. Otherwise, it asks the j-th signature verification
service to check the validity of the certificate. If service j answers affirmatively,
Dispatcherk sends a signature request to the j′-th signature service, active at the
time of this request. When service j′ returns, Dispatcherk issues a new certificate
to the environment.

Assume the following concrete time scheme. Let d be a positive natural num-
ber. Each service j is in alive(t) for t = (j − 1)d, . . . , (j + 2)d − 1, so j is alive
in the real time interval [(j − 1)d, (j + 2)d]. Thus, at any real time t, at most
three services are concurrently alive; more precisely, t lies in the interior of the
intervals for at most three services. Besides, signature service j accepts signature
requests for t = (j − 1)d, . . . , jd− 1.

Protocol Correctness: For every security parameter k, let SIDk ⊆ SID denote
the set of p(k)-bit numbers, for some polynomial p. Recall from Section 5 that
RealSig(j)k = hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj) and
IdealSig(j)k = hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj). Here we define Realk =
‖j∈SIDk

RealSig(j)k, Idealk = ‖j∈SIDk
IdealSig(j)k, and RealSigSysk :=

Dispatcherk‖Realk, IdealSigSysk := Dispatcherk‖Idealk. Eventually, define
Real := {Realk}k∈N, Ideal := {Idealk}k∈N, RealSigSys := {RealSigSysk}k∈N and
IdealSigSys := {IdealSigSysk}k∈N. We show the following theorem.
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Theorem 4. Assume the concrete time scheme described above and assume
that every signature scheme used in the timestamping protocol is complete and ex-
istentially unforgeable. Then (RealSigSys, ∅) ≤neg,pt (IdealSigSys, F̄ ), where F̄k :=⋃

j∈SIDk
{{failj}} for every k.

In order to prove this theorem, we first observe that certain components of the
real and ideal systems are restricted to certain time intervals, in the sense of Def-
inition 2: at most three RealSig(i)k and IdealSig(i)k services are alive at the same
time. Then, we observe that the task-PIOA families Realand Ideal are polynomially
bounded and apply the extension of our sequential composition theorem (Thm. 3)
for bounded concurrency to show that (Real, ∅) ≤neg,pt (Ideal, F̄ ). Eventually, us-
ing our parallel composition theorem (Thm. 2) with the Dispatcher automaton, we
obtain the relation (RealSigSys, ∅) ≤neg,pt (IdealSigSys, F̄ ), as needed.

7 Conclusion

We have introduced a new model for long-lived security protocols, based on task-
PIOAs augmented with real-time task schedules. We express computational re-
strictions in terms of processing rates with respect to real time. The heart of our
model is a long-term implementation relation,≤neg,pt, which expresses security in
anypolynomial-length interval of time, despite of prior security violations.Wehave
proved polynomial parallel composition and exponential sequential composition
theorems for≤neg,pt. Finally, we have applied the new theory to show security prop-
erties for a long-lived timestamping protocol.

This work suggests several directions for future work. First, for our particular
timestamping case study, it remains to carry out the details of defining a higher-
level abstract functionality specification for a long-lived timestamp service, and to
use≤neg,pt to show that our ideal system, and hence, the real protocol, implements
that specification.

We would also like to know whether or not it is possible to achieve stronger prop-
erties for long-lived timestamp services, such as reliably certifying a document for
super-polynomial time.

It remains to use these definitions to study additional long-lived protocols and
their security properties. The use of real time in the model should enable quantita-
tive analysis of the rate of security degradation. Finally, it would be interesting to
generalize the framework to allow the computational power of the various system
components to increase with time.

References

1. Goldwasser, S., Micali, S., Rackoff,C.: The knowledge complexity of interactive proof
systems. In: Proceedings of the 17th Annual ACM Symposium on Theory of Com-
puting (STOC 1985), pp. 291–304 (1985)

2. Pfitzmann,B.,Waidner,M.:Amodel for asynchronous reactive systems and its appli-
cation to secure message transmission. In: IEEESymposium on Security and Privacy,
Oakland, CA, pp. 184–200. IEEE Computer Society, Los Alamitos (2001)



130 R. Canetti et al.

3. Canetti, R.: Universally composable security:Anew paradigm for cryptographic pro-
tocols. In:Naor,M. (ed.)Proceedings of the 42ndAnnual SymposiumonFoundations
of Computer Science, pp. 136–145. IEEE Computer Society, Los Alamitos (2001)

4. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Univer-
sity Press, Cambridge (2001) (reprint of 2003)

5. Canetti, R., Cheung, L., Kaynar, D., Liskov, M., Lynch, N., Pereira, O., Segala, R.:
Analyzing security protocols using time-bounded Task-PIOAs. Discrete Event Dy-
namic Systems 18(1), 111–159 (2008)

6. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proceedings
of 10th annual ACM Symposium on Principles of Distributed Computing (PODC
1991), pp. 51–59 (1991)

7. Anderson, R.: Two remarks on public key cryptology. Technical Report UCAM-CL-
TR-549. University of Cambridge (2002)

8. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)

9. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In:
Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Hei-
delberg (2003)

10. Bayer, D., Haber, S., Stornetta, S.W.: Improving the efficiency and reliability of dig-
ital time-stamping. In: Capocalli, R.M., Santis, A.D., Vaccaro, U. (eds.) Sequences
II: Methods in Communication, Security, and Computer Science (Proceedings of the
Sequences Workshop, 1991), pp. 329–334. Springer, Heidelberg (1993)

11. Haber, S.: Long-lived digital integrity using short-lived hash functions. Technical re-
port, HP Laboratories (2006)

12. Haber, S., Kamat, P.: A content integrity service for long-term digital archives. In:
Proceedings of the IS&T Archiving Conference (2006); Also published as Technical
Memo HPL-2006-54, Trusted Systems Laboratory, HP Laboratories, Princeton

13. Mitchell, J., Ramanathan, A., Scedrov, A., Teague, V.: A probabilistic polynomial-
time process calculus for the analysis of cryptographic protocols. Theoretical Com-
puter Science 353, 118–164 (2006)

14. Backes, M., Pfitzmann, B., Waidner, M.: Secure asynchronous reactive systems.
Cryptology ePrint Archive, Report 2004/082 (2004), http://eprint.iacr.org/

15. Müller-Quade, J., Unruh, D.: Long-term security and universal composability. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 41–60. Springer, Heidelberg
(2007)

16. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing 2(2), 250–273 (1995)

17. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Quar-
terly 2(3), 219–246 (1989)

18. Merritt, M., Modugno, F., Tuttle, M.R.: Time constrained automata. In: Groote,
J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 408–423. Springer,
Heidelberg (1991)

19. Canetti, R., Cheung, L., Kaynar, D., Lynch, N., Pereira, O.: Modeling bounded com-
putation in long-lived systems. Cryptology ePrint Archive, Report 2007/406 (2007),
http://eprint.iacr.org/

20. Canetti, R., Cheung, L., Kaynar, D., Lynch, N., Pereira, O.: Compositional security
for Task-PIOAs. In: Sabelfeld, A. (ed.) 20th IEEE Computer Security Foundations
Symposium, pp. 125–139. IEEE Computer Society Press, Los Alamitos (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/


Contract-Directed Synthesis of Simple Orchestrators

Luca Padovani

Information Science and Technology Institute, University of Urbino
padovani@sti.uniurb.it

Abstract. The availability of repositories of Web service descriptions enables
interesting forms of dynamic Web service discovery, such as searching for Web
services exposing a specified behavior – or contract. This calls for a formal notion
of contract equivalence satisfying two contrasting goals: being as coarse as pos-
sible so as to favor Web services reuse, and guaranteeing smooth client/service
interaction. We study an equivalence relation under the assumption that interac-
tions are controlled by orchestrators. We build a simple orchestration language
on top of this theory and we show how to synthesize orchestrators out of Web
services contracts.

1 Introduction

Web services are distributed processes equipped with a public description of their in-
terface. Such description typically includes the type of messages exchanged with the
service, the operations provided by the service [8], and also the behavior – or contract
– supported by the service [1, 2]. The description is made public by registering the ser-
vice in one or more Web service repositories [3, 10, 25] that can be queried and searched
for finding services providing a particular contract. This calls for a formalization of the
contract language and particularly of a subcontract relation, which is determined by
comparing the sets of clients satisfied by different services.

In this work we express contracts using a fragment of CCS [12] with two choice
operators (+ for external choice and ⊕ for internal choice) without relabeling, restric-
tion, and parallel composition. For instance, the contract σ = a.c.(b⊕ d) describes a
service that accepts two messages a and c (in this order) and then decides internally
whether to send back either b or d. The contract ρ = a.c.(b.e+ d.e) describes a client
that sends two messages a and c (in this order), then waits for either the message b or
the message d, and finally terminates (e denotes successful termination). The compli-
ance relation ρ ( σ tells us that the client ρ is satisfied by the service σ , because every
possible interaction between ρ and σ leads to the client terminating successfully. This
is not true for ρ and σ ′ = a.c.(b⊕ c), because the service with contract σ ′ may inter-
nally decide to send a message c that the client is not willing to accept, hence ρ �( σ ′.
The subcontract relation σ ! τ , where τ = a.c.b, tells us that every client satisfied by σ
(including ρ) is also satisfied by τ . This is because τ is more deterministic than σ .

Formal notions of compliance and subcontract relation may be used for implement-
ing contract-based query engines. The query for services that satisfy ρ is answered with
the set {σ | ρ ( σ}. The complexity of running this query grows with the number of
services stored in the repository. A better strategy is to compute the dual contract of ρ ,

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 131–146, 2008.
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denoted by ρ⊥, which represents the canonical service satisfying ρ (ρ ( ρ⊥) and then
answering the query with the set {σ | ρ⊥ ! σ}. If ρ⊥ is the !-smallest service that sat-
isfies ρ , we are guaranteed that no service is mistakenly excluded. The advantage of this
approach is that ! can be precomputed when services are registered in the repository,
and the query engine needs only scan through the !-minimal contracts.

When looking for a suitable theory defining ( and!, the testing framework [11, 16]
and the must preorder seem particularly appealing: clients are tests, compliance encodes
the passing of a test, and the subcontract relation is the liveness-preserving preorder
induced by the compliance relation. Unfortunately, the must preorder excludes many
relations that are desirable in the context of Web services. For example, a service with
contract a+b cannot replace a service with contract a, despite the fact that a+b offers
more options a. The reason is that the client ρ ′ = a.e+ b.c.e complies with a simply
because no interaction on b is possible, whereas it can get stuck when interacting with
a + b because such service does not offer c after b. As another example, the client
ρ ′′ = c.a.(b.e+ d.e) fails to interact successfully with σ above because it sends the
messages a and c in the wrong order.

In this work we deviate from the classical testing framework by making client and
service interact under the supervision of an orchestrator. In the Web services domain,
an orchestrator coordinates in a centralized way two (or more) interacting parties so as
to achieve a specific goal, in our case to guarantee client satisfaction. The orchestrator
cannot affect the internal decisions of client and service, but it can affect the way they
try to synchronize with each other. In our framework an orchestrator is a bounded,
directional, controlled buffer: the buffer is bounded in that it can store a finite amount
of messages; the buffer is directional in that it distinguishes messages sent to the client
from messages sent to the service; the buffer is controlled by orchestration actions:

– An asynchronous action 〈a,ε〉 indicates that the orchestrator accepts a message a
from the client, without delivering it to the service; dually, 〈a,ε〉 indicates that the
orchestrator sends a message a (previously received from the service) to the client;

– an action of the form 〈ε,α〉 indicates a similar capability on the service side;
– a synchronous action 〈a,a〉 indicates that the orchestrator accepts a message a from

the client, provided that the service can receive a; dually for 〈a,a〉.
The orchestrator f = 〈a,a〉 makes the client ρ ′ above compliant with a + b, because

it forbids any interaction on b; the orchestrator g = 〈c,ε〉.〈a,ε〉.〈ε,a〉.〈ε,c〉.(〈b,b〉+
〈d,d〉) makes the client ρ ′′ above compliant with σ , because the orchestrator accepts
c followed by a from the client, and then delivers them in the order expected by the
service. Orchestrators can be interpreted as morphisms transforming service contracts:
the relation f : a ! a + b states that every client satisfied by a is also satisfied by a + b
by means of the orchestrator f ; the relation g : c.a.(b⊕ d) ! a.c.(b⊕ d) states that
every client that sends c before a and then waits for either b or d can also be satis-
fied by a.c.(b⊕d), provided that g orchestrates its interaction with the service. On the
other hand, no orchestrator is able to make ρ interact successfully with σ ′, because the
internal decisions taken by σ ′ cannot be controlled.

Structure of the paper. In §2 we define contracts and we recast the standard testing
framework in our setting. In §3 we define compliance and subcontract relations for
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orchestrated processes. From such definitions we design a simple orchestration lan-
guage and prove its main properties. §4 shows how to compute the dual contract and §5
presents an algorithm for synthesizing orchestrators by comparing service contracts. In
§6 we show the algorithm at work on two less trivial examples. We conclude in §7 with
a discussion of the main achievements of this work and possible directions for future
research. Proofs can be found in the full version [23].

Related work. This work originated by revisiting CCS without τ’s [12] in the context of
Web services. Early attempts to define a reasonable subcontract relation [5] have even-
tually led to the conclusion that some control over actions is necessary: [21] proposes a
static form of control that makes use of explicit contract interfaces; [6] proposes a dy-
namic form of action filtering. The present work elaborates on the idea of [6] by adding
asynchrony and buffering: this apparently simple addition significantly increases the
technicalities of the resulting theory. The subcontract relation presented in this work,
because of its liveness-preserving property, has connections with and extends the sub-
typing relation on session types [15, 17] and stuck-free conformance relation [14].

WS-BPEL [1] is often presented as an orchestration language for Web services. Re-
markably WS-BPEL features boil down to storing incoming messages into variables
(buffering) and controlling the interactions of other parties. Our orchestrators can be
seen as streamlined WS-BPEL orchestrators in which all the internal nondeterminism of
the orchestrator itself is abstracted away. ORC [22] is perhaps the most notable example
of orchestration-oriented, algebraic language. The peculiar operators * and where of
ORC represent different forms of pipelining and can be seen as orchestration actions in
conjunction with the composition operator · of orchestrators (§3).

In software architectures there has been extensive research on the automatic synthe-
sis of connectors for software components (see for example [18]) and attempts have
been made to apply the resulting approaches to Web services [19]. In these works the
problem is to connect a set of tightly coupled components so as to guarantee some
safety properties among which deadlock freeness. Unlike Web services, where commu-
nication is peer-to-peer, architectural topologies can be arbitrarily complex. This leads
to the generation of connectors that only work for specific architectural configurations.
In our approach orchestrators are “proofs” (in the Curry-Howard sense) for ! whose
transitivity stems directly from the ability of composing orchestrators incrementally.

2 Contracts

The syntax of contracts makes use of a denumerable set N of names ranged over by
a,b, . . . and of a denumerable set of variables ranged over by x,y, . . . ; we write N for
the set of co-names a, where a ∈N . Names represent input actions, while co-names
represent output actions; we let α,β , . . . range over actions; we let ϕ ,ϕ ′, . . . range over
sequences of actions; we let R,S, . . . range over finite sets of actions; we let α = α and
R = {α | α ∈ R}. The meaning of names is left unspecified: they can stand for ports,
operations, message types, and so forth. Contracts are ranged over by ρ ,σ ,τ, . . . and
their syntax is given by the following grammar:

σ ::= 0 | α.σ | σ + σ | σ ⊕σ | rec x.σ | x
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The notions of free and bound variables in contracts are standard, being rec x the
only binder. In the following we write σ{τ/x} for the contract σ ′ that is the same as σ
except that every free occurrence of x has been replaced by τ . We assume variables to
be guarded: every free occurrence of x in a term rec x.σ must be found in a subterm
of σ having the form α.σ ′. The null contract 0 describes the idle process that offers no
action (we will omit trailing 0’s); the contract α.σ describes a process that offers the
action α and then behaves as σ ; the contract σ + τ is the external choice of σ and τ
and describes a process that can either behave as σ or as τ depending on the party it
is interacting with; the contract σ ⊕ τ is the internal choice of σ and τ and describes
a process that autonomously decides to behave as either σ or τ; the contract rec x.σ
describes a process that behaves as σ{rec x.σ/x}.

The transition relation of contracts is inductively defined by the following rules (sym-
metric rules for + and ⊕ are omitted):

α.σ α−→ σ σ ⊕ τ −→ σ rec x.σ −→ σ{rec x.σ/x}

σ −→ σ ′

σ + τ −→ σ ′+ τ
σ α−→ σ ′

σ + τ α−→ σ ′

The relation −→ denotes internal transitions, while
α−→ denotes external transitions

labeled with an action α . Overall the transition relation is the same as that of CCS

without τ’s [12]. In particular, the fact that + stands for an external choice is clear from
the fourth rule, where the internal transition σ −→ σ ′ does not preempt the τ branch.
The guardedness assumption we made earlier ensures that the number of consecutive
internal transitions in any derivation of a contract is finite (strong convergence). We
write =⇒ for the reflexive, transitive closure of −→; let

α=⇒ be =⇒ α−→=⇒; we write

σ α−→ if there exists σ ′ such that σ α−→ σ ′, and similarly for σ α=⇒; let init(σ) def=
{α | σ α=⇒}.

The transition relation above describes the transitions of a contract from the point of
view of the process exposing the contract. The notion of contract continuation, which
we are to define next, considers the point of view of the process it is interacting with.

Definition 1 (contract continuation). Let σ α=⇒. The continuation of σ with respect

to α , notation σ(α), is defined as σ(α) def=
⊕

σ=⇒ α−→σ ′ σ
′. We generalize the notion of

continuation to finite sequences of actions so that σ(ε) = σ and σ(αϕ) = σ(α)(ϕ).

For example, a.b⊕ a.c
a=⇒ b (the process knows which branch has been taken) but

(a.b⊕a.c)(a) = b⊕c (the party interacting with a.b⊕a.c does not know which branch
has been taken after seeing an a action, hence it considers both). Because of the guard-
edness condition there is a finite number of residuals σ ′ such that σ =⇒ α−→ σ ′, hence
σ(α) is well defined. Moreover, the set D(σ) = {σ(ϕ) | σ ϕ

=⇒} is always finite
(see [23]). This is a consequence of the fact that our contracts are finite representa-
tions of regular trees, which have a finite number of different subtrees. We will exploit
this property throughout the paper for defining functions over contracts by induction on
the set D(σ) above.
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The ready sets of a contract tell us about its internal nondeterminism. We say that σ
has ready set R, written σ ⇓ R, if σ =⇒ σ ′ and R = init(σ ′). Intuitively, σ ⇓ R means
that σ can independently evolve, by means of internal transitions, to another contract σ ′

which only offers the actions in R. For example, {a,b} is the only ready set of a + b
(both a and b are always available), whereas the ready sets of a⊕ b are {a}, {b}, and
{a,b} (the contract a⊕b may evolve into a state where only a is available, or only b is
available, or both a and b are available).

As in the classical testing framework we model client satisfaction by means of a spe-
cial action e. A client contract ρ is compliant with a service contract σ if every maximal,
finite interaction of ρ and σ leads to a residual client contract ρ ′ such that ρ ′ e−→. Here
we provide an equivalent coinductive definition which relates more directly with its
weak variant in §3.

Definition 2 (strong compliance). We say that C is a strong compliance relation if
(ρ ,σ) ∈ C implies that

1. ρ ⇓ R and σ ⇓ S implies either e ∈ R or R∩ S �= /0, and

2. ρ α=⇒ and σ α=⇒ implies (ρ(α),σ(α)) ∈ C .

We write ( for the largest strong compliance relation.

Condition (1) requires that for every combination of states R and S of the client and
of the service, either the client has terminated successfully (e ∈ R) or the client and
the service can synchronize (there is an action α ∈ S such that α ∈ R). For instance
a + b ( a⊕ b and a⊕ b ( a + b, but a⊕ b �( a⊕ b. Condition (2) ensures that every
synchronization produces a residual client that is compliant with the residual service.
For instance a.(b⊕ d) �( a.b + a.d because after the synchronization on a this reduces
to b⊕d �( b⊕d.

The (strong) compliance relation provides us with the most natural equivalence for
comparing services: the (service) contract σ is “smaller than” the (service) contract τ if
every client that is compliant with σ is also compliant with τ .

Definition 3 (strong subcontract). We say that σ is a strong subcontract of τ , notation
σ � τ , if for every ρ we have ρ ( σ implies ρ ( τ . We write , for the equivalence
relation induced by �, that is ,=�∩-.

For instance, we have a⊕ b� a because every client that is satisfied to interact with a
service that may decide to offer either a or b is also satisfied by a service that system-
atically offers a. On the other hand a.(b+ c) �� a.b+a.c because after interacting on a,
a client of a.(b + c) can decide whether to interact on b or on c, whereas in a.b + a.c
only one of these actions is available, according to the branch taken by the service. In
general the set-theoretic definition of the preorder above is rather difficult to work with
directly, and an alternative characterization such as the following is preferred.

Definition 4 (coinductive strong subcontract). We say that S is a coinductive strong
subcontract relation if (σ ,τ) ∈S implies

1. τ ⇓ S implies σ ⇓ R and R ⊆ S for some R, and
2. τ α=⇒ implies σ α=⇒ and (σ(α),τ(α)) ∈S .
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Condition (1) requires τ to be more deterministic than σ (every ready set of τ has a
corresponding one of σ that offers fewer actions). Condition (2) requires τ to offer no
more actions than those offered by σ , and every continuation after an action offered by
both σ and τ to be in the subcontract relation. We conclude this section with the most
important properties enjoyed by �.

Proposition 1. The following properties hold:

1. � is the largest coinductive subcontract relation;
2. � coincides with the must preorder [11, 12, 16] for strongly convergent processes;
3. � is a precongruence with respect to all the operators of the contract language.

Property (1) states the correctness of Definition 4 as an alternative characterization for
�. Property (2) connects � with the well-known must testing preorder. This result is
not entirely obvious because the notion of “passing a test” we use differs from that
used in the standard testing framework (see [21] for more details). Finally, property (3)
states that � is well behaved and that it can be used for modular refinement. The weak
variant of the subcontract relation that we will define in §3 does not enjoy this property
in general, but not without reason as we will see.

3 Simple Orchestrators

The strong compliance relation requires that progress must always be guaranteed for
both client and service unless the client is satisfied. We relax this requirement and as-
sume that an orchestrator mediates the interaction of a client and a service by ensuring
that progress is guaranteed for at least one of the parties. The orchestrator must be fair,
in the sense that client and service must have equal opportunities to make progress.

Weak compliance and subcontract relations. Orchestrators perform actions having one
of the following forms: the action 〈α,ε〉 means that the orchestrator offers α to the
client; the action 〈ε,α〉 means that the orchestrator offers α to the service; the action
〈α,α〉 means that the orchestrator simultaneously offers α to the client and α to the
service; we let μ ,μ ′, . . . range over orchestration actions and A,A′, . . . range over sets
of orchestrator actions. A buffer is a map {◦,•}×N → Z associating pairs (r,a) with
the number of a messages stored in the buffer and available for delivery to the role r,
where r can be ◦ for “client” or • for “service”; we let B,B′, . . . range over buffers. For
technical reasons we allow cod(B) – the codomain of B – to range over Z, although
every well-formed buffer will always contain a nonnegative number of messages. We
write /̃0 for the empty buffer, the one having {0} as codomain; we write B[(r,a) �→ n]
for the buffer B′ which is the same as B except that (r,a) is associated with n; we write
Bμ for the buffer B updated after the action μ :

B〈a,ε〉 = B[(•,a) �→ B(•,a)+ 1] (accept a from the client)
B〈a,ε〉 = B[(◦,a) �→ B(◦,a)−1] (send a to the client)
B〈ε,a〉 = B[(◦,a) �→ B(◦,a)+ 1] (accept a from the service)
B〈ε,a〉 = B[(•,a) �→ B(•,a)−1] (send a to the service)

B〈α,α〉 = B (synchronize client and service)
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We say that B has rank k, or is a k-buffer, if cod(B)⊆ [0,k]; we say that the k-buffer
B enables the orchestration action μ , notation B �k μ , if Bμ is still a k-buffer. For
instance /̃0 �1 〈a,ε〉 but /̃0 �k 〈a,ε〉 because −1 ∈ cod( /̃0〈a,ε〉). We extend the notion to
sets of actions so that B �k A if B enables every action in A. Synchronization actions are
enabled regardless of the rank of the buffer, because they leave the buffer unchanged.

When an orchestrator mediates the interaction between a client and a service, it pro-
poses at each interaction step a set of orchestration actions A. If R is a client ready set
and S is a service ready set, then A ◦ S denotes the service ready set perceived by the
client and R • A denotes the client ready set perceived by the service:

A ◦ S
def= {α | 〈α,ε〉 ∈ A}∪{α ∈ S | 〈α,α〉 ∈ A}

R • A
def= {α | 〈ε,α〉 ∈ A}∪{α ∈ R | 〈α,α〉 ∈ A}

Namely, the client sees an action α if either that action is provided asynchronously
by the orchestrator (〈α,ε〉 ∈ A), or if it is provided by the service (α ∈ S) and the
orchestrator does not hide it (〈α,α〉 ∈ A); symmetrically for service. We now possess
all the technical notions for defining the compliance relation with orchestrators.

Definition 5 (weak compliance). We say that Dk is a coinductive weak k-compliance
relation if (B,ρ ,σ) ∈Dk implies that B is a k-buffer and there exists a set of orchestra-
tion actions A such that B �k A and

1. ρ ⇓ R and σ ⇓ S implies either e ∈ R or R∩ (A ◦ S) �= /0 or (R • A)∩ S �= /0, and

2. ρ ϕ
=⇒ and σ ϕ ′

=⇒ and 〈ϕ ,ϕ ′〉 ∈ A implies (B〈ϕ ,ϕ ′〉,ρ(ϕ),σ(ϕ ′)) ∈Dk.

We write ρ ( �k σ if there exists Dk such that ( /̃0,ρ ,σ) ∈Dk.

While commenting on the definition of weak compliance, it is useful to compare it with
Definition 2. A tuple (B,ρ ,σ) represents the state of the system, which comprises the
client ρ , the service σ , and the buffer B. The definition requires the existence of a set A

of orchestration actions compatible with the state of the buffer (B �k A) so that: (1) for
every combination of client states R and service states S, either the client is satisfied
(e ∈ R) or progress is guaranteed for the client (R∩ (A ◦ S) �= /0) or it is guaranteed for
the service ((R • A)∩ S �= /0); (2) whatever action is executed, the state of the system
after the action is still in the compliance relation. For example, if ρ a=⇒ and 〈a,ε〉 ∈ A,
then (B〈a,ε〉,ρ(a),σ) must be in the compliance relation.

Directionality of the buffer is necessary for preserving the correct flow of messages
between client and service and also for fairness: it prevents the orchestrator from sat-
isfying one of the parties by sending back its own messages. The index k prevents the
orchestrator from accepting an unlimited number of messages from just one of the par-
ties, letting the other one starve for an interaction.

Weak compliance induces the weak subcontract relation as follows:

Definition 6 (weak subcontract). We say that σ is a weak subcontract of τ , notation
σ ! τ , if there exists k such that ρ ( σ implies ρ ( �k τ for every ρ .

Namely, when σ ! τ a service with contract τ can replace a service with contract σ
because every client satisfied by σ (ρ ( σ ) can also be satisfied by τ (ρ ( �k τ) by means
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of some orchestrator. The weak subcontract includes the strong one: when proving ρ ( �k
τ just consider the set A = {〈α,α〉 | τ α=⇒}. On the other hand, we have a ! a + b (by
filtering b out), a.β .σ ! β .a.σ (by delaying a from the client until the service needs it),
and α.b.σ ! b.α.σ (by delaying b from the service until the client needs it).

As usual the set-theoretic definition of subcontract relation is not particularly en-
lightening, hence the following alternative characterization.

Definition 7 (coinductive weak subcontract). We say that Wk is a coinductive weak
k-subcontract relation if (B,σ ,τ) ∈Wk implies that B is a k-buffer and there exists a set
of orchestration actions A such that B �k A and

1. τ ⇓ S implies either (σ ⇓ R and R ⊆ A ◦ S for some R) or ( /0 • A)∩ S �= /0, and

2. τ ϕ ′
=⇒ and 〈ϕ ,ϕ ′〉 ∈ A implies σ ϕ

=⇒ and (B〈ϕ ,ϕ ′〉,σ(ϕ),τ(ϕ ′)) ∈Wk.

We write σ !c τ if there exists Wk such that ( /̃0,σ ,τ) ∈Wk.

Condition (1) requires that either τ can be made more deterministic than σ by means
of the orchestrator (the ready set A ◦ S of the orchestrated service has a corresponding
one of σ that offers fewer actions), or that τ can be satisfied by the orchestrator without
any help from the client (( /0 • A)∩ S �= /0 implies that 〈ε,α〉 ∈ A and α ∈ S for some
α). Condition (2) poses the usual requirement that the continuations must be in the
subcontract relation. The two definitions of weak subcontract are equivalent:

Theorem 1. !=!c.

Remark 1. Theorem 1 entails a nontrivial property of ! that makes ! suitable as a
subcontract relation: σ ! τ means that every client ρ satisfied by σ is weakly compliant
with τ by means of some orchestrator which, in principle, may depend on ρ . On the
other hand, σ !c τ means that there exists an orchestrator such that every client satisfied
by σ is weakly compliant with τ by means of that one orchestrator. In practical terms,
this allows us to precompute not only the subcontract relation! but also the orchestrator
that proves it, regardless of the client performing the query.

A simple orchestration language. The definition of weak compliance relation suggests
a representation of orchestrators as algebraic terms specifying sets of orchestration ac-
tions along with corresponding continuations. Following this intuition we propose a
language of simple orchestrators:

f ::= 0 | μ .σ | f + f | rec x. f | x

We let f ,g,h, . . . range over orchestrators. The orchestrator 0 offers no action (we
will omit trailing 0’s); the orchestrator μ . f offers the action μ and then continues as f ;
the orchestrator f +g offers the actions offered by either f or g; recursive orchestrators
can be expressed by means of rec x. f and recursion variables in the usual way. As
for contracts, we make the assumption that recursion variables must be guarded by at
least one orchestration action. Orchestrators do not exhibit internal nondeterminism.
This calls for a transition relation merely expressing which orchestration actions are
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available. To this aim, we first define a predicate f � μ�−→ meaning that f cannot perform
the orchestration action μ :

0 � μ�−→ μ �= μ ′

μ ′. f � μ�−→
f � μ�−→ g � μ�−→

f + g � μ�−→
f{rec x. f/x} � μ�−→
rec x. f � μ�−→

The transition relation of orchestrators is the least relation inductively defined by the
following rules (symmetric rule for + is omitted):

μ . f μ�−→ f
f

μ�−→ f ′ g
μ�−→ g′

f + g
μ�−→ f ′+ g′

f
μ�−→ f ′ g � μ�−→

f + g
μ�−→ f ′

f{rec x. f/x}
μ�−→ f ′

rec x. f
μ�−→ f ′

Note that f
μ�−→ f ′ and f

μ�−→ f ′′ implies f ′ = f ′′. We write f
μ�−→ if there exists f ′

such that f
μ�−→ f ′; we write f

μ1···μn�−−−−→ if f
μ1�−→ ·· · μn�−→. Let init( f ) def= {μ | f

μ�−→}. We

say that f is a valid orchestrator of rank k, or is a k-orchestrator, if f
μ1···μn�−−−−→ implies that

/̃0μ1 · · ·μn is a k-buffer. Not every term f denotes a valid orchestrator of finite rank. For
instance rec x.〈a,ε〉.x is invalid because it accepts an unbounded number of messages
from the client; 〈a,ε〉 is invalid because it tries to deliver a message that it has not
received; 〈ε,a〉.〈a,ε〉 is a valid orchestrator of rank 1 (or greater). In the following we
will always work with valid orchestrators of finite rank.

When an orchestrator f mediates an interaction, it is as if the service operates while
being filtered by f . The dual point of view, in which f filters the client, is legitimate, but
it does not allow us to study the theory of simple orchestrators in a client-independent
way, as by Remark 1. We extend syntax and semantics of contracts with terms of the
form f ·σ , representing the application of the orchestrator f to the contract σ :

σ −→ σ ′

f ·σ −→ f ·σ ′
f
〈ε,α〉�−−−→ f ′ σ α−→ σ ′

f ·σ −→ f ′ ·σ ′
f
〈α ,α〉�−−−→ f ′ σ α−→ σ ′

f ·σ α−→ f ′ ·σ ′
f
〈α ,ε〉�−−−→ f ′

f ·σ α−→ f ′ ·σ

In the first rule the service performs internal actions regardless of the orchestrator;
in the second and third rules the service interacts with the orchestrator, and possibly
with the client if the orchestrator allows it; in the last rule the orchestrator offers its
asynchronous actions to the client independently of the service.

The orchestration language we have just devised is correct and complete with respect
to the weak subcontract relation, in the following sense:

Theorem 2. σ ! τ if and only if σ � f ·τ for some k-orchestrator f .

Orchestrators as morphisms. According to Theorem 2, orchestrators act as functions
from contracts to contracts: if σ ! τ , then there is a function f mapping services with
contract τ into services with contract f ·τ such that σ � f ·τ . The function determined
by an orchestrator can be effectively computed as follows:

f (σ)def=
⊕

σ⇓R

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
f
〈α,ε〉�−→ f ′

α. f ′(σ)+∑
f
〈α,α〉�−→ f ′ ,α∈R

α. f ′(σ(α)) if ( /0 •init( f ))∩ R = /0
((

∑
f
〈α,ε〉�−→ f ′

α. f ′(σ)+ ∑
f
〈α,α〉�−→ f ′,α∈R

α. f ′(σ(α))
)
⊕0
)

+
⊕

f
〈ε,α〉�−→ f ′,α∈R

f ′(σ(α)) otherwise
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For example consider f
def= 〈a,ε〉.〈c,ε〉.(〈ε,a〉.〈b,b〉+ 〈ε,c〉.〈d,d〉). Then we have

f (a.b) = a.c.b; f (a.b+c.d) = a.c.(b⊕d); f (a.b⊕c.d) = a.c.(0⊕b⊕d). In general we
have 〈α,α〉. f (α.σ) = α. f (σ) and 〈α,ε〉. f (σ) = α. f (σ) and 〈ε,α〉. f (α.σ) = f (σ).
The next result proves that f (σ) is indeed the contract of the orchestrated service f ·σ :

Theorem 3. f (σ), f ·σ .

The morphism induced by an orchestrator f is monotone with respect to the strong
subcontract relation and is well behaved with respect to the choice operators.

Theorem 4. The following properties hold: (1) σ � τ implies f (σ)� f (τ); (2) f (σ)+
f (τ) � f (σ + τ); (3) f (σ)⊕ f (τ), f (σ ⊕ τ).

Observe that f (σ)+ f (τ), f (σ +τ) does not hold in general, because of the asynchro-

nous actions that f may offer to the client side. Consider for example f
def= 〈a,ε〉.(〈b,b〉+

〈d,d〉). Then f (b)+ f (d) = a.b+a.d, a.(b⊕d)� a.(b+d) = f (b+d) but f (b+d) ��
f (b)+ f (d). Nonetheless Theorem 4 allows us to prove an interesting property of !: if
σ � f ·σ ′ and τ � f ·τ ′, then σ +τ � f ·(σ ′+τ ′) and σ⊕τ � f ·(σ ′ ⊕τ ′). This means
that if σ ! σ ′ and τ ! τ ′ and the two relations are witnessed by the same orchestra-
tor, then σ + τ ! σ ′ + τ ′ and σ ⊕ τ ! σ ′ ⊕ τ ′. In other words, a sufficient condition
for being able to orchestrate σ ′+ τ ′ is that the orchestrator must be independent of the
branch (either σ ′ or τ ′) taken by the service, which is in fact the minimum require-
ment we could expect. In general however ! is not a precongruence: a ! a + b.c but
a + b.d �! a + b.c + b.d, a + b.(c⊕d).

Composition of orchestrators. Transitivity of ! is not granted by its definition, be-
cause σ ! τ means that every client that is strongly compliant with σ is also weakly
compliant with τ . So it is not clear whether σ ! τ and τ ! σ ′ implies σ ! σ ′. By
Theorem 2, we know that there exist f and g such that σ � f ·τ and τ � g ·σ ′. Further-
more, by Theorem 4(1) and transitivity of � we deduce that σ � f ·τ � f ·g ·σ ′. Thus
we can conclude σ ! σ ′ provided that for any two orchestrators f and g it is possible
to find an orchestrator f ·g such that f ·g ·σ ′ , ( f ·g) ·σ ′. Alternatively, by considering
orchestrators f and g as morphisms, we are asking whether their functional composi-
tion f ◦ g is still an orchestrator. This is not the case in general. To see why, consider

f
def= 〈a,ε〉.〈c,ε〉.(〈ε,a〉.〈b,b〉+ 〈ε,c〉.〈d,d〉) and g

def= 〈a,ε〉.〈b,b〉+ 〈c,ε〉.〈d,d〉 and

apply them to the contract σ def= b + d. We have f ·g ·σ , f (g(σ)) , f (a.b + c.d) ,
a.c.(b⊕d). The subsequent applications of g first and then f introduce some nondeter-
minism due to the uncertainty as to which synchronization (on a or on c) will happen.
This uncertainty yields the internal choice b⊕ d in the resulting contract. No single
orchestrator can turn b + d into a.c.(b⊕ d) for orchestrators do not manifest internal
nondeterminism. The problem could be addressed by adding internal nondeterminism
to the orchestration language, but this seems quite artificial and, as a matter of facts, is
unnecessary. If we just require that f ·g ·σ � ( f ·g) ·σ , then σ � ( f ·g) ·σ ′ follows by
transitivity of �. The orchestrator f ·g can be defined as

f ·g def= ∑
f
〈α,ε〉�−−−→ f ′

〈α,ε〉.( f ′ ·g)+ ∑
g
〈ε,α〉�−−−→g′

〈ε,α〉.( f ·g′)
+ ∑

f
〈ϕ,α〉�−−−→ f ′,g

〈α,ϕ′ 〉�−−−→g′,ϕϕ ′ �=ε
〈ϕ ,ϕ ′〉.( f ′ ·g′)+ ∑

f
〈ε,α〉�−−−→ f ′,g

〈α,ε〉�−−−→g′
( f ′ ·g′)
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The first two subterms in the definition of f ·g indicate that all the asynchronous
actions offered by f (respectively, g) to the client (respectively, service) are avail-
able. The third subterm turns synchronous actions into asynchronous ones: for exam-
ple, 〈α,α〉 ·〈α,ε〉 = 〈α,ε〉 and 〈ε,α〉 ·〈α,α〉 = 〈ε,α〉. The last subterm accounts for
the “synchronizations” occurring within the orchestrator, when f and g exchange a
message and the two actions annihilate each other. If we consider the orchestrators f
and g defined above, we obtain f ·g = 〈a,ε〉.〈c,ε〉.(〈b,b〉+ 〈d,d〉) and we observe
( f ·g)(b + d) = a.c.(b + d). The following result proves that f ·g is correct and, as a
corollary, that ! is a preorder:

Theorem 5. f ·g ·σ � ( f ·g) ·σ .

Against the objection that f ·g is “more powerful” than f ◦ g it is sufficient to observe
that if f and g are k-orchestrators, then f ·g is a 2k-orchestrator. Thus, f ·g is nothing
more than some proper combination of f and g, as expected.

4 Contract Duality with Orchestration

We tackle the problem of finding the dual contract ρ⊥ of a given client contract ρ .
Recall that ρ⊥ should be the smallest (according to!) contract such that ρ is compliant
with ρ⊥. Without loss of generality, we restrict the definition of the dual contract to
so-called canonical client contracts. A client contract is canonical if every derivation

leading to 0 emits e as its last visible action. Formally, ρ is canonical if ρ ϕ
=⇒ ρ ′ and

ρ ′ , 0 implies ϕ = ϕ ′e for some ϕ ′. This way we avoid client contracts such as a+b.e
which can fail if synchronizing on a. The subterm a indicates that the client is unable
of handling a, thus the occurrence of a in the contract is useless as far as querying is
concerned and it can be safely ignored.

Definition 8 (dual contract). Let ρ be a canonical client contract. The dual contract
of ρ , denoted by ρ⊥, is defined as:

ρ⊥ def= ∑ρ⇓R,e �∈R

⊕
α∈R α.ρ(α)⊥

The idea of the dual operator is to consider every state R of the client in which the client
cannot terminate successfully (e �∈ R). For every such state the service must provide
at least one way for the client to proceed, and the least service that guarantees this
is given by the internal choice of all the co-actions in R (note that R �= /0 because the
client is canonical). For example (a.e)⊥ = (a.e⊕e)⊥ = a (the service must provide a);
(a.e+e)⊥ = 0 (the service need not provide anything because the client can terminate
immediately); (a.e+ b.e)⊥ = a⊕b (the service can decide whether to provide a or b);
(rec x.a.x)⊥ , rec x.a.x (the service must provide an infinite sequence of a’s).

Theorem 6 (duality). Let ρ be a canonical client contract. Then (1) ρ ( ρ⊥ and (2)
ρ ( σ implies ρ⊥ ! σ .

The assumption of using orchestrators is essential as far as duality is concerned: (a.e+
e)⊥ = 0 but 0 is not the smallest (according to �) contract satisfying a.e+ e. For
example, 0⊕b� 0 and a.e+e ( 0⊕b. On the contrary, 0 is the least element of ! and
it can be used in place of any service contract that exposes an empty ready set.
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5 Synthesizing Orchestrators

In this section we devise an algorithm for computing the k-orchestrator witnessing σ !
τ , provided there is one. The algorithm is defined inductively by the following rules:

(A1)

A ⊆ {〈ϕ ,ϕ ′〉 | σ ϕ
=⇒,τ ϕ ′

=⇒,B �k 〈ϕ ,ϕ ′〉} x fresh
τ ⇓ S ⇒ (∃R : σ ⇓ R∧ R ⊆ A ◦ S)∨ ( /0 • A)∩ S �= /0

Γ∪{(B,σ ,τ) �→ x},B〈ϕ ,ϕ ′〉 �k f〈ϕ,ϕ ′〉 : σ(ϕ)!a τ(ϕ ′) ∀〈ϕ,ϕ
′〉∈A

Γ,B �k rec x.∑μ∈A μ . fμ : σ !a τ

(A2)
Γ(B,σ ,τ) = x

Γ,B �k x : σ !a τ

A judgment of the form Γ,B �k f : σ !a τ means that f is a k-orchestrator proving
that σ ! τ when the buffer of the orchestrator is in state B. The context Γ memoizes
triples (B,σ ,τ) so as to guarantee termination (see Proposition 1 below). The k-buffer B
keeps track of the past history of the orchestrator (which messages the orchestrator has
accepted and not yet delivered). We write f : σ !a

k τ if /0, /̃0 �k f : σ !a τ .
Although rule (A1) looks formidable, it is a straightforward adaptation of the con-

ditions in Definition 4. Recall that the purpose of the algorithm is to find whether there
exists an orchestrator f such that every client strongly compliant with σ is weakly
compliant with τ when this service is orchestrated by f . Since B is a k-buffer, there is a
finite number of useful asynchronous orchestration actions that can be enabled: an ac-
tion 〈a,ε〉 is enabled only if B(◦,a)> 0; an action 〈a,ε〉 is enabled only if the buffer has
not reached its capacity, namely if B(•,a)< k; symmetrically for asynchronous service
actions. Also, it is pointless to consider any orchestration action that would not cause

any synchronization to occur. Hence, the set {〈ϕ ,ϕ ′〉 | σ ϕ
=⇒,τ ϕ ′

=⇒,B �k 〈ϕ ,ϕ ′〉} of
useful, enabled orchestration actions in the first premise of the rule is finite. Of all of
such actions, the algorithm considers only those in some subset A such that the exe-
cution of any orchestration action in A does not lead to a deadlock later on during the
interaction. This is guaranteed if for every 〈ϕ ,ϕ ′〉 ∈ A we are able to find an orches-
trator fμ that proves τ(ϕ ′) ! σ(ϕ) (fourth premise of the rule). When checking the
continuations, the context Γ is augmented associating the triple (B,σ ,τ) with a fresh
orchestrator variable x, and the buffer is updated to account for the orchestration action
just occurred. If the set A is large enough so that τ can be made to look like a more
deterministic version of σ (third premise of the rule), then σ and τ can be related. The
orchestrator computed in the conclusion of rule (A1) offers the union of all the useful,
enabled orchestration actions μ , each one followed by the corresponding fμ continua-
tion. Rule (A2) is used when the algorithm needs to check whether there exists f such
that Γ,B �k f : σ !a τ and (B,σ ,τ) ∈ dom(Γ). In this case Γ(B,σ ,τ) is a variable that
represents the orchestrator that the algorithm has already determined for proving σ ! τ .

Theorem 7. The following properties hold:

1. (termination) it is decidable to check whether there exists f such that f : σ !a
k τ;

2. (correctness) f : σ !a
k τ implies that f has rank k and σ � f ·τ;

3. (completeness) σ ! τ implies f : σ !a
k τ for some k and some f of rank k.
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6 An Example: Orchestrated Dining Philosophers

Consider a variant of the problem of the dining philosophers in which a service provider
hires two philosophers for providing philosophical thoughts to the clients of the service.
Each philosopher is modeled by the following contract:

Pi
def= rec x.forki.forki.thought.fork.fork.x

where the forki actions model the philosopher’s request of two forks, thought mod-
els the production of a thought, and the fork actions notify the client that the forks are
returned. We decorate forki actions with an index i for distinguishing fork requests com-
ing from different philosophers. Also, we need some way for describing the contract of
two philosophers running in parallel. To this aim we make use of a parallel composition
operator over contracts so that σ | τ stands for the interleaving of all the actions in σ
and τ . Assuming that σ and τ never synchronize with each other, the | operator can be
expressed using a simplified form of expansion law [16]:

σ | τ def=
⊕

σ⇓R,τ⇓S(∑α∈R α.(σ(α) | τ)+ ∑α∈S α.(σ | τ(α)))

The client modeled by the contract

C
def= rec x.∑i=1..2 forki.∑i=1..2 forki.thought.fork.fork.x

expects to be able to receive thoughts forever, without ever getting stuck. The problem
of this sloppy client is that it does not care that the two forks it provides end up to the
same philosopher and this may cause the system to deadlock. To see whether such client
can be made compliant with P1 |P2 we compute its dual contract

C⊥ , rec x.
⊕

i=1..2 forki.
⊕

i=1..2 forki.thought.fork.fork.x

and then we check whether C⊥ ! P1 |P2 using the algorithm. If we consider the se-
quence of actions fork1fork2 we reduce to checking whether thought.fork.fork.C⊥ !
P1(fork1) | P2(fork2). Now P1(fork1) | P2(fork2) has just the ready set {fork1, fork2},
while the residual of the client’s dual contract has just the ready set {thought}. There is
no orchestration action that can let the algorithm make some progress from this state.
Thus the algorithm finds out that the two forks sent by the client must be delivered to
the same philosopher, and this is testified by the resulting orchestrator

f
def= rec x.∑i=1..2〈forki, forki〉.〈forki, forki〉.〈thought, thought〉.〈fork, fork〉.〈fork, fork〉.x

Suppose now that the service provider is forced to update the service with two new
philosophers who, according to their habit, produce their thoughts only after having
returned the forks. Their behavior can be described by the contract

Qi
def= rec x.forki.forki.fork.fork.thought.x

The service provider may wonder whether the clients of the old service will still be
satisfied by the new one. The problem can be formulated as checking whether P1 |P2 !
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Q1 |Q2 and the interesting step is when the algorithm eventually checks P1(fork1fork1) |
P2 !Q1(fork1fork1) |Q2 (symmetrically for P2 and the sequence of actions fork2fork2).
At this stage P1(fork1fork1) | P2 has just the ready set {thought, fork2}, whereas the
contract Q1(fork1fork1) |Q2 has just the ready set {fork, fork2}. By accepting the two
fork messages asynchronously we reduce to checking whether P1(fork1fork1) | P2 !
thought.Q1 |Q2, which holds by allowing the thought action to occur, followed by the
asynchronous sending of the two buffered fork messages. Overall the relation is proved
by the orchestrator

g
def= rec x.∑i=1..2〈forki, forki〉.∑i=1..2〈forki, forki〉.〈ε, fork〉.〈ε, fork〉.

〈thought, thought〉.〈fork,ε〉.〈fork,ε〉.x

and now the sloppy C client will be satisfied by the service ( f ·g) ·(Q1 |Q2).

7 Discussion

We have adapted the testing framework [11, 16] by assuming that orchestrators can
mediate the interaction between a client and a service. We have been able to define a
decidable, liveness-preserving subcontract relation that is coarser than the existing ones,
thus enlarging the set of services satisfying a given client and favoring service reuse.
Unlike other orchestration languages, the features of simple orchestrators language stem
directly from the equivalence relation, rather than being designed a priori.

The synthesis algorithm as it stands is computationally expensive. It is well known
that deciding� is PSPACE-complete [20] although common practice suggests that worst
cases occur seldom [9]. In our setting more complexity is added for synthesizing the
orchestrator and the algorithm requires one to guess the rank of the orchestrator needed
for relating two contracts σ and τ . We plan to study a variant of the algorithm that is
able to discover the best (of smallest rank) orchestrator that proves f : σ !a

k τ (an upper
bound can be established by exploiting contract regularity) in the spirit of what has been
done in [6] with so-called “best” filters.

The observations of §3, where we present orchestrators as morphisms for relating
otherwise incompatible behavioral types, deserve further investigation. In particular,
we plan to study a class of invertible orchestrators characterizing isomorphic contracts,
much like invertible functions are used in [13, 24] for characterizing isomorphic types
in a functional language.

Asynchronous variants of the classical testing preorders [4, 7] are notoriously more
involved than their synchronous counterparts and they are usually defined assuming that
self-synchronization is possible and that output messages are allowed to float around in
unbounded buffers. Since these assumptions do not reflect the practice of Web services,
our development can be seen as a practical variant of the classical asynchronous testing
theories. In particular, it might be possible to reduce the asynchronous must preorder
without self-synchronization to our subcontract relation by analyzing the structure of
orchestrators proving the relation (an orchestrator that always enables all of its asyn-
chronous input and output actions acts like an unbounded buffer).
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14. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-free conformance. Technical
Report MSR-TR-2004-69, Microsoft Research (2004)

15. Gay, S., Hole, M.: Subtyping for session types in the π-calculus. Acta Informatica 42(2-3),
191–225 (2005)

16. Hennessy, M.: Algebraic Theory of Processes. In: Foundation of Computing. MIT Press,
Cambridge (1988)

17. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,
pp. 509–523. Springer, Heidelberg (1993)

18. Inverardi, P., Tivoli, M.: Software architecture for correct components assembly. In:
Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 92–121. Springer, Hei-
delberg (2003)

19. Inverardi, P., Tivoli, M.: A reuse-based approach to the correct and automatic composition
of web-services. In: ESSPE 2007, pp. 29–33 (2007)

20. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three problems
of equivalence. Information and Computation 86(1), 43–68 (1990)

21. Laneve, C., Padovani, L.: The must preorder revisited – an algebraic theory for web services
contracts. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp.
212–225. Springer, Heidelberg (2007)



146 L. Padovani

22. Misra, J., Cook, W.R.: Computation orchestration – a basis for wide-area computing. Soft-
ware and Systems Modeling 6(1), 83–110 (2007)

23. Padovani, L.: Contract-directed synthesis of simple orchestrators. Technical report (2008),
http://www.sti.uniurb.it/padovani/Papers/OrchestratorSynthesis.pdf

24. Rittri, M.: Retrieving library functions by unifying types modulo linear isomorphism.
RAIRO Theoretical Informatics and Applications 27(6), 523–540 (1993)

25. von Riegen, C., Trickovic, I.: Using bpel4ws in a UDDI registry. Technical note, OASIS
(2004)

http://www.sti.uniurb.it/padovani/Papers/OrchestratorSynthesis.pdf


Environment Assumptions for Synthesis

Krishnendu Chatterjee2, Thomas A. Henzinger1, and Barbara Jobstmann1

1 EPFL, Lausanne
2 University of California, Santa Cruz

Abstract. The synthesis problem asks to construct a reactive finite-state sys-
tem from an ω-regular specification. Initial specifications are often unrealizable,
which means that there is no system that implements the specification. A common
reason for unrealizability is that assumptions on the environment of the system
are incomplete. We study the problem of correcting an unrealizable specification
ϕ by computing an environment assumption ψ such that the new specification
ψ → ϕ is realizable. Our aim is to construct an assumption ψ that constrains
only the environment and is as weak as possible. We present a two-step algo-
rithm for computing assumptions. The algorithm operates on the game graph that
is used to answer the realizability question. First, we compute a safety assump-
tion that removes a minimal set of environment edges from the graph. Second,
we compute a liveness assumption that puts fairness conditions on some of the
remaining environment edges. We show that the problem of finding a minimal set
of fair edges is computationally hard, and we use probabilistic games to compute
a locally minimal fairness assumption.

1 Introduction

Model checking has become a successful verification technique in hardware and soft-
ware design. Although the method is automated, the success of a verification process
highly depends on the quality of the specification. Writing correct and complete speci-
fications is a tedious task: it usually requires several iterations until a satisfactory spec-
ification is obtained. Specifications are often too weak (e.g., they may be vacuously
satisfied [2,14]); or too strong (e.g., they may allow too many environment behaviors),
resulting in spurious counterexamples. In this work we automatically strengthen the en-
vironment constraints within specifications whose assumptions about the environment
behavior are so weak as to make it impossible for a system to satisfy the specification.

Automatically deriving environment assumptions has been studied from several
points of view. For instance, in circuit design one is interested in automatically con-
structing environment models that can be used in test-bench generation [21,19]. In com-
positional verification, environment assumptions have been generated as the weakest
input conditions under which a given software or hardware component satisfies a given
specification [4,6]. We follow a different path by leaving the design out of the picture
and deriving environment assumptions from the specification alone. Given a specifica-
tion, we aim to compute a least restrictive environment that allows for an implemen-
tation of the specification. The assumptions that we compute can assist the designer in
different ways. They can be used as baseline necessary conditions in component-based
model checking. They can be used in designing interfaces and generating test cases
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for components before the components themselves are implemented. They can provide
insights into the given specification. And above all, in the process of automatically con-
structing an implementation for the given specification (“synthesis”), they can be used
to correct the specification in a way that makes implementation possible.

While specifications of closed systems can be implemented if they are satisfiable,
specifications of open systems can be implemented if they are realizable —i.e., there is
a system that satisfies the specification without constraining the inputs. The key idea of
our approach is that given a specification ϕ, if ϕ is not realizable, it cannot be complete
and has to be weakened by introducing assumptions on the environment of the system.
We do this by computing an assumption ψ such that the new specification ψ → ϕ is
realizable. Our aim is to construct a condition ψ that does not constrain the system and
is as weak as possible. The notion that ψ must constrain only the environment can be
captured by requiring that ψ itself is realizable for the environment —i.e., there exists
an environment that satisfies ψ without constraining the outputs of the system. The
notion that ψ be as weak as possible is more difficult to capture. We will show that in
certain situations, there is no unique weakest environment-realizable assumption ψ, and
in other situations, it is NP-hard to compute such an assumption.

Example. During a typical effort of formally specifying hardware designs [5], some
specifications were initially not realizable. One specification that was particularly diffi-
cult to analyze can be simplified to the following example. Consider a system with two
input signals r and c, and one output signal g. The specification requires that (i) every
request is eventually granted starting from the next time step, written in linear temporal
logic as �(r→©♦g); and (ii) whenever c or g are high, then g has to stay low in the
next time step, written �((c∨g) →©¬g). This specification is not realizable because
the environment can force, by sending c all the time, that g has to stay low forever
(Part (ii)). Thus requests cannot be answered, and Part (i) is violated.

One assumption that makes this specification realizable is ψ1 = �¬c. This as-
sumption is undesirable because it forbids the environment to send c. A system syn-
thesized with this assumption would ignore the signal c. Assumptions ψ2 = �♦¬c and
ψ3 = �(r→ ♦¬c) are more desirable but still not satisfactory: ψ2 forces the environ-
ment to lower c infinitely often even when no requests are sent, and ψ3 is not strong
enough to implement a system that in each step first produces an output and then reads
the input. Assume that the system starts with output g = 0 in time step 0, then receives
the input r = 1 and c = 0, now in time step 1, it can choose between (a) g = 1, or (b)
g = 0. If it chooses to set grant to high by (a), then the environment can provide the
same inputs once more (r = 1 and c = 0) and can set all subsequent inputs to r = 0 and
c = 1. Then the environment has satisfied ψ3 because during the two requests in time
step 0 and 1 the signal c was kept low, but the system cannot fulfill Part (i) of its speci-
fication without violating Part (ii) due to g = 1 in time step 1 and c = 1 afterwards. On
the other hand, if the system decides to choose to set g = 0 by (b), then the environment
can choose to set the inputs to r = 0 and c = 1 and the system again fails to fulfill
Part (i) without violating (ii). The assumption ψ4 = �(r→©♦¬c), which is a subset
of ψ3, is sufficient. However, there are infinitely many sufficient assumptions between
ψ3 and ψ4, such as ψ′

3 = (¬c∧©ψ3)∨ψ3. The assumptionψ5 = �(r→©♦(¬c∨g))
is also weaker than ψ3 and still sufficient, because the environment only needs to lower
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c eventually if a request has not been answered yet. Finally, let ξ = r→©♦(¬c ∨ g)
and consider the assumption ψ6 = ξW(ξ∧(c∨g)∧©g), which is a sufficient assump-
tion (where W is the weak-until operator of LTL). It is desirable because it states that
whenever a request is sent, the environment has to eventually lower c if it has not seen
the signal g, but as soon as the system violates its specification (Part (ii)) all restrictions
on the environment are dropped. If we replace ξ in ψ6 with ξ′ = r → ♦(¬c ∨ g), we
get again an assumption that is not sufficient for the specification to be realizable. This
example shows that the notion of weakest and desirable are hard to capture.

Contributions. The realizability problem (and synthesis problem) can be reduced to
emptiness checking for tree automata, or equivalently, to solving turn-based two-player
games on graphs [17]. More specifically, an ω-regular specification ϕ is realizable iff
there exists a winning strategy in a certain parity game constructed from ϕ. If ϕ is not
realizable, then we construct an environment assumption ψ such that ψ → ϕ is realiz-
able, in two steps. First, we compute a safety assumption that removes a minimal set
of environment edges from the game graph. Second, we compute a liveness assumption
that puts fairness conditions on some of the remaining environment edges of the game
graph: if these edges can be chosen by the environment infinitely often, then they need
to be chosen infinitely often. While the problem of finding a minimal set of fair edges
is shown to be NP-hard, a local minimum can be found in polynomial time (in the size
of the game graph) for Büchi specifications, and in NP ∩ coNP for parity specifica-
tions. The algorithm for checking the sufficiency of a set of fair edges is of independent
theoretical interest, as it involves a novel reduction of deterministic parity games to
probabilistic parity games. We show that the resulting conjunction of safety and live-
ness assumptions is sufficient to make the specification realizable, and itself realizable
by the environment. We also illustrate the algorithm on several examples, showing that
it computes natural assumptions.

Related work. There are some related works that consider games that are not winning,
methods of restricting the environment, and constructing most general winning strate-
gies in games. The work of [11] considers games that are not winning, and considers
best-effort strategies in such games. However, relaxing the winning objective to make
the game winning is not considered. In [8], a notion of nonzero-sum game is proposed,
where the strategies of the environment are restricted according to a given objective,
but the paper does not study how to obtain an environment objective that is sufficient to
transform the game to a winning one. A minimal assumption on a player with an objec-
tive can be captured by the most general winning strategy for the objective. The results
of [3] show that such most general winning strategies exist only for safety games, and
also present an approach to compute a strategy, called a permissive strategy, which sub-
sumes behavior of all memoryless winning strategies. Our approach is different, as we
attempt to construct the minimal environment assumption that makes a game winning.

Outline. In Section 2, we introduce the necessary theoretical background for defining
and computing environment assumptions. Section 3 discusses environment assumptions
and why they are difficult to capture. In Sections 4 and 5, we compute, respectively,
safety and liveness assumptions, which are then combined in Section 6. A full version
with detailed proofs can be found in [7].
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2 Preliminaries

Words, languages, safety, and liveness. Given a finite alphabetΣ and an infinite word
w ∈ Σω, we use wi to denote the (i+1)th letter of w, andwi to denote the finite prefix
of w of length i + 1. Given a word w ∈ Σω, we write odd(w) for the subsequence of
w consisting of the odd positions (∀i ≥ 0 : odd(w)i = w2i+1). Given a set L ⊆ Σω of
infinite words, we define the set of finite prefixes by pref(L) = {v ∈ Σ∗ | ∃w ∈ L, i ≥
0 : v = wi}. Given a set L ⊆ Σ∗ of finite words, we define the set of infinite limits by
safe(L) = {w ∈ Σω | ∀i ≥ 0 : wi ∈ L}. A language L ⊆ Σω is a safety language
if L = safe(pref(L)). A language L ⊆ Σω is a liveness language if pref(L) = Σ∗.
Every ω-regular language L ⊆ Σω can be presented as the intersection of the safety
language LS = safe(pref(L)) and the liveness language LL = (Σω \ LS) ∪ L [1].

Transducers. We model reactive systems as deterministic finite-state transducers. We
fix a finite set P of atomic propositions, and a partition of P into a set O of output
and a set I of input propositions. We use the alphabets Σ = 2P , O = 2O, and I =
2I . A Moore transducer with input alphabet I and output alphabet O is a tuple T =
(Q, qI , Δ, κ), whereQ is a finite set of states, qI ∈ Q is the initial state, Δ: Q×I → Q
is the transition function, and κ:Q→ O is a state labeling function. A Mealy transducer
is like a Moore transducer, except that κ: Q× I → O is a transition labeling function.
A Moore transducer describes a reactive system that reads words over the alphabet I
and writes words over the alphabet O. The environment of the system, in turn, can
be described by a Mealy transducer with input alphabet O and output alphabet I. We
extend the transition function Δ to finite words w ∈ I∗ inductively by Δ(q, w) =
Δ(Δ(q, w|w|−1), w|w|) for |w| > 0. Given a word w ∈ Iω , the run of T over w is
the infinite sequence π ∈ Qω of states such that π0 = qI , and πi+1 = Δ(πi, wi)
for all i ≥ 0. The run π over w generates the infinite word T (w) ∈ Σω defined by
T (w)i = κ(πi) ∪ wi for all i ≥ 0 in the case of Moore transducers; and T (w)i =
κ(πi, wi) ∪ wi for all i ≥ 0 in the case of Mealy transducers. The language of T is the
set L(T ) = {T (w) | w ∈ Iω} of all generated infinite words.

Specifications and realizability. A specification of a reactive system is an ω-regular
language L ⊆ Σω. We use Linear Temporal Logic (LTL) formulae over the atomic
proposition P , as well as ω-automata with transition labels from Σ, to define specifi-
cations. Given an LTL formula (resp. ω-automaton) ϕ, we write L(ϕ) ⊆ Σω for the
set of infinite words that satisfy (resp. are accepted by) ϕ. A transducer T satisfies a
specification L(ϕ), written T |= ϕ, if L(T ) ⊆ L(ϕ). Given an LTL formula (resp.
ω-automaton) ϕ, the realizability problem asks if there exists a transducer T with input
alphabet I and output alphabet O such that T |= ϕ. The specification L(ϕ) is Moore
realizable if such a Moore transducer T exists, and Mealy realizable if such a Mealy
transducer T exists. Note that for an LTL formula, the specification L(ϕ) is Mealy re-
alizable iff L(ϕ′) is Moore realizable, where the LTL formula ϕ′ is obtained from ϕ
by replacing all occurrences of o ∈ O by ©o. The process of constructing a suitable
transducer T is called synthesis. The synthesis problem can be solved by computing
winning strategies in graph games.
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Graph games. We consider two classes of turn-based games on graphs, namely, two-
player probabilistic games and two-player deterministic games. The probabilistic games
are not needed for synthesis, but we will use them for constructing environment assump-
tions. For a finite set A, a probability distribution on A is a function δ: A→ [0, 1] such
that

∑
a∈A δ(a) = 1. We denote the set of probability distributions on A by D(A).

Given a distribution δ ∈ D(A), we write Supp(δ) = {x ∈ A | δ(x) > 0} for the
support of δ. A probabilistic game graph G = ((S,E), (S1, S2, SP ), δ) consists of a
finite directed graph (S,E), a partition (S1, S2, SP ) of the set S of states, and a prob-
abilistic transition function δ: SP → D(S). The states in S1 are player-1 states, where
player 1 decides the successor state; the states in S2 are player-2 states, where player 2
decides the successor state; and the states in SP are probabilistic states, where the suc-
cessor state is chosen according to the probabilistic transition function. We require that
for all s ∈ SP and t ∈ S, we have (s, t) ∈ E iff δ(s)(t) > 0, and we often write
δ(s, t) for δ(s)(t). For technical convenience we also require that every state has at
least one outgoing edge. Given a set E′ ⊆ E of edges, we write Source(E′) for the set
{s ∈ S | ∃t ∈ S : (s, t) ∈ E′} of states that have an outgoing edge in E′. We write
E1 = E ∩ (S1×S) and E2 = E ∩ (S2×S) for the sets of player-1 and player-2 edges.
Deterministic game graphs are the special case of the probabilistic game graphs with
SP = ∅, that is, the state space is partitioned into player-1 and player-2 states. In such
cases we omit SP and δ in the definition of the game graph.

Plays and strategies. An infinite path, or play, of the game graph G is an infinite se-
quence π = s0s1s2 . . . of states such that (sk, sk+1) ∈ E for all k ≥ 0. We write Π
for the set of plays, and for a state s ∈ S, we write Πs ⊆ Π for the set of plays that
start from s. A strategy for player 1 is a function α: S∗ · S1 → S that for all finite se-
quences of states ending in a player-1 state (the sequence represents a prefix of a play),
chooses a successor state to extend the play. A strategy must prescribe only available
moves, that is, α(τ · s) ∈ E(s) for all τ ∈ S∗ and s ∈ S1. The strategies for player 2
are defined analogously. Note that we have only pure (i.e., nonprobabilistic) strategies,
but all our results hold even if strategies were probabilistic. We denote by A and B the
sets of strategies for player 1 and player 2, respectively. A strategy α is memoryless if it
does not depend on the history of the play but only on the current state. A memoryless
player-1 strategy can be represented as a functionα:S1 → S, and a memoryless player-2
strategy is a function β: S2 → S. We denote by AM and BM the sets of memoryless
strategies for player 1 and player 2, respectively.

Once a start state s ∈ S and strategies α ∈ A and β ∈ B for the two players are fixed,
the outcome of the game is a random walk πα,β

s for which the probabilities of events
are well-defined, where an event E ⊆ Π is a measurable set of plays. Given strategies
α for player 1 and β for player 2, a play π = s0s1s2 . . . is feasible if for all k ≥ 0, we
have α(s0s1 . . . sk) = sk+1 if sk ∈ S1, and β(s0s1 . . . sk) = sk+1 if sk ∈ S2. Given
two strategies α ∈ A and β ∈ B, and a state s ∈ S, we write Outcome(s, α, β) ⊆ Πs

for the set of feasible plays that start from s. Note that for deterministic game graphs,
the set Outcome(s, α, β) contains a single play. For a state s ∈ S and an event E ⊆ Π ,
we write Prα,β

s (E) for the probability that a play belongs to E if the game starts from
the state s and the two players follow the strategies α and β.
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Objectives. An objective for a player is a set Φ ⊆ Π of winning plays. We consider
ω-regular sets of winning plays, which are measurable. For a play π = s0s1s2 . . .,
let Inf(π) be the set {s ∈ S | s = sk for infinitely many k ≥ 0} of states that appear
infinitely often in π. We consider safety, Büchi, and parity objectives. Given a set F ⊆ S
of states, the safety objective Safe(F ) = {s0s1s2 . . . ∈ Π | ∀k ≥ 0 : sk ∈ F} requires
that only states in F be visited. The Büchi objective Buchi(F ) = {π ∈ Π | Inf(π) ∩
F �= ∅} requires that some state in F be visited infinitely often. Given a function p: S →
{0, 1, 2, . . . , d − 1} that maps every state to a priority, the parity objective Parity(p)
requires that of the states that are visited infinitely often, the least priority be even.
Formally, the set of winning plays is Parity(p) = {π ∈ Π | min{p(Inf(π))} is even}.
Büchi objectives are special cases of parity objectives with two priorities.

Sure and almost-sure winning. Given an objective Φ, a strategy α ∈ A is sure win-
ning for player 1 from a state s ∈ S if for every strategy β ∈ B for player 2, we have
Outcome(s, α, β) ⊆ Φ. The strategy α is almost-sure winning for player 1 from s for
Φ if for every player-2 strategy β, we have Prα,β

s (Φ) = 1. The sure and almost-sure
winning strategies for player 2 are defined analogously. Given an objective Φ, the sure
(resp. almost-sure) winning set 〈〈1〉〉sure(Φ) (resp. 〈〈1〉〉almost (Φ)) for player 1 is the
set of states from which player 1 has a sure (resp. almost-sure) winning strategy. The
winning sets 〈〈2〉〉sure(Φ) and 〈〈2〉〉almost (Φ) for player 2 are defined analogously. It fol-
lows from the definitions that for all probabilistic game graphs and all objectives Φ,
we have 〈〈1〉〉sure(Φ) ⊆ 〈〈1〉〉almost (Φ). In general the subset inclusion relation is strict.
For deterministic games the notions of sure and almost-sure winning coincide [15],
i.e., we have 〈〈1〉〉sure(Φ) = 〈〈1〉〉almost (Φ), and in such cases we often omit the sub-
script. Given an objective Φ, the cooperative winning set 〈〈1, 2〉〉sure(Φ) is the set of
states s for which there exist a player-1 strategy α and a player-2 strategy β such that
Outcome(s, α, β) ⊆ Φ.

Theorem 1 (Deterministic games [10]). For all deterministic game graphs and parity
objectives Φ, the following assertions hold: (i) 〈〈1〉〉sure(Φ) = S \ 〈〈2〉〉sure(Π \ Φ);
(ii) memoryless sure winning strategies exist for both players from their sure winning
sets; and (iii) given a state s ∈ S, if s ∈ 〈〈1〉〉sure(Φ) can be decided in NP ∩ coNP.

Theorem 2 (Probabilistic games [9]). Given a probabilistic game graph G =
((S,E), (S1, S2, SP ), δ) and a parity objective Φ with d priorities, we can construct
a deterministic game graph Ĝ = ((Ŝ, Ê), (Ŝ1, Ŝ2)) with S ⊆ Ŝ, and a parity objective
Φ̂ with d+ 1 priorities such that (i) |Ŝ| = O(|S| · d) and |Ê| = O(|E| · d); and (ii) the
set 〈〈1〉〉almost (Φ) in G is equal to the set 〈〈1〉〉sure(Φ̂) ∩ S in Ĝ. Moreover, memoryless
almost-sure winning strategies exist for both players from their almost-sure winning
sets in G.

Realizability games. The realizability problem has the following game-theoretic
formulation.

Theorem 3 (Reactive synthesis [17]). Given an LTL formula or ω-automaton ϕ, we
can construct a deterministic game graph G, a state sI of G, and a parity objective Φ
such that L(ϕ) is Moore (resp. Mealy) realizable iff sI ∈ 〈〈1〉〉sure(Φ).
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The deterministic game graph G with parity objective Φ referred to in Theorem 3 is
called the Mealy (resp. Moore) synthesis game for ϕ. Starting from an LTL formula ϕ,
we construct the synthesis games by first building a nondeterministic Büchi automaton
that accepts L(ϕ) [20]. Then, following the algorithm of [16], we translate this automa-
ton to a deterministic parity automaton that accepts L(ϕ). By splitting every state of
the parity automaton w.r.t. inputs I and outputs O, we obtain the Mealy (resp. Moore)
synthesis game. Both steps involve exponential blow-ups that are unavoidable: for LTL
formulae ϕ, the realizability problem is 2EXPTIME-complete [18].

Synthesis games, by relating paths in the game graph to the specification L(ϕ), have
the following special form. A Moore synthesis game G is a tuple (G, sI , λ, Φ), where
G = ((S,E), (S1, S2)) is a deterministic bipartite game graph, in which player-1 and
player-2 states strictly alternate (i.e.,E ⊆ (S1×S2)∪(S2×S1)), the initial state sI ∈ S1

is a player-1 state, the labeling function λ: S → O∪I maps player-1 and player-2 states
to letters in I and O, respectively (i.e., λ(s) ∈ I for all s ∈ S1, and λ(s) ∈ O for all
s ∈ S2), and Φ is a parity objective. Furthermore, synthesis games are deterministic
w.r.t. input and output labels, that is, for all edges (s, s′), (s, s′′) ∈ E, if λ(s′) = λ(s′′),
then s′ = s′′. Without loss of generality, we assume that synthesis games are complete
w.r.t. input and output labels, that is, for all states s ∈ S1 (resp. S2) and l ∈ O (resp. I),
there exists an edge (s, s′) ∈ E such that λ(s′) = l. We define a function w: Π → Σω

that maps each play to an infinite word such that wi = λ(π2i+1) ∪ λ(π2i+2) for all
i ≥ 0. Note that we ignore the label of the initial state.

Given the Moore synthesis game G for a specification formula or automaton ϕ (as
referred to by Theorem 3), every Moore transducer T = (Q, qI , Δ, κ) that satisfies
L(ϕ) represents a winning strategy α for player 1 as follows: for all state sequences
τ ∈ (S1 · S2)∗ · S1, let w be the finite word such that wi = λ(τi+1) for all 0 ≤ i < |τ |;
then, if there is an edge (τ|τ |, s′) ∈ E with λ(s′) = κ(Δ(qI , odd(w))), let α(τ) =
s′, and else let α(τ) be arbitrary. Conversely, every memoryless winning strategy α
of player 1 represents a Moore transducer T = (Q, qI , Δ, κ) that satisfies L(ϕ) as
follows: let Q = S1, qI = sI , κ(q) = λ(α(q)), and Δ(q, l) = s′ if λ(s′) = l and
(α(q), s′) ∈ E. The construction of a Mealy synthesis game for the Mealy realizability
problem is similar.

3 Assumptions

We illustrate the difficulties in defining desirable conditions on environment assump-
tions through several examples. W.l.o.g. we model open reactive systems as Moore
transducers, and correspondingly, their environments as Mealy transducers (with inputs
and outputs swapped). Given a specification formula or automaton ϕ that describes the
desired behavior of a system S (a Moore transducer), we search for an assumption on
the environment of S which is sufficient to ensure that S exists and satisfies L(ϕ). For-
mally, a language K ⊆ Σω is a sufficient assumption for a specification L ⊆ Σω if
(Σω \ K) ∪ L is Moore realizable. In other words, if the specification is given by an
LTL formula ϕ, and the environment assumption by another LTL formula ψ, then ψ
is sufficient for ϕ iff L(ψ → ϕ) is realizable. In this case, we can view the formula
ψ → ϕ as defining a corrected specification.
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Example 1. Consider the specification ϕ = bUa, where U is the until operator of LTL.
No system S with input a and output b can implement ϕ, because S does not control
a, and ϕ is satisfied only if a eventually is true. We have to weaken the specification
to make it realizable. A candidate for the assumption ψ is ♦a, because it forces the
environment to assert the signal a eventually. Further candidates are false, which makes
the specification trivially realizable, ♦b, and ♦¬b, which lead to corrected specifications
such as ϕ′ = ♦b → ϕ = (�¬b) ∨ ϕ. The system can implement ϕ′ independent of ϕ
simply by keeping b low all the time.

Example 1 shows that there may be several different sufficient assumptions for a given
specification L ⊆ Σω, but not all of them are satisfactory. For instance, the assumption
false does not provide the desired information, and the assumption that ♦b cannot be
satisfied by any environment that controls only a. Environment assumptions that are un-
satisfiable or falsifiable by the system correspond to a corrected specificationψ → ϕ that
can be satisfied vacuously [2,14] by the system. In order to exclude such assumptions, we
require that an environment assumptionK ⊆ Σω for L fulfill the following condition.

(1) Realizability by the environment: There exists an implementation of the environ-
ment that satisfiesK . Formally, we require that the languageK be Mealy realizable
with input alphabetO and output alphabet I.

Note that Condition 1 implies that the specification L has to be nonempty for a suitable
assumption K to exist. If a formula ϕ is not satisfiable, then there exists only the triv-
ial solution ψ = false. We assume from now on that specifications are nonempty (i.e.,
satisfiable). Apart from Condition 1, we aim to restrict the environment “as little as pos-
sible.” For this purpose, we need to order different assumptions. An obvious candidate
for this order is language inclusion.

(2) Minimality: There exists no other sufficient assumption that is realizable by the
environment and strictly weaker than K . Formally, there is no language K ′ ⊆ Σω

such that K ⊂ K ′ and K ′ is both a sufficient assumption for L and realizable by
the environment.

The following example shows we cannot ask for a unique minimal assumption.

Example 2. Consider the specification ϕ = (bU a1) ∨ (¬bU a2), where a1 and a2
are inputs and b is an output. Again, ϕ is not realizable. Consider the assumptions
ψ1 = ♦a1 and ψ2 = ♦a2. Both are sufficient because, assuming ψ1, the system can
keep the signal b constantly high, and assuming ψ2, it can keep b constantly low. Both
the assumptions are also realizable by the environment. However, if we assume the
disjunction ψ = ψ1 ∨ ψ2, then the system does not know which of the two signals a1
and a2 the environment is going to assert eventually. Since a unique minimal assumption
has to subsume all other sufficient assumptions and ψ is not sufficient, it follows that
there exists no unique minimal assumption that is sufficient.

Let us consider another example to illustrate further difficulties that arise when com-
paring environment assumptions w.r.t. language inclusion.
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Example 3. Consider the specification ϕ = �(a→©b)∧�(b→©¬b) with input a
and output b. The specification is not realizable because whenever a is set to true in two
consecutive steps, the system cannot produce a value for b such that ϕ is satisfied. One
natural assumption isψ = �(a→©¬a). Another assumption is ψ′ = ψ∨♦(¬a∧©b),
which is weaker than ψ w.r.t. language inclusion and still sufficient and realizable by
the environment. Looking at the resulting corrected system specification ψ′ → ϕ =
(ψ ∨ ♦(¬a ∧©b)) → ϕ = ψ → (�(¬a → ©¬b) ∧ ϕ), we see that ψ′ restricts the
system instead of the environment.

Intuitively, using language inclusion as ordering criterion results in minimal environ-
ment assumptions that allow only a single implementation for the system. We aim for
an assumption that does not restrict the system if possible. One may argue that ψ should
refer only to input signals. Let us consider the specification of Example 3 once more.
Another sufficient assumption is ψ′′ = (a → ©¬a)W(b ∧ ©b), which is weaker
than ψ. This assumption requires that the environment guarantees a → ©¬a as long
as the system does not make a mistake (by setting b to true in two consecutive steps),
which clearly meets the intuition of an environment assumption. The challenge is to
find an assumption that (a) is sufficient, (b) does not restrict the system, and (c) gives
the environment maximal freedom.

Note that the assumptions ψ and ψ′′ are safety assumptions, while the assumptions
in Example 2 are liveness assumptions. In general, every ω-regular language can be
decomposed into a safety and a liveness component. We use this separation to provide
a way to compute environment assumptions in two steps. In both steps, we restrict the
environment strategies of synthesis games to find sufficient environment assumptions.
More precisely, we put restrictions on the player-2 edges, which represent decisions
made by the environment. If the given specification is satisfiable, then these restrictions
lead to assumptions that are realizable by the environment.

4 Safety Assumptions

We first compute assumptions that restrict the safety behavior of the environment.

Nonrestrictive safety assumptions on games. Given a deterministic game graph G =
((S,E), (S1, S2)), a safety assumption is a set ES ⊆ E2 of player-2 edges requiring
that player 2 chooses only edges not in ES . A natural order on safety assumptions is
the number of edges in a safety assumption. We writeES ≤ ES

′ if |ES | ≤ |ES
′| holds.

For a given player-1 objective Φ, a safety assumption refers to the safety component of
the objective, namely, ΦS = Safe(〈〈1, 2〉〉sure(Φ)). Let AssumeSafe(ES , Φ) = {π =
s0s1s2 . . . | either (i) there exists i ≥ 0 such that (si, si+1) ∈ ES , or (ii) π ∈ ΦS} be
the set of all plays in which either one of the edges in ES is chosen, or that satisfy the
safety component ofΦ. The safety assumptionES is safe-sufficient for a state s ∈ S and
player-1 objectiveΦ if player 1 has a winning strategy from s for the modified objective
AssumeSafe(ES , Φ). A synthesis game G = (G, sI , λ, Φ) with a safety assumption ES

specifies the environment assumption K(ES) defined as the set of words w ∈ Σω such
that there exists a play π ∈ ΠsI with w = w(π) and (πi, πi+1) �∈ ES for all i ≥ 0.
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Theorem 4. Let Gϕ = (G, sI , λ, Φ) be the Moore synthesis game for an LTL formula
(or ω-automaton) ϕ, and let ES be a safety assumption. If ES is safe-sufficient for the
state sI and objective Φ, then K(ES) is a sufficient assumption for the specification
safe(pref(L(ϕ))).

The following example shows that there exist safety games without a unique minimal
safety assumption that is safe-sufficient.

Example 4. Consider the game shown in Figure 1. Circles denote states of player 1;
boxes denote states of player 2. The objective for player 1 is to stay inside the set
{s1, . . . , s6} of states marked by double lines. Player 1 has no winning strategy from
s1. There are two equally small safety assumptions that are safe-sufficient for s1:
ES = {(s3, s1)} and ES

′ = {(s5, s7)}. In both cases, player 1 has a winning strategy
from s1. If we consider a specification where the corresponding synthesis game has this
structure, then neither of these assumptions are satisfactory. Figure 2 shows such a syn-
thesis game, for the specification �(a→©b) ∧�(b→©¬b) with input a and output
b (cf. Example 3). Using the safety assumption ES , the corrected specification would
allow only the implementation that keeps b constantly low. The other safety assumption
ES

′ leads to a corrected specification that additionally enforces �(¬a→©¬b).

Therefore, besides safe-sufficiency, we look for a safety assumption that does not re-
strict player 1. This condition can be formalized as follows. Given a deterministic game
graph G = ((S,E), (S1, S2)), a safety assumption ES is restrictive for a state s ∈ S
and a player-1 objective Φ if there exist strategies α ∈ A and β ∈ B for the two players
such that the play Outcome(s, α, β) contains an edge fromES and is in ΦS . Intuitively,
a nonrestrictive safety assumption allows all edges that do not lead to an immediate vi-
olation of the safety component of the objective for player 1.

Theorem 5. Given a deterministic game graph G = ((S,E), (S1, S2)), an objective Φ
for player 1, and a state s ∈ S, if s ∈ 〈〈1, 2〉〉sure(Φ), then there exists a unique minimal
safety assumption ES that is nonrestrictive and safe-sufficient for s and Φ. Moreover, if
s ∈ 〈〈1, 2〉〉sure(Φ) and ES is the minimal safety assumption for s and Φ, then player 2
has a winning strategy from s for the objective to avoid all edges in ES .

Applying Theorem 5 to environment assumptions, we obtain Theorem 6.
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Theorem 6. Let G = (G, sI , λ, Φ) be the Moore synthesis game for a satisfiable LTL
formula (or ω-automaton)ϕ. Then there exists a unique minimal safety assumption ES

that is nonrestrictive and safe-sufficient for the state sI and objective Φ. Moreover, the
corresponding assumption K(ES) is realizable by the environment.

Computing nonrestrictive safety assumptions. Given a deterministic game graph G
and player-1 objective Φ, we compute the unique minimal nonrestrictive and safe-
sufficient safety assumption ES as follows. First, we compute the set 〈〈1, 2〉〉sure(Φ)
of states. Note that for this set the players cooperate. We can compute 〈〈1, 2〉〉sure(Φ)
in polynomial time for all objectives we consider. In particular, if Φ is a parity ob-
jective, then 〈〈1, 2〉〉sure(Φ) can be computed by reduction to Büchi automata [13].
Then the safety assumption ES is the set of all player-2 edges (s, t) ∈ E2 such that
s ∈ 〈〈1, 2〉〉sure(Φ) and t �∈ 〈〈1, 2〉〉sure(Φ).

Theorem 7. For every deterministic game graph G and player-1 objective Φ, the edge
set ES = {(s, t) ∈ E2 | s ∈ 〈〈1, 2〉〉sure(Φ) and t �∈ 〈〈1, 2〉〉sure(Φ)} is the unique
minimal safety assumption that is nonrestrictive and safe-sufficient for all states s ∈
〈〈1, 2〉〉sure(Φ). The set ES can be computed in polynomial time for parity objectives Φ.

For the game show in Figure 1, we obtain the safety assumption ES = {(s3, s1),
(s5, s7)}. For the corresponding synthesis game in Figure 2, the set ES defines the en-
vironment assumption ψES = (¬a ∨ ¬b)W((¬a ∨ ¬b)∧ a∧ (©¬b) ∧ b∧©b). This
safety assumption meets our intuition of a minimal environment assumption, because it
states that the environment has to ensure that either a or b is low as long as the system
makes no obvious fault by either violating �(a→©b) or �(b→©¬b).

5 Liveness Assumptions

In a second step, we now put liveness assumptions on the environment.

Strongly fair assumptions on games. Given a deterministic game graph G =
((S,E), (S1, S2)) and a player-1 objective Φ, a strongly fair assumption is a set EL ⊆
E2 of player-2 edges requiring that player 2 plays such that if a state s ∈ Source(EL)
is visited infinitely often, then for all states t ∈ S such that (s, t) ∈ EL, the edge (s, t)
is chosen infinitely often. Let AssumeFair(EL, Φ) be the set of plays π such that either
(i) there is a state s ∈ Source(EL) that appears infinitely often in π and there is an edge
(s, t) ∈ EL that appears only finitely often in π, or (ii) π belongs to the objective Φ.
Formally, AssumeFair(EL, Φ) = {π = s0s1s2 . . . | either (i) ∃(s, t) ∈ EL such that
sk = s for infinitely many k’s and there are only finitely many j’s such that sj = s and
sj+1 = t, or (ii) π ∈ Φ}. The strongly fair assumption EL ⊆ E2 is live-sufficient for a
state s ∈ S and player-1 objective Φ if player 1 has a winning strategy from s for the
modified objective AssumeFair(EL, Φ). A state s ∈ S is live for player 1 if player 1
has a winning strategy from s for the objective Safe(〈〈1, 2〉〉sure(Φ)).
Theorem 8. Given a deterministic game graph G = ((S,E), (S1, S2)) and a safety or
Büchi objective Φ, for every state s ∈ S that is live for player 1, there exists a strongly
fair assumption EL that is live-sufficient for s and Φ.

A synthesis game G = (G, sI , λ, Φ) with a strongly fair assumption EL specifies the
environment assumption K(EL) defined as the set of words w ∈ Σω such that there
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exists a play π ∈ ΠsI with w = w(π) and for all edges (s, t) ∈ EL, either there exists
i ≥ 0 such that for all j > i we have πi �= s, or there exist infinitely many k’s such
that πk = s and πk+1 = t. Note that this definition and the structure of synthesis games
ensure that K(EL) is realizable by the environment. These definitions together with
Theorem 3 and 8 lead to the following theorem.

Theorem 9. Let G = (G, sI , λ, Φ) be a Moore synthesis game for an LTL formula (or
ω-automaton) ϕ, and let EL be a strongly fair assumption. If EL is live-sufficient for
the state sI and objective Φ, thenK(EL) is a sufficient assumption for the specification
L(ϕ). Moreover, the assumption K(EL) is realizable by the environment. Conversely,
if Φ is a safety or Büchi objective, if sI is live for player 1, and if there exists some
sufficient assumption K �= ∅ for the specification L(ϕ), then there exists a strongly fair
assumption that is live-sufficient.

Computing strongly fair assumptions. We now focus on solution of deterministic
player games with objectives AssumeFair(EL, Φ), where Φ is a parity objective. Given
a deterministic game graph G, an objective Φ, and a strongly fair assumption EL on
edges, we first observe that the objective AssumeFair(EL, Φ) can be expressed as an
implication: a strong fairness condition implies Φ. Hence given Φ as a Büchi or a parity
objective, the solution of games with objective AssumeFair(EL, Φ) can be reduced to
deterministic Rabin games. However, since deterministic Rabin games are NP-complete
we would obtain NP solution (i.e., an NP upper bound), even for the case when Φ is
a Büchi objective. We now present an efficient reduction to probabilistic games and
show that we can solve deterministic games with objectives AssumeFair(EL, Φ) in NP
∩ coNP for parity objectivesΦ, and ifΦ is a Büchi objective, then the solution is achieved
in polynomial time.

Reduction. Given a deterministic game graph G = ((S,E), (S1, S2)), a parity func-
tion p, and a set EL ⊆ E2 of player-2 edges we construct a probabilistic game
G̃ = ((S̃, Ẽ), (S̃1, S̃2, S̃P ), δ̃) with parity function p̃ as follows.

1. State space. S̃ = S ∪ {s̃ | s ∈ Source(EL) and E(s) \ EL �= ∅}.
2. State space partition. S̃1 = S1, S̃P = Source(EL), and S̃2 = S̃ \ (S̃1 ∪ S̃P ).
3. Edges and transition. We explain edges for the three different kind of states.

(a) For a state s ∈ S̃1 we have Ẽ(s) = E(s).
(b) For a state s ∈ S̃2 if s ∈ S2, then Ẽ(s) = E(s); else s = s̃′ and s′ ∈

Source(EL) and we have Ẽ(s) = E(s′) \ EL.
(c) For a state s ∈ S̃P , if E(s) ⊆ EL, then Ẽ(s) = E(s) else Ẽ(s) = E(s)∪{s̃}.

In both case the transition function is uniform over its successors.
4. Objective. For all states s ∈ S, we have that p̃(s) = p(s), and for a state s̃ in S̃ \S,

let s̃ be the copy of s, then p̃(s̃) = p(s).

Intuitively, the edges and transition function can be described as follows: all states s in
Source(EL) are converted to probabilistic states, and from s all edges in E(s) and the
edge to s̃, which is a copy of s, are chosen uniformly at random. From s̃ player 2 has
the choice of the edges in E(s) that are not contained in EL.

We refer to the above reduction as the edge assumption reduction and denote it by
AssRed, i.e., (G̃, p̃) = AssRed(G,EL, p). The following theorem states the connection



Environment Assumptions for Synthesis 159

g

g
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r̄̄gc

g

Fig. 3. Constructed environment assumption for
�(r → ♦g) ∧ �(c → ©¬g)

g

ḡ
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about winning in G for the objective AssumeFair(EL,Parity(p)) and winning almost-
surely in G̃ for Parity(p̃). The key argument for the proof is as follows. A memoryless
almost-sure winning strategy α̃ in G̃ can be fixed inG, and it can be shown that the strat-
egy in G is sure winning for the Rabin objective that can be derived from the objective
AssumeFair(EL,Parity(p)). Conversely, a memoryless sure winning strategy in G for
the Rabin objective derived from AssumeFair(EL,Parity(p)) can be fixed in G̃, and it
can be shown that the strategy is almost-winning for Parity(p̃) in G̃. A key property use-
ful in the proof is as follows: for a probability distributionμ over a finite setA that assigns
positive probability to each element in A, if the probability distribution μ is sampled in-
finitely many times, then every element in A appears infinitely often with probability 1.

Theorem 10. Let G be a deterministic game graph, and let Φ be a parity objective
defined by a priority function p. Let EL be a set of player-2 edges, and let (G̃, p̃) =
AssRed(G,EL, p). Then 〈〈1〉〉almost (Parity(p̃)) ∩ S = 〈〈1〉〉sure(AssumeFair(EL, Φ)).

Theorem 10 presents a linear-time reduction for AssumeFair(EL,Parity(p)) to proba-
bilistic games with parity objectives. Using the reduction of Theorem 2 and the results
for deterministic parity games (Theorem 1) we obtain the following corollary.

Corollary 1. Given a deterministic game graphG, an objective Φ, a setEL of player-2
edges, and a state s of G, whether s ∈ 〈〈1〉〉sure(AssumeFair(EL, Φ)) can be decided
in quadratic time if Φ is a Büchi objective, and in NP ∩ coNP if Φ is a parity objective.

Complexity of computing a minimal strongly fair assumption. We consider the prob-
lem of finding a minimal set of edges on which a strong fair assumption is sufficient. Due
to space limitation, we present here only the theorem, the proof can be found in [7].

Theorem 11. Given a deterministic game graph G, a Büchi objective Φ, a number
k ∈ N, and a state s of G, the problem of deciding if there is a strongly fair assumption
EL with at most k edges (i.e., |EL| ≤ k) which is live-sufficient for s and Φ, is NP-hard.

Computing locally minimal strongly fair assumptions. Since finding a minimal
set of edges is NP-hard, we focus on computing a locally minimal set of edges.
Given a deterministic game graph G, a state s, and a player-1 objective Φ, a set
EL ⊆ E2 of player-2 edges is a locally-minimal strongly fair assumption for s and
Φ if s ∈ 〈〈1〉〉sure(AssumeFair(EL, Φ)) and for all proper subsets EL

′ ⊂ EL, we
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have s �∈ 〈〈1〉〉sure(AssumeFair(EL
′, Φ)). A locally-minimal strongly fair assump-

tion EL
∗ can be computed by a polynomial number of calls to a procedure that

checks, given a set EL of player-2 edges, whether s ∈ 〈〈1〉〉sure(AssumeFair(EL, Φ)).
The computation proceeds as follows. Initially all player-2 edges are in EL

∗. As
long as s ∈ 〈〈1〉〉sure(AssumeFair(EL

∗, Φ)), we search for an edge e such that s ∈
〈〈1〉〉sure(AssumeFair(EL

∗ \ {e}, Φ)). If such an e exists, then we remove e from EL
∗

and proceed; otherwise we stop and return EL
∗. In the worst case, we have at most

m·(m+1)
2 procedure calls, where m is the number of player-2 edges.

Theorem 12. Given a deterministic game graph G, a state s of G, and a parity ob-
jective Φ, the computed set EL

∗ is a locally-minimal strongly fair assumption for s
and Φ. If Φ is a Büchi objective, then we can compute a locally-minimal strongly fair
assumption EL

∗ for s and Φ in polynomial time.

6 Combining Safety and Liveness Assumptions

Now we put everything together. Let ϕ be an LTL formula (or ω-automaton) and let
G = (G, sI , λ, Φ) be the corresponding Moore synthesis game. We first compute a
nonrestrictive safety assumption ES as described in Section 4 (Theorem 7). If ϕ is
satisfiable, then it follows from Theorem 6 that ES exists and that the corresponding
environment assumptionK(ES) is realizable by the environment. Then, we modify the
player-1 objective with the computed safety assumption: we extend the set of winning
plays for player 1 with all plays in which player 2 follows one of the edges in ES . Since
ES is safe-sufficient for sI and Φ, it follows that sI is live for player 1 in the modified
game. On the modified game, we compute a locally-minimal strongly fair assumption
EL

∗ as described in Section 5 (Theorem 12). Finally, using Theorems 8 and 9, we
conclude the following.

Theorem 13. Given an LTL formula (or ω-automaton)ϕ, let K̂ = K(ES)∩K(EL
∗),

where ES and EL
∗ are computed as described in Theorems 7 and 12. If K �= ∅, then

K is a sufficient assumption for the specification L(ϕ) which is realizable by the envi-
ronment. Conversely, if the Moore synthesis game for ϕ has a safety or Büchi objective,
and if there exists a sufficient assumption K �= ∅ for the specification L(ϕ), then the
computed assumption K̂ is nonempty.

Recall the example from the introduction with the signals r, c, and g, and the specifi-
cation �(r→©♦g) ∧�((c∨ g) →©¬g). Our algorithm computes the environment
assumption ψ̂ shown in Figure 3 (double lines indicate Büchi states). Since it is not
straightforward to describe the language using an LTL formula, we give its relation to
the assumptions proposed in the introduction. The computed assumption ψ̂ includes
ψ1 = �¬c and ψ2 = �♦¬c, is a strict subset of ψ6 = ξW(ξ ∧ (c ∨ g) ∧ ©g) with
ξ = r → ©♦(¬c ∨ g), and is incomparable to all other sufficient assumptions. Even
though the computed assumption is not the weakest w.r.t. language inclusion, it still
serves its purpose: Figure 4 shows a system synthesized from the corrected specifica-
tion of [12] using the environment assumption ψ̂.
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1 Overview

This paper presents Smyle, a tool for synthesizing asynchronous and distributed
implementation models from sets of scenarios that are given as message sequence
charts (MSCs). The latter specify desired or unwanted behavior of the system to
be. Provided with such positive and negative example scenarios, Smyle employs
dedicated learning techniques and propositional dynamic logic (PDL) over MSCs
to generate a system model that conforms with the given examples.

Synthesizing distributed systems from user-specified scenarios is becoming in-
creasingly en vogue [7]. There exists a wide range of approaches for synthesizing
implementation models from a priori given scenarios [5, 6, 8, 11, 14, 15]. The
approaches mainly differ in their specification language, the inference procedure,
and the final implementation model. Several of them employ MSCs as specifica-
tion language because they are standardized by the ITU Z.120 [9] and adopted by
the UML as sequence diagrams. Other approaches try to utilize more expressive
notations like triggered MSCs [14], high-level MSCs [6], or live sequence charts
[8]. On the one hand, more expressive power results in richer specifications. On
the other hand, however, it is just this great expressiveness that disqualifies them
for non-professional or a fortiori unexperienced users, which are overstrained
by these formalisms. As requirements specifications over and over demonstrate,
human beings strongly prefer to express scenarios in terms of simple pictures
including the acting entities and their interaction. Due to this reason, we will
restrict to so-called basic MSCs, only, which consist of processes (i.e., vertical
axes denoting evolution of time) and messages (i.e., horizontal or slanted arrows
between processes signifying asynchronous information exchange).

Many approaches to synthesizing distributed systems typically model synchro-
nous communication, infer labeled transition systems, and use standard automata-
theoretic solutions to project the global system onto its local components. As can
be shown easily, this results in missing or implied behavior that was not stipu-
lated by the user. In contrast, we regard asynchronous communication behavior
and derive a distributed model in terms of a message passing automaton (MPA),
which models the asynchronous communication in a natural manner deploying
FIFO channels. It consist of one local automaton for every process involved in the
system. Harel in his recent article [7] states that it is an intrinsically difficult task to
� This work is partially supported by the DAAD (Procope 2008).
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(a) Learning overview (b) Package overview

Fig. 1. Smyle’s architecture

“[...] distribute the intuitive played-in behavior [...]” and it is still a dream to em-
ploy scenario-based programming. Nevertheless we try to converge to this vision
using the tool Smyle presented in this paper.

2 Smyle from a User Perspective

Smyle is an acronym for Synthesizing Models bY Learning from Examples. Its
major objective is to ease the development of concurrent systems. More specifi-
cally, the overall goal is to derive communication models of concurrent systems.
The synthesis process starts by providing the tool with a set of sample MSCs
where each MSC is either positive or negative. Positive MSCs describe system
behavior that is possible and negative MSCs characterize unwanted or forbid-
den behavior. Smyle focuses on basic-MSC features like asynchronous message
exchange and forbids to deploy the complete MSC standard—which allows for
alternation, loops etc.—on purpose: the more expressive a specification language
gets the less intuitive and manageable it becomes. Simple pictures however are
easy to understand and easy to supply. As mentioned in the previous section,
human beings prefer to describe system runs by means of simple examples and
pictures. Basic MSCs constitute such a device. More information about the for-
mal basis Smyle builds on can be found in [3].

The learning chain: In order to initiate the synthesis process, a so-called learning
setup is specified where the channel capacities of the final system are fixed a
priori by a bound B ∈ IN. The user can choose from two variants: she may
either want to learn a universally-B-bounded system, which means that the
outcome will be realizable using finite channel capacity B, thus resulting in
a finite-state system, or to infer a possibly infinite-state system by requiring
existential bounds on the system’s channels. An existentially-B-bounded learning
setup allows the system developer to include system behavior that may exceed
the system’s channel bound B but at the same time guarantees that there is
at least one execution (i.e., a total ordering of events or a linearization) that
adheres to this limit for each scenario recognized by the final system. Hence, an
appropriate scheduler will always be able to execute the good linearizations (i.e.,
runs not exceeding B) and disregard the ones going beyond the bound. Having
chosen a learning setup, a set of MSCs has to be provided as initial input to
the tool. Smyle will ask the user to classify these MSCs and start the learning
procedure (cf. Figure 1(a)). Successively, new MSCs as depicted in Figure 2(a)
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(a) MSC (b) Integrated MSC editor (c) Simulation (d) MSC
with MSC to classify component rejected by ϕ

Fig. 2. Smyle GUI

are presented to the user (acting as Teacher) who in turn has to classify these
scenarios as either wanted (positive) or illegal (negative). Whenever Smyle has
a complete and consistent view of the current internal system, it presents a
window (cf. Figure 2(c)) for testing and simulating the derived system. Within
this component, the user (now acting as Oracle) may execute actions to see how
the system behaves. These actions are monitored and the related scenario is
depicted as MSC on the right hand side of the frame (cf. Figure 2(c)). If, after
an intensive simulation, there is no evidence for wrong or missing behavior, the
user will terminate the simulation session and the concurrent system is deduced.
If, however, some illegal or missing behavior is detected, then the user can use the
corresponding MSC as counterexample, or, respectively, edit the missing scenario
to a (positive) counterexample. This singleton set of counterexamples may of
course be enriched by additional MSCs, and the learning procedure continues
as explained until reaching the next consistent model. An exemplifying video of
this learning process can be downloaded from the tool’s webpage [1].

The MSC editor: When new MSCs have to be specified in order to start or
continue the learning phase, Smyle can either load MSC documents containing
basic MSCs from the file system or offer to use the integrated MSC editor (cf.
Figure 2(b)) for easy specification of basic MSCs. The MSCs can directly be
classified and fed back to Smyle in order to derive a new MPA. The editor also
provides functionality for storing MSCs in many different formats (e.g., LATEX,
fig, etc.). An extended, stand-alone version of the editor covering the ITU Z.120
standard to a large extend will soon be available [1].

Easing the learning process: In order to simplify the user’s task of classifying
scenarios, Smyle contains means for specifying formulas from PDL over MSCs,
a simple logic that comes with an efficiently solvable membership problem [4].
Like MSCs, PDL formulas are used to express desired or illegal behavior, but in
a broader sense. They are to be seen as general rules which apply for all runs of
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the system (and not only all executions of one scenario). Hence, if a user detects
generally wanted or unwanted properties of the presented MSCs she may specify
formulas which express these generics. Smyle is supplied with these formulas and
can, from that moment on, accept or reject all MSCs that fulfill or, respectively,
violate one of these formulas. This technique reduces the number of user queries
substantially. An example formula is ϕ = A

(
[ p?c(a); proc; p?c(a) ] false

)
which

states that there must not be two subsequent occurrences of the same action (i.e.,
p?c(a)) on the same process p. Hence, if formula ϕ is fed to Smyle as negative
generic, all MSCs featuring this behavior, e.g., the one in Figure 2 (d), would be
regarded as negative samples without questioning the user.

3 Smyle’s Implementation Details

Smyle is a platform-independent application written in Java 1.5. For visualiza-
tion purposes, e.g., displaying MSCs and the implementation model, it uses the
graph-visualization libraries Grappa 1and JGraph 2, and employs the MSC2000
parser [12] for parsing the input MSC documents. As depicted in Figure 1(b),
Smyle consists of six main packages: the graphical user interface (GUI), one
package for MSC components, one for learning components, one comprising the
MSC editor functionality, one for graph components, and an interface to the
learning library LearnLib [13]. The functionality of these components is briefly
described in the following.
MSC components: This package contains the MSC2000 [12] parser for handling
MSC documents according to the ITU Z.120 standard [9]. It provides the classes
for representing the internal MSC objects.
Learning components: The tasks of the learning component are manifold. It con-
tains important functionality for efficient partial-order treatment, harbors the
simulator which can be applied to the learned model, and comprises the Learner ,
the Assistant , and the University , which acts as mediator between the compo-
nents of this package and the other packages as shown in Figure 1(a).
MSC editor components: The MSC editor components feature the implementa-
tion of an integrated MSC editor, which is able to load, store, and alter basic
MSCs. Moreover, the created MSCs can be exported to LATEX and the fig format
and thus can be converted, using available tools, to all other prevalent graphical
formats (e.g., eps, pdf, jpeg).
Graph components: The graph components package includes functionality for
checking MSC behavior (e.g., the FIFO property) and the consistency of the
implementation models.
Interface to LearnLib: This package includes an interface to a learning library
called LearnLib [13], which implements Angluin’s algorithm L∗ [2]. This inter-
face is by courtesy of the Fachbereich Informatik, Lehrstuhl 5 (University of
Dortmund).
1 Grappa: http://www.research.att.com/̃ john/Grappa/
2 JGraph: http://www.jgraph.com/
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4 Future Work

We have applied Smyle to a number of examples. We inferred, for example,
a model for the ABP, one for a part of the USB 1.1 protocol and one for a
leader election protocol for a unidirectional ring. Moreover, Smyle has also been
considered in [10] where scenarios represented as MSCs are derived from natural
language specifications.

For future work, we plan to extend the formula component and integrate it into
the MSC editor to be able to derive PDL formulas from visually annotated MSCs.
Moreover, we intend to apply Smyle to larger sized case studies to evaluate its
feasibility for real world problems.

The synthesis tool Smyle, the MSC editor as well as dedicated theoretic back-
ground information and an exemplifying video presenting the learning chain can
be freely downloaded for educational and research purposes from:

http://www.smyle-tool.org/
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Abstract. We present the tool Sycraft (SYmboliC synthesizeR and
Adder of Fault-Tolerance). In Sycraft, a distributed fault-intolerant
program is specified in terms of a set of processes and an invariant. Each
process is specified as a set of actions in a guarded command language,
a set of variables that the process can read, and a set of variables that
the process can write. Given a set of fault actions and a specification,
the tool transforms the input distributed fault-intolerant program into
a distributed fault-tolerant program via a symbolic implementation of
respective algorithms.

1 Introduction

Distributed programs are often subject to unanticipated events called faults (e.g.,
message loss, processor crash, etc.) caused by the environment that the program
is running in. Since identifying the set of all possible faults that a distributed
system is subject to is almost unfeasible at design time, it is desirable for design-
ers of fault-tolerant distributed programs to have access to synthesis methods
that transform existing fault-intolerant distributed programs to a fault-tolerant
version.

Kulkarni and Arora [4] provide solutions for automatic addition of fault-
tolerance to fault-intolerant programs. Given an existing program, say p, a set f
of faults, a safety condition, and a reachability constraint, their solution synthe-
sizes a fault-tolerant program, say p′, such that (1) in the absence of faults, the
set of computations of p′ is a subset of the set of computations of p, and (2) in
the presence of faults, p′ never violates its safety condition, and, starting from
any state reachable by program and fault transitions, p′ satisfies its reachability
condition in a finite number of steps. In particular, they show that the synthesis
problem in the context of distributed programs is NP-complete in the state space
of the given intolerant program.

To cope with this complexity, in a previous work [2], we developed a set
of symbolic heuristics for synthesizing moderate-sized fault-tolerant distributed
� This work was partially sponsored by NSF CAREER CCR-0092724 and ONR Grant

N00014-01-1-0744.
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programs. The tool Sycraft implements these symbolic heuristics. It is written
in C++ and the symbolic algorithms are implemented using the Glu/CUDD 2.1
package. The source code of Sycraft is available freely and can be downloaded
from http://www.cse.msu.edu/∼sandeep/sycraft

Related work. Our synthesis problem is in sprit close to controller synthesis and
game theory problems. However, there exist several distinctions in theories and,
hence, the corresponding tools. In particular, in controller synthesis and game
theory, the notion of addition of recovery computations does not exist, which
is a crucial concept in fault-tolerant systems. Moreover, we model distribution
by specifying read-write restrictions, whereas related tools and methods (e.g.,
GASt, Supremica, and the SMT-based method in [3]) do not address the issue
of distribution.

2 The Tool SYCRAFT

2.1 Input Language

We illustrate the input language and output format of Sycraft using a classic
example from the literature of fault-tolerant distributed computing, the Byzan-
tine agreement problem [5] (Figure 1). In Byzantine agreement, the program
consists of a general g and three (or more) non-general processes: 0, 1, and 2.
Since, the non-general processes have the same structure, we model them as a
process j that ranges over 0..2. The general is not modeled as a process, but
by two global variables bg and dg. Each process maintains a decision d; for the
general, the decision can be either 0 or 1, and for the non-general processes,
the decision can be 0, 1 or 2, where the value 2 denotes that the correspond-
ing process has not yet received the value from the general. Each non-general
process also maintains a Boolean variable f that denotes whether that process
has finalized its decision. To represent a Byzantine process, we introduce a vari-
able b for each process; if b.j is true then process j is Byzantine. In Sycraft, a
distributed fault-intolerant program comprises of the following sections:

Process sections. Each process includes (1) a set of process actions given in
guarded commands, (2) a fault section which accommodates fault actions that
the process is subject to, (3) a prohibited section which defines a set of transitions
that the process is not allowed to execute, (4) a set of variables that the process
is allowed to read, and (5) a set of variables that the process is allowed to write.
The syntax of actions is of the form g → st, where the guard g is a Boolean
expression and statement st is a set of (possibly non-deterministic) assignments.
The semantics of actions is such that at each time, one of the actions whose
guard is evaluated as true is chosen to be executed non-deterministically. The
read-write restrictions model the issue of distribution in the input program.
Note that in Sycraft, fault actions are able to read and write all the program
variables. Prohibited transitions are specified as a conjunction of an (unprimed)
source predicate and a (primed) target predicate.

http://www.cse.msu.edu/~sandeep/sycraft
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In the context of Byzantine agreement, each non-general process copies the
decision value from the general (Line 6) and then finalizes that value (Line 8).
A fault action may turn a process to a Byzantine process, if no other process is
Byzantine (Line 10). Faults also change the decision (i.e., variables d and f) of a
Byzantine process arbitrarily and non-deterministically (Line 12). In Sycraft,
one can specify faults that are not associated with a particular process. This
feature is useful for cases where faults affect global variables, e.g., the decision of
the general (Lines 18-22). In the prohibited section, we specify transitions that
violate safety by process (and not fault) actions. For instance, it is unacceptable
for a process to change its final decision (Line 14). Finally, a non-general process
is allowed to read its own and other processes’ d values and update its own d
and f values (Lines 15-16).

Invariant section. The invariant predicate has a triple role: it (1) is a set
of states from where execution of the program satisfies its safety specification
(described below) in the absence of faults, (2) must be closed in the execution of
the input program and, (3) specifies the reachability condition of the program,
i.e., if occurrence of faults results in reaching a state outside the invariant, the
(synthesized) fault-tolerant program must safely reach the invariant predicate in
a finite number of steps. In order to increase the chances of successful synthesis,
it is desired that Sycraft is given the weakest possible invariant. In the context
of our example, the following states define the invariant: (1) at most one process
may be Byzantine (Line 24), (2) the d value of a non-Byzantine non-general
process is either 2 or equal to dg (Line 25), and (3) a non-Byzantine undecided
process cannot finalize its decision (Line 26), or, if the general is Byzantine and
other processes are non-Byzantine their decisions must be identical and not equal
to 2 (Line 28).

Specification section. Our notion of specification is based on the one defined
by Alpern and Schneider [1]. The specification section describes the safety spec-
ification as a set of bad prefixes that should not be executed neither by a process
nor a fault action. Currently, the size of such prefixes in Sycraft is two (i.e.,
a set of transitions). The syntax of specification section is the same as prohib-
ited section described above. In the context of our example, agreement requires
that the final decision of two non-Byzantine processes cannot be different (Lines
30-31). And, validity requires that if the general is non-Byzantine then the final
decision of a non-Byzantine process must be the same as that of the general
(Lines 32). Notice that in the presence of a Byzantine process, the program may
violate the safety specification.

2.2 Internal Functionality

Sycraft implements three nested symbolic fixedpoint computations. The inner
fixedpoint deals with computing the set of states reachable by the input intoler-
ant program and fault transitions. The second fixedpoint computation identifies
the set ms of states from where the safety condition may be violated by fault
transitions. It makes ms unreachable by removing program transitions that end
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1) program Byzantine Agreement;
2) const N = 2;
3) var boolean bg, b.0..N, f.0..N;
4) int dg: domain 0..1, d.0..N: domain 0..2;

{-------------------------------------------------------------------------}
5) process j: 0..N
6) ((d.j == 2) & !f.j & !b.j) --> d.j := dg;
7) []
8) ((d.j != 2) & !f.j & !b.j) --> f.j := true;
9) fault Byzantine NonGeneral
10) (!bg) & (forall p in 0..N::(!b.p)) --> b.j := true;
11) []
12) (b.j) --> (d.j := 1) [] (d.j := 0) []

(f.j := false) [] (f.j := true);
13) endfault
14) prohibited (!b.j)&(!b.j’)&(f.j)&((d.j!=d.j’) | (!f.j’))
15) read: d.0..N, dg, f.j, b.j;
16) write: d.j, f.j;
17) endprocess

{-------------------------------------------------------------------------}
18) fault Byzantine General
19) !bg & (forall p in 0..N:: (!b.p)) --> bg := true;
20) []
21) bg --> (dg := 1) [] (dg := 0);
22) endfault

{-------------------------------------------------------------------------}
23) invariant
24) (!bg & (forall p, q in 0..N:(p != q):: (!b.p | !b.q))&
25) (forall r in 0..N::(!b.r => ((d.r == 2) | (d.r == dg)))) &
26) (forall s in 0..N:: ((!b.s & f.s) => (d.s != 2))))
27) |
28) (bg & (forall t in 0..N:: (!b.t)) &

(forall a,b in 0..N::((d.a==d.b)&(d.a!=2))));
{-------------------------------------------------------------------------}

29) specification:
30) (exists p, q in 0..N: (p != q) :: (!b.p’ & !b.q’ & (d.p’ != 2) &
31) (d.q’ != 2) & (d.p’ != d.q’) & f.p’ & f.q’)) |
32) (exists r in 0..N:: (!bg’ & !b.r’ & f.r’ & (d.r’ != 2) & (d.r’ != dg’)));

Fig. 1. The Byzantine agreement problem as input to Sycraft

in a state in ms . Note that in a distributed program, since processes cannot read
and write all variables, each transition is associated with a group of transitions.
Thus, removal or addition of a transition must be done along with its corre-
sponding group. The outer fixedpoint computation deals with resolving deadlock
states by either (if possible) adding safe recovery simple paths from deadlock
states to the program’s invariant predicate, or, making them unreachable via
adding minimal restrictions on the program.

2.3 Output Format

The output of Sycraft is a fault-tolerant program in terms of its actions. Figure 2
shows the fault-tolerant version of Byzantine agreement with respect to process
j = 0. Sycraft organizes these actions in three categories. Unchanged actions
entirely exist in the input program (e.g., action 1). Revised actions exist in the
input program, but their guard or statement have been strengthened (e.g., Line
8 in Figure 1 and actions 2-5 in Figure 2). Sycraft adds Recovery actions to
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----------------------------------------------------------------------------------
UNCHANGED ACTIONS:
----------------------------------------------------------------------------------
1-((d0==2) & !(f0==1)) & !(b0==1) --> (d0:=dg)
----------------------------------------------------------------------------------
REVISED ACTIONS:
----------------------------------------------------------------------------------
2-(b0==0) & (d0==1) & (d1==1) & (f0==0) --> (f0:=1)
3-(b0==0) & (d0==0) & (d2==0) & (f0==0) --> (f0:=1)
4-(b0==0) & (d0==0) & (d1==0) & (f0==0) --> (f0:=1)
5-(b0==0) & (d0==1) & (d2==1) & (f0==0) --> (f0:=1)
----------------------------------------------------------------------------------
NEW RECOVERY ACTIONS:
----------------------------------------------------------------------------------
6-(b0==0)&(d0==0)&(d1==1)&(d2==1)&(f0==0) --> (d0:=1)[]((d0:=1), (f0:=1))
7-(b0==0)&(d0==1)&(d1==0)&(d2==0)&(f0==0) --> (d0:=0)[]((d0:=1), (f0:=1))
----------------------------------------------------------------------------------

Fig. 2. Fault-tolerant Byzantine agreement

enable the program to safely converge to its invariant predicate. Notice that the
strengthened actions prohibit the program to reach a state from where validity or
agreement is violated in the presence of faults. It also prohibits the program to
reach deadlock states from where safe recovery is not possible.

3 Conclusion

Sycraft allows for transformation of moderate-sized fault-intolerant distrib-
uted programs to their fault-tolerant version with respect to a set of uncon-
trollable faults, a safety specification, and a reachability constraint. In addition
to the obvious benefits of automated program synthesis, we have observed that
Sycraft can be potentially used to debug specifications as well, since the algo-
rithms in Sycraft tend to add minimal restrictions on the synthesized program.
Thus, testing approaches can be used to evaluate behaviors of the synthesized
programs to identify missing requirements. To address this potential application
of program synthesis, we plan to add supervised synthesis features to Sycraft.
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Abstract. We introduce subsequence invariants, which characterize the
behavior of a concurrent system in terms of the occurrences of synchro-
nization events. Unlike state invariants, which refer to the state variables
of the system, subsequence invariants are defined over auxiliary counter
variables that reflect how often the event sequences from a given set have
occurred so far. A subsequence invariant is a linear constraint over the
possible counter values. We allow every occurrence of a subsequence to
be interleaved arbitrarily with other events. As a result, subsequence in-
variants are preserved when a given process is composed with additional
processes. Subsequence invariants can therefore be computed individu-
ally for each process and then be used to reason about the full system.
We present an efficient algorithm for the synthesis of subsequence invari-
ants. Our construction can be applied incrementally to obtain a growing
set of invariants given a growing set of event sequences.

1 Introduction

An invariant is an assertion that holds true in every reachable state. Since most
program properties can either directly be stated as invariants or need invari-
ants as part of their proof, considerable effort has been devoted to synthesizing
invariants automatically from the program text [1, 2, 3, 4, 7, 14].

The most natural approach to invariant generation, followed in almost all
previous work, is to look for constraints over the program variables that are
inductive with respect to the program transitions. This approach works well
for sequential programs, but often fails for concurrent systems: to be inductive,
the invariants must refer to variables from all (or at least multiple) processes;
working on the product state space, however, is only feasible if the number of
processes is very small.

We introduce a new type of program invariants, which we call subsequence
invariants. Instead of referring to program variables, subsequence invariants
characterize the behavior of a concurrent system in terms of the occurrences of
synchronization events. Subsequence invariants are defined over auxiliary counter
variables that reflect how often the event sequences from a given set of subse-
quences have occurred so far. A subsequence invariant is a linear constraint over
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Fig. 1. Arbiter tree: Access to a shared resource is controlled by binary arbiters
arranged in a tree, with a central root process

the possible counter values. Each occurrence of a subsequence may be scattered
over a sequence of synchronization events: for example, the sequence acacb con-
tains two occurrences (acacb and acacb) of the subsequence ab. This robustness
with respect to arbitrary interleavings with other events ensures that subse-
quence invariants are preserved when a given process is composed with addi-
tional processes. Subsequence invariants can therefore be computed individually
for each process and then be used to reason about the full system.

As an example, consider the arbiter tree shown in Figure 1. The environment
represents the clients of the system, which may request access to a shared re-
source from one of the leaf nodes of the arbiter tree. The arbiter node then sends
a request to its parent in the tree. This request is forwarded up to the central
root process, which generates a grant as soon as the resource is available. The
grant is propagated down to a requesting client, which then accesses the resource
and eventually sends a release signal when it is done. Each arbiter node satisfies
the following subsequence invariants:

(1) Whenever a grant is given to a child, the number of grants given to the other
child so far equals the number of releases received from it. For example, for
Arbiter 1, each occurrence of gr2 in an event sequence w is preceded by an
equal number of occurrences of gr1 and rel1:

|w|gr1 gr2 = |w|rel1 gr2 and, symmetrically, |w|gr2 gr1 = |w|rel2 gr1 .

(2) Whenever a grant is given to a child, the number of grants received from the
parent exceeds the number of releases sent to it by exactly 1. For example, for
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Arbiter 1, each occurrence of gr1 or gr2 is preceded by one more occurrence
of gr0 than of rel0:

|w|gr0 gri
= |w|rel0 gri

+ |w|gri
, for i = 1, 2.

(3) Whenever a release is sent to, or a grant received from, the parent, the
number of releases received from each child equals the number of grants
given to that child. For Arbiter 1:

|w|gri gr0 = |w|reli gr0 and |w|gri rel0 = |w|reli rel0 , for i = 1, 2.

(4) The differences between the corresponding numbers of grants and releases
only ever take values in {0, 1}. For Arbiter 1:

|w|gri reli + |w|reli gri
= |w|gri gri

+ |w|reli reli + |w|reli , for i = 0, 1, 2.

Combined, the subsequence invariants (1) - (4) of all arbiter nodes imply that
the arbiter tree guarantees mutual exclusion among its clients.

In this paper, we present algorithms for the synthesis of subsequence invariants
that automatically compute all invariants of an automaton for a given set of
subsequences. Since the set of invariants is in general not finite, it is represented
algebraically by a finite set of generators. Based on the synthesis algorithms, we
propose the following verification technique for subsequence invariants:

To prove a desired system property ϕ, we first choose, for each process, a
set U of relevant subsequences and then synthesize a basis of the subsequence
invariants over U . The invariants computed for each individual process translate
to invariants of the system. If ϕ is a linear combination of the system invariants,
we know that ϕ itself is a valid invariant.

The only manual step in this technique is the choice of an appropriate set
of subsequences, which depends on the complexity of the interaction between
the processes. A practical approach is therefore to begin with a small set of
subsequences and then incrementally compute a growing set of invariants based
on a growing set of subsequences until ϕ is proved.

In the following, due to space constraints, all proofs have been omitted. We
refer the reader to the full version of this paper [6].

Related work. There is a significant body of work on the generation of invari-
ants over program variables, ranging from heuristics (cf. [7]), to methods based on
abstract interpretation (cf. [1, 2, 4, 14]) and constraint solving (cf. [3]). The key
difference to our approach is that, while these approaches aim at finding a concise
characterization of a complex state space, we aim at finding a concise represen-
tation of a complex process interaction. T-invariants, which relate the number of
firings of different transitions in a Petri net, have a similar motivation (cf. [11]),
but are not applied in the compositional manner of subsequence invariants.

Subsequence occurrences have, to the best of our knowledge, not been used in
verification before. However, there has been substantial interest in subsequences
in the context of formal languages, in particular in connection with Parikh ma-
trices and their generalizations; see, for example, [5, 8, 10, 13], as well as Parikh’s
original paper [12], introducing Parikh images.
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Subsequences are also used in machine learning, in the context of kernel-based
methods for text classification [9]; here the focus is on their use as characteristic
values of given pieces of text, not on the characterization of languages or systems
by constraints on their possible values.

2 Preliminaries

Linear algebra. For a given finite set U , the real vector space RU generated
by U consists of all tuples φ = (φu)u∈U of real numbers indexed by the elements
of U . For a given set of vectors φ1, . . . , φk ∈ RU , the subspace span(φ1, . . . , φk)
spanned by φ1, . . . , φk consists of all linear combinations λ1φ

1 + . . . λkφ
k for

λ1, . . . , λk ∈ R. We assume that the set U is equipped with a total ordering
<, i.e., U = {u1, . . . , um} with u1 < · · · < um. We write vectors as tuples
(φu1 , . . . , φum) according to this order. The pivot element pivot(φ) is the <-least
element u such that φu is nonzero.

A set B of linearly independent vectors is a basis for a subspace H ⊆ RU

iff H = span(B). When we collect the basis vectors of a subspace, we ensure
the linear independence of the vectors with the following construction: To add
a new vector η to a set {φ1, . . . , φk} of vectors, we consider, for each vector
φi, the pivot element ui := pivot(φi) and reduce η to η − (ηui/φi

ui)φi. For the
resulting vector η′ we know that η′ui = 0 for all i. If η′ = 0, then the new set of
vectors is the same as the original set {φ1, . . . , φk}; otherwise, we reduce each
vector φi from the original set to ψi := φi − (φi

ui/ηui)η, resulting in the new set
{ψ1, . . . , ψk, η′}.

As an example, consider the set of vectors {φ1, φ2} ⊂ R{1,...,5}, where
φ1 = (1, 2, 0,−1, 1)T and φ2 = (0, 0, 1, 2,−2)T , with pivot elements 1 and
3, respectively. A new vector η = (1, 1, 2, 2,−1)T would first be reduced to
(0,−1, 2, 3,−2)T (by subtracting φ1), and then to η′ = (0,−1, 0,−1, 2)T (by
subtracting 2φ2). Reducing φ1, we obtain ψ1 = (1, 0, 0,−3, 5)T , resulting in the
new set {(1, 0, 0,−3, 5)T , (0, 0, 1, 2,−2)T , (0,−1, 0,−1, 2)T}.

The orthogonal complement H⊥ of a subspace H ⊆ RU consists of the vectors
that are orthogonal to those in H , i.e., all vectors ψ where the scalar product
ψ · φ =

∑
u∈U ψuφu is zero for all φ ∈ H . Given a basis B for H that has been

reduced as described above, a basis for H⊥ is obtained as follows:
Let V ⊆ U be the set of all u ∈ U which are not the pivot element of

any φ ∈ B. For each u ∈ V , define a vector ψu by ψu
u = 1, ψu

v = 0 for all
v ∈ V \ {u}, and for each φ ∈ B, ψu

pivot(φ) = −φu/φpivot(φ). For example, given
the basis B = {(1, 0, 0,−3, 5)T , (0, 0, 1, 2,−2)T , (0,−1, 0,−1, 2)T}, we have that
V = {4, 5}, and therefore obtain the basis vectors ψ4 = (3,−1,−2, 1, 0)T and
ψ5 = (−5, 2, 2, 0, 1)T for span(B)⊥.

Alphabets and Sequences. An alphabet is a finite set of symbols. For an
alphabet A, A∗ is the set of finite sequences over A. The empty sequence is
denoted by ε, the composition of two sequences v, w ∈ A∗ by v.w, and the
length of a sequence w by |w|.
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For alphabets A1 ⊆ A2, the projection w ↓A1 of a sequence w ∈ A∗
2 onto A1

is defined recursively by

ε ↓A1= ε, (w.a) ↓A1=

{
(w ↓A1).a if a ∈ A1,

w ↓A1 otherwise.

We equip A with a total order <, and A∗ with the corresponding length-
lexicographical ordering given by u <llex v iff either

– |u| < |v| or
– |u| = |v|, and there are x, y, z ∈ A∗, a, b ∈ A with a < b, u = xay, v = xbz.

In particular, elements φ of the vector space RU , generated by a finite subset
U ⊂ A∗, are written according to this order, i.e., φ = (φu1 , . . . , φun) for U =
{u1, . . . , un}, u1 <llex · · · <llex u

n.

Communicating automata. We consider concurrent systems that are given
as a set of communicating finite-state automata. A (nondeterministic) finite
automaton P = (QP ,AP , q

0
P , TP ) consists of

– a finite set QP of locations,
– a finite alphabet AP of synchronization events,
– an initial location q0P ∈ QP , and
– a transition relation TP ⊆ QP ×AP ×QP .

When dealing with automata P1, . . . , Pn, we use i as the subscript instead of Pi.
We denote (q, a, r) ∈ TP by q

a→P r. For a sequence w = w1 . . . wn ∈ A∗
P ,

q
w→P r iff q

w1→P · · · wn→P r. The language of a location q ∈ QP is the set
L(q) := {w ∈ A∗

P : q0 w→P q}; q is reachable iff L(q) �= ∅. We assume in
the following that our automata only contain reachable locations. For a subset
Q′ ⊆ QP of the locations, the language of Q′ is the union of all languages of the
locations in Q′. The language of an automaton P is the language of its locations,
L(P ) := L(QP ).

A set {P1, . . . , Pn} of finite automata defines a system automaton S =
(Q,A, q0,→), where Q = Q1 × · · · ×Qn, A = A1 ∪ · · · ∪An, and (q1, . . . , qn) a→
(r1, . . . , rn) iff for all i ∈ {1, . . . , n} either

– a ∈ Ai and qi
a→i ri, or

– a /∈ Ai and qi = ri.

The language L(S) of S thus consists of all sequences w over A, such that, for
each automaton Pi, the projection w↓Ai

to the alphabet Ai is in the language
L(Pi).

3 Subsequence Invariants

Let P = (Q,A, q0, T ) be a finite automaton. We define the subsequence in-
variants of P relative to a given finite, prefix-closed set of sequences U =
{u1, . . . , un} ⊂ A∗, which we call the set of subsequences.
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Given two sequences u = u1 . . . uk and w = w1 . . . wn ∈ A∗, the set of oc-
currences of u as a subsequence in w is [w]u := {(i1, . . . , ik) : 1 ≤ i1 < · · · <
ik ≤ n,wij = uj for all j}. For example, [aababb]ab = {(1, 3), (1, 5), (1, 6), (2, 3),
(2, 5), (2, 6), (4, 5), (4, 6)}. The sizes of these sets define the numbers of occur-
rences |w|u := ‖[w]u‖. These numbers can be computed recursively, using the
recurrence [8]

|w|ε = 1, |ε|u.b = 0, |w.a|u.b =

{
|w|u.b + |w|u if a = b,

|w|u.b otherwise,

for all u,w ∈ A∗, a, b ∈ A. This gives rise to a mapping |.|U from A∗ into RU

defined by |w|U = (|w|u1 , . . . , |w|un).
For any subset Q′ ⊆ Q, the subsequence hull of Q′ is the subspace HQ′ of RU

spanned by the subsequence occurrences {|w|U : w ∈ L(Q′)}.

Definition 1. A subsequence invariant for Q′ ⊆ Q over U is a vector φ ∈ RU

such that for all w ∈ L(Q′),
∑

u∈U φu|w|u = 0.

The subsequence invariants for Q′ define a linear subspace IQ′ ⊆ RU , which is
the orthogonal complement of HQ′ in RU . Special cases are the local subsequence
invariants Iq = I{q} at q ∈ Q and the global invariants of P , IP = IQ. The spaces
of the invariants satisfy the relation IQ′ =

⋂
q∈Q′ Iq.

The sequences that satisfy a given set of subsequence invariants form a
context-sensitive language [13]. The expressiveness of subsequence invariants
is, however, incomparable to the regular and context-free languages. For ex-
ample, subsequence invariants can characterize the context-sensitive language
{anbncn : n ∈ N} = {w ∈ A∗ : |w|a = |w|b, |w|b = |w|c, |w|ba = 0, |w|cb = 0}, but
not the regular language {a.w : w ∈ A∗} for some a ∈ A .

Requiring invariants to be linear equalities may appear restrictive. In the
remainder of this section we illustrate the expressive power of subsequence in-
variants by translating two useful types of invariants, conditional and disjunctive
invariants, to equivalent linear subsequence invariants.

Resolving conditions. Properties (1)–(3) of the arbiter tree discussed in the
introduction are examples of conditional invariants, stating that a linear equality
over the numbers |w|u should hold whenever some event a ∈ A occurs. Obviously,
the equality must be in IEa , where Ea is the set of locations in which an a-
transition can occur. We can resolve the event condition to obtain a global
statement, using subsequences no more than one symbol longer than those in U ,
as follows:

Theorem 1. Let a ∈ A and Ea := {q ∈ Q : q a→ r for some r ∈ Q}. Then∑
u∈U φu|w|u = 0 for all w ∈ L(Ea) if and only if

∑
u∈U φu|w|u.a = 0 for all

w ∈ L(P ).

Thus, for example, the condition that the number of releases received from the
left child must equal the number of grants given to it whenever a grant is given to
the right child, i.e., |w|gr1 = |w|rel1 for all w ∈ Egr2 , is equivalent to |w|gr1.gr2 =
|w|rel1.gr2 for all w ∈ L(P ).
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Resolving disjunctions. Consider now the fourth statement in the introduc-
tory example: The differences between the corresponding numbers of grants and
releases only ever take values in {0, 1}. Such a disjunctive condition can be
translated in two steps into an equivalent linear equation: The condition is first
transformed into a polynomial equation (Step 1), and then reduced, using alge-
braic dependencies, to an equivalent linear equation (Step 2).

Step 1 is simple: The condition
∑

u∈U φu|w|u ∈ {c1, . . . , ck} is equivalent to
(
∑

u∈U φu|w|u − c1) · · · (
∑

u∈U φu|w|u − ck) = 0.
For the transformation of the resulting polynomial equation into a linear equa-

tion, we define, as an auxiliary notion, the set of coverings of x ∈ A∗ by u and
v to be

[x]u,v := {((i1, . . . , ik), (j1, . . . , jm)) : i1 < · · · < ik, j1 < · · · < jm,

u = xi1 . . . xik
, v = xjl

. . . xjm ,

{i1, . . . , ik, j1, . . . , jm} = {1, . . . , |x|}},

i.e., the set of pairs of occurrences of u and v as subsequences of x such that
every index in 1, . . . , |x| is used in at least one of them. For example,

[aabaa]aaa,aba ={((1, 2, 4), (1, 3, 5)), ((1, 2, 4), (2, 3, 5)), ((1, 2, 5), (1, 3, 4)), ((1, 2, 5), (2, 3, 4)),

((1, 4, 5), (2, 3, 4)), ((1, 4, 5), (2, 3, 5)), ((2, 4, 5), (1, 3, 4)), ((2, 4, 5), (1, 3, 5))}.

Let |w|u,v = ‖[w]u,v‖ denote the number of coverings, which can be computed
recursively as follows:

|w|u,ε = |w|ε,u =

{
1 if u = w,

0 otherwise,
|ε|u,v =

{
1 if u = v = ε,

0 otherwise,

|w.a|u.b,v.c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|w|u,v + |w|u.b,v + |w|u,v.c if b = a = c,

|w|u,v.c if b = a �= c,

|w|u.b,v if b �= a = c,

0 if b �= a �= c.

It is easy to see that for every u, v ∈ A∗, the set C(u, v) := {x ∈ A∗ : [x]u,v �= ∅}
of sequences coverable by u and v is finite, since it cannot contain sequences
longer than |u|+ |v|.

Theorem 2 (See Theorem 6.3.18 in [8] for an equivalent statement to (2))

1. For all u, v, w ∈ A∗, there is a bijection between [w]u × [w]v and⊎
x∈C(u,v)([x]u,v × [w]x), and therefore,

2. For all u, v, w ∈ A∗, |w|u|w|v =
∑

x∈C(u,v) |x|u,v|w|x.

Simple examples for Theorem 2 are the equalities |w|2a = 2|w|aa + |w|a and
|w|a|w|b = |w|ab + |w|ba. For u = ab and v = ba, we obtain the equality
|w|ab|w|ba = |w|aba + |w|bab + |w|abab + 2|w|abba + 2|w|baab + |w|baba.
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The degree k polynomial equation p(|w|u1 , . . . , |w|un) = 0 resulting from Step 1
can then be transformed into a linear equation using the equalities from
Theorem 2. This linear equation involves subsequences of length up to kl, where l
is the maximum length of any u ∈ U .

Example: For property (4) from the introduction, we obtain

|w|gri
− |w|reli ∈ {0, 1}
⇔ (|w|gri

− |w|reli)(|w|gri
− |w|reli − 1) = 0

⇔ |w|2gri
− 2|w|gri

|w|reli + |w|2reli − |w|gri
+ |w|reli = 0

⇔ |w|gri . gri
+ |w|reli.reli + |w|reli = |w|gri . reli + |w|reli . gri

.

This technique can also handle more complicated constraints: An alternative
characterization of Arbiter 1 is given by the requirement that for all w ∈ L(P ),

⎛

⎝
|w|gr0 − |w|rel0
|w|gr1 − |w|rel1
|w|gr2 − |w|rel2

⎞

⎠ ∈

⎧
⎨

⎩

⎛

⎝
0
0
0

⎞

⎠ ,

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
1
1
0

⎞

⎠

⎫
⎬

⎭
.

Note that the possible values for the linear expressions are mutually dependent.
The set of vectors on the right-hand side can be characterized as the set of all
(x, y, z)T for which x2−x, y2− y, z2− z, xy− y, xz− z and yz are all zero. Using
Theorem 2, we again obtain a set of linear subsequence constraints. In general,
we have:

Theorem 3. Let ‖U‖ = n,max{|u| : u ∈ U} = l,M ∈ Rk×n, and φ1, . . . , φm ∈
Rk. Then the constraint given by M |w|U ∈ {φ1, . . . , φm} is equivalent to a finite
set of linear subsequence constraints involving subsequences of length ≤ ml.

4 Computing Subsequence Invariants

In this section, we present two algorithms for computing the subsequence in-
variants of a given finite automaton P = (Q,A, q0, T ) with respect to a finite,
prefix-closed set U ⊂ A∗ of subsequences. The first algorithm is generally ap-
plicable. The second algorithm is a more efficient solution that is applicable if
the state graph is strongly connected.

4.1 The General Algorithm

The subsequence invariants are computed using matrices Fa representing the
effect of appending a ∈ A, which are defined by

Fa = (fu,v)u,v∈U : fu,v =
{

1 if u ∈ {v, v.a},
0 otherwise.

For example, for U = {ε, a, b, aa, ab, ba, bb},

|w.a|U =

⎛

⎜
⎝

1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1

⎞

⎟
⎠|w|U , |w.b|U =

⎛

⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 1

⎞

⎟
⎠|w|U .
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Data: Automaton P = (Q, A, q0, T ), finite prefix-closed U ⊂ A∗

Result: Bases Bq for the subspaces Hq = span(|w|U : w ∈ L(q))
// Initialization:

foreach q ∈ Q do Bq := ∅;
// Bq0 initially contains {|ε|U }
Bq0 := {(1, 0, . . . , 0)T };
// The open list, containing pairs (q, φ) to be explored

O := {(q0, (1, 0, . . . , 0)T )};
// Basis construction:

while O �= ∅ do
take (q, φ) from O;
foreach q

a→ r do
ψ := Faφ;
begin reduce ψ with Br:

foreach η ∈ Br do
v := min{u ∈ U : ηu �= 0};
ψ := ψ − (ψv/ηv)η;

end
if ψ �= 0 then

Br := Br ∪ {ψ};
O := O ∪ {(r, ψ)};

Fig. 2. Fixpoint iteration computing the subspaces Hq

These matrices are easily seen to be unit lower triangular matrices (recall that
U is ordered by <llex) and thus have determinant 1; their inverses are

F−1
a = (bu,v)u,v∈U : bu,v =

{
(−1)k if u = v.ak, k ≥ 0,

0 otherwise.

To compute the invariants, we determine, for all q ∈ Q, a basis of the subspace
Hq = span({|w|U : w ∈ L(q)}), using the fixpoint iteration shown in Figure 2.

Theorem 4. 1. The sets Bq computed by the fixpoint iteration shown in Fig-
ure 2 are bases for the vector spaces Hq spanned by {|w|U : w ∈ L(q)}.

2. When called for an automaton P = (Q,A, q0, T ) with ‖T ‖ = m and U ⊂ A∗

with ‖U‖ = n, the fixpoint iteration terminates in time O(mn3).

4.2 An Optimized Algorithm for Strongly-Connected Automata

If P is strongly connected, i.e., there is a path from q to r for all locations
q, r ∈ Q, we can improve the construction of the invariants. For w = w1 . . . wn

such that q w→ r, the composition Fw = Fwn . . . Fw1 is an isomorphism from
Hq to its image Fw(Hq) ⊆ Hr, implying in particular dim(Hq) ≤ dim(Hr). In
the strongly connected case, this implies dim(Hq) = dim(Hr) for all q, r, and
Hr = Fw(Hq), i.e., Fw is an isomorphism from Hq to Hr when q

w→ r.
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Data: Automaton P = (Q, A, q0, T ), finite prefix-closed U ⊂ A∗

Result: Bases Bq for the subspaces Hq = span(|w|U : w ∈ L(q))
// Initialization:

Mq0 := IC := ∅;
O := {q0};
// Exploration:

while O �= ∅ do
take q from O;
foreach q

a→ r do
N := FaMq ;
if Mr not yet defined then

define Mr := N ;
O := O ∪ {r};

else if Mr �= N then
C := C ∪ {M−1

r N};

// Basis construction:

Bq0 := {(1, 0, . . . , 0)};
O := {(1, 0, . . . , 0)};
while O �= ∅ do

take φ from O; foreach M ∈ C do
ψ := Mφ;
begin reduce ψ with Bq0 :

foreach η ∈ Bq0 do
v := min{u ∈ U : ηu �= 0};
ψ := ψ − (ψv/ηv)η;

end
if ψ �= 0 then

Bq0 := Bq0 ∪ {ψ};
O := O ∪ {ψ};

foreach q ∈ Q \ {q0} do
Bq := {Mqφ : φ ∈ Bq0}

Fig. 3. Local fixpoint iteration computing the subspaces Hq

The local fixpoint iteration shown in Figure 3 exploits this observation by
finding isomorphisms Mq : Hq0 → Hq for all q ∈ Q as well as a set C of
automorphisms of Hq0 corresponding to a cycle basis of the automaton. The
matrices Ci ∈ C are then used to compute a basis of Hq0 . For all other q ∈ Q,
Hq is obtained viaMq. The main advantage of this algorithm is the lower number
of reduction steps if the cycle degree ‖T ‖ − ‖Q‖+ 1 of P is small:

Theorem 5. 1. The set Bq0 computed by the local fixpoint iteration shown in
Figure 3 forms a basis of Hq0 .

2. When called for an automaton P = (Q,A, q0, T ) with ‖T ‖ = m and cycle
degree γ := ‖T ‖ − ‖Q‖ + 1, and U ⊂ A∗ with ‖U‖ = n, the local fixpoint
iteration terminates in time O(mn2 + γn3).
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q0

q1

q2

q3

a b

c

bc

C1 =

0
BBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0

−1 −1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0

−1 0 −1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 −1 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCA

C2 =

0
BBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0
0 2 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0
1 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 2 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCA

Fig. 4. Example for the local fixpoint construction

Example: Consider the automaton in Figure 4. Using U = {ε, a, b, c, aa, ab, ac,
ba, bb, bc, ca, cb, cc}, we compute Bq0 as follows:

1. Initialization: Mq0 = I, C = ∅, B = {φ0}, where φ0 = (1, 0, . . . , 0);
2. Exploration:

q0
a→ q1 : Mq1 = Fa;

q0
c→ q2 : Mq2 = Fc;

q1
b→ q2 : add C1 = F−1

c FbFa to C;
q2

b→ q3 : Mq3 = FbFc;
q3

c→ q0 : add C2 = FcFbFc to C;

C1 and C2 correspond to the two basic undirected cycles q0 a→ q1
b→ q2

c← q0

and q0
c→ q2

b→ q3
c→ q0.

3. Basis construction: Successively extending B by reducing and adding L1φ
0,

L2φ
0, L2

1φ
0, L2L1φ

0, L1L2φ
0, L2

2φ
0, we obtain basis vectors

φ0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,
φ1 = (0, 1, 0, −3, 0, 0, −3, 0, 0, −2, 0, 2, 6)T ,
φ2 = (0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 1, 1)T ,
φ3 = (0, 0, 0, 0, 1, 0, −3, 0, 0, 0, −3, 0, 9)T ,
φ4 = (0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, −3, −6)T ,
φ5 = (0, 0, 0, 0, 0, 0, 0, 1, 0, −3, 2, 0, −6)T ,
φ6 = (0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 4)T .

All further products Liφ
j reduce to 0.
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4. Local invariant generation: Computing the orthogonal complement, we ob-
tain the following basis for Iq0 :

ψ1 = (0, 3, −2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,
ψ2 = (0, 3, 0, 0, 3, −2, 1, 0, 0, 0, 0, 0, 0)T ,
ψ3 = (0, 2, −1, 0, 0, 0, 0, 3, −2, 1, 0, 0, 0)T ,
ψ4 = (0, 0, 0, 0, 3, 0, 0, −2, 0, 0, 1, 0, 0)T ,
ψ5 = (0, −2, −1, 0, 0, 3, 0, 0, −2, 0, 0, 1, 0)T ,
ψ6 = (0, −6, −1, 0, −9, 6, 0, 6, −4, 0, 0, 0, 1)T .

For example, ψ1 represents the invariant 3|w|a − 2|w|b + |w|c = 0, ψ2 the
invariant 3|w|a + 3|w|aa − 2|w|ab + |w|ac = 0.

5. Global invariant generation: Adding the vectors Mqφ
i to B and computing

the orthogonal complement, we obtain the single global invariant 3|w|aa −
2|w|ba + |w|ca = 0.

5 From Process to System Invariants

A key advantage of subsequence invariants is that invariants that have been
computed for an individual automaton are immediately inherited by the full
system and can therefore by composed by simple conjunction.

Theorem 6. Let S = {P1, . . . , Pn} be a system of communicating finite au-
tomata. If

∑
u∈U φu|w|u = 0 is a global subsequence invariant for Pi over

U ⊂ A∗
i , then

∑
u∈U φu|w|u = 0 also holds for all w ∈ L(S).

The system S may satisfy additional invariants, not covered by Theorem 6, that
refer to interleavings of sequences from A∗

i with sequences from a different A∗
j . In

the following, we present two methods for obtaining such additional invariants.

5.1 System Invariants Obtained by Projection

The first approach works similarly to the resolution of conditions in the Sec-
tion 3. It uses the fact that given any subsequence invariant for S, we can obtain
a new subsequence invariant by appending the same symbol to all involved sub-
sequences:

Theorem 7. Let
∑

u∈U φu|w|u = 0 for all w ∈ L(S), and a ∈ A. Then we also
have

∑
u∈U φu|w|u.a = 0 for all w ∈ L(S).

Example: Consider a system containing the automaton from Figure 4. From
the invariant (3|w|aa − 2|w|ba + |w|ca)|w|ad = 0 we obtain the new invariants
3|w|aad − 2|w|bad + |w|cad = 0, 3|w|aaad − 2|w|baad + |w|caad = 0, and 3|w|aada −
2|w|bada + |w|cada = 0 by appending d, ad, and da, respectively.
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5.2 System Invariants Obtained by Algebraic Dependencies

The equalities in Theorem 2 can be used to derive new invariants from a given
set of subsequence invariants:

Let
∑

u∈U φu|w|u = 0 for all w ∈ L(S), and v ∈ A∗. Then obviously,
∑

u∈U

φu|w|u|w|v is also zero; Using the equalities |w|u|w|v =
∑

x∈C(u,v) |x|u,v|w|x,
this can be transformed into new linear subsequence invariants

∑
u∈U

∑
x∈C(u,v)

φu|x|u,v|w|x = 0.

Example: Consider a system containing the automaton from Figure 4. It con-
tributes the invariant 3|w|aa − 2|w|ba + |w|ca = 0 for all w ∈ L(S). For v = ad,
Theorem 2 provides the algebraic dependencies

|w|aa|w|ad = 2|w|aad + |w|ada + 3|w|aaad + 2|w|aada + |w|adaa,
|w|ba|w|ad = |w|bad + |w|abad + |w|abda + |w|adba + 2|w|baad + |w|bada,
|w|ca|w|ad = |w|cad + |w|acad + |w|acda + |w|adca + 2|w|caad + |w|cada,

which can be used to obtain from (3|w|aa − 2|w|ba + |w|ca)|w|ad = 0 the new
subsequence invariant 6|w|aad+3|w|ada+9|w|aaad+6|w|aada+3|w|adaa−2|w|bad−
2|w|abad− 2|w|abda− 2|w|adba− 4|w|baad− 2|w|bada + |w|cad + |w|acad + |w|acda +
|w|adca + 2|w|caad + |w|cada = 0.

Using the invariants from the previous example, the new invariant reduces to
3|w|aad+3|w|ada+3|w|aaad+3|w|aada+3|w|adaa−2|w|abad−2|w|abda−2|w|adba+
|w|acad + |w|acda + |w|adca = 0.

6 Incremental Invariant Generation

For the invariant generation algorithms of Section 4, we considered the set U of
subsequences as given and fixed. In practice, however, the set of subsequences
depends on the complexity of the interaction between the processes, and is there-
fore not necessarily known in advance. In this section, we present an incremental
method that allows for growing sets of subsequences.

Let P = (QP ,AP , q
0
P , TP ) be an automaton and U ⊂ A∗ be finite and prefix-

closed. Let V = U%{v} again be prefix-closed, i.e. v = u.a for some u ∈ U, a ∈ A.

Theorem 8. Assume that for q ∈ QP and the set of subsequences U , a basis of
the space Hq,U = span(|w|U : w ∈ L(q)) has already been computed, consisting
of the vectors φ1, . . . , φk. Then either

1. Hq,V is spanned by vectors ψ1, . . . , ψk such that ψj
u = φj

u for all u ∈ U , or
2. Hq,V is spanned by the vectors ψ1, . . . , ψk, η given by:

– ψj
u = φj

u for all u ∈ U , and ψj
v = 0;

– ηu = 0 for all u ∈ U , and ηv = 1.

All invariants obtained for U remain valid; in the first case, we additionally
obtain a new invariant |w|v −

∑k
i=1(ψ

i
v/ψ

i
ui)|w|ui = 0, where ui = pivot(ψi) for

all i, while in the second case, the set of invariants is unchanged.
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Example: Consider again the automaton in Figure 4. Starting with the
smaller set of subsequences U = {ε, a, b, c}, we obtain the basis {(1, 0, 0, 0)T ,
(0, 1, 0,−3)T , (0, 0, 1, 2)T} for Hq0,U , along with the single local invariant
3|w|a − 2|w|b + |w|c = 0 for q0. When U is extended to V = U ∪ {aa, ab} by
first adding aa and then ab, case (2) of Theorem 8 holds each time. Hq0,V has
the basis {(1, 0, 0, 0, 0, 0)T , (0, 1, 0,−3, 0, 0)T , (0, 0, 1, 2, 0, 0)T , (0, 0, 0, 0, 1, 0)T ,
(0, 0, 0, 0, 0, 1)T}. Extending V to W = V ∪ {ac}, case (1) holds: Hq0,W

has the basis {(1, 0, 0, 0, 0, 0, 0)T , (0, 1, 0,−3, 0, 0,−3)T , (0, 0, 1, 2, 0, 0, 0)T ,
(0, 0, 0, 0, 1, 0,−3)T , (0, 0, 0, 0, 0, 1, 2)T}, and we obtain a new invariant,
3|w|a + 3|w|aa − 2|w|ab + |w|ac = 0.

We compute Hq,V incrementally from Hq,U as follows:

– for each basis vector φ, except for the initial unit vector |ε|U , we remember
by which multiplication Faψ it was obtained and how it was reduced; these
steps are repeated for the new index v.

– we also remember which successors Faψ are reduced to zero; when extending
U by v = u.a, where u ∈ U , we check for all such ψ whether the reductions
result in a nonzero vector, indicating that case (2) of Theorem 8 holds.

If case (2) holds for some location q, then the new basis vector η of Hq is
invariant under all Fa,V , because, by choice, v cannot be a prefix of another
sequence in V . Therefore, η is also contained in the subspace Hr for all locations
r reachable from q. The check for case (2) therefore only needs to be performed
in one location of each strongly connected component.

7 Conclusions and Future Work

We have introduced a new class of invariants, subsequence invariants, which
are linear equalities over the occurrences of sequences of synchronization events.
Subsequence invariants are a natural specification language for the description
of the flow of synchronization events between different processes; basic equations
over the number of occurrences of events as well their conditional and disjunctive
combinations can easily be expressed.

The key advantage of subsequence invariants is that they can be computed
individually for each process and compose by simple conjunction to invariants
over the full system. The synthesis algorithms in this paper provide efficient
means to obtain subsequence automatically from the process automata; they
thus provide the foundation for a verification method that proves global system
properties from locally obtained invariants.

A promising direction of future work is to extend the incremental invariant
generation method from Section 6 into a refinement loop that automatically
computes an appropriate set of subsequences. Also interesting is the idea of
expanding the class of invariants by considering linear inequalities over the vari-
ables |w|U . Such an approach could make use of established techniques for linear
transition systems, combined with special properties of subsequence occurrences:
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for example, Theorem 2 can be used to derive general, system-independent in-
equalities like |w|aa − |w|a + |w|ε ≥ 0.
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Abstract. The concept of invariance for Parameterised Boolean Equa-
tion Systems (PBESs) is studied in greater detail. We identify a weakness
with the associated theory and fix this problem by proposing a stronger
notion of invariance called global invariance. A precise correspondence is
proven between the solution of a PBES and the solution of its invariant-
strengthened version; this enables one to exploit global invariants when
solving PBESs. Furthermore, we show that global invariants are robust
w.r.t. all common PBES transformations and that the existing encod-
ings of verification problems into PBESs preserve the invariants of the
processes involved. These traits provide additional support for our notion
of global invariants, and, moreover, provide an easy manner for transfer-
ring (e.g. automatically discovered) process invariants to PBESs. Several
examples are provided that illustrate the advantages of using global in-
variants in various verification problems.

1 Introduction

Parameterised Boolean Equation Systems (PBESs), introduced in [10,9] as an
extension of BESs [8] with data, and studied in detail in [7], provide a funda-
mental framework for studying and solving verification problems for complex
reactive systems. Problems as diverse as model checking problems for symbolic
transition systems [6] and real-time systems [16]; equivalence checking problems
for a variety of process equivalences [2]; and static analysis of code [4] have been
encoded in the PBES framework. The solution to the encoded problem can be
found by solving the PBES. Several verification tools rely on PBESs or fragments
thereof, e.g. the μCRL [6], mCRL2 [3] and the CADP [5] toolsets.

Solving a PBES is in general an undecidable problem, much like the problems
that can be encoded in them. Nevertheless, there are pragmatic approaches to
solving PBESs, such as symbolic approximation [7] and instantiation [3]. While
these techniques have proved their merits in practice, the undecidability of solv-
ing PBESs in general implies that these techniques are not universally applicable.
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A concept that has turned out to be very powerful, especially when com-
bined with symbolic approximation, is the notion of an invariant for PBESs.
For instance, invariants have been used successfully in [2] when solving PBESs
encoding the branching bisimulation problem for two systems: the invariants al-
lowed the symbolic approximation process to terminate in a few steps, whereas
there was no indication that it could have terminated without the invariant. As
such, the notion of an invariant is a powerful tool which adds to the efficacy of
techniques and tooling such as described in [6,7].

An invariant for a PBES, as defined in [7] (hereafter referred to as a local
invariant), is a relation on data variables of a PBES that provides an over-
approximation of the dependencies of the solution of a particular predicate vari-
able X on its own domain.

We show that the theory of local invariants, as outlined in [7] does not allow
for combining invariants with common solution-preserving PBES-manipulations;
moreover, the theory cannot be extended to cope with such manipulations. We
remedy this situation by introducing the concept of a global invariant, and show
how this notion relates to local invariants. Moreover, we demonstrate that global
invariants are preserved by the common PBES manipulation methods, viz. un-
folding, migration and substitution [7]. An invariance theorem that allows one to
calculate the solution for an equation system, using a global invariant to assist
the calculation, is proved. As a side-result of the theory, we are able to provide
a partial answer to a generalisation of an open problem coined in [7], which con-
cerns the solution to a particular PBES pattern. Patterns are important as they
allow for a simple look-up and substitute strategy to solving a PBES. Finally,
we prove that traditional process invariants [1] are preserved under the PBES-
encoding of the first-order modal μ-calculus model checking problem [6] and the
PBES-encoding of various process equivalences [2].

Related Work. Invariants are indispensable in mature verification methodolo-
gies aiming at tackling complex cases, such as networks of parameterised sys-
tems [12,13], equivalence checks between reactive system [1] and for infinite data
domains in general, such as hybrid systems [14]. Much research is aimed at
stretching the limits of verification for specific classes of systems and properties.
Techniques, such as invariants, that are developed for PBESs, on the other hand,
are applicable to all problems that can be encoded in them.

Several works [12,14] focus on the automated discovery of invariants for spe-
cialised classes of specifications and properties. It is likely that these techniques
can be adapted for specific PBESs. This is supported by our result that process
invariants are preserved under the existing encodings of verification problems.
An advantage of verification using PBESs is that predicates can be identified
that are invariants for the PBES, but that fail to be invariants for the origi-
nal process(es) involved. This is because the PBES-encoding incorporates more
information from the input (see Section 5 for an example).

Structure. In Section 2, we introduce PBESs and some basic notation. We recall
the definition of local invariants and introduce global invariants in Section 3,
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and we show that the theory for local invariants has weaknesses, which are
resolved by the theory for global invariants. The influence of solution-preserving
manipulations for PBESs on global invariants is investigated in Section 4, and
in Section 5, we investigate the relation between process invariants and global
invariants. Two small examples illustrate several aspects of the developed theory.
We present our conclusions in Section 7. All the proofs, more details and more
examples can be found in the accompanying technical report [11].

2 Preliminaries

In this section, we give a brief overview of the concepts and notations that
provide the basis to the theory in the remainder of this paper. We refer to [7]
for a more detailed account.

Predicate formulae. Predicate formulae are part of the basic building blocks for
PBESs; these are basically ordinary predicates extended with predicate variables.

Definition 1. A predicate formula is a formula defined by the following grammar:

φ ::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀d:D. φ | ∃d:D. φ | X(e)

where b is a data term of sort B. Furthermore, X is a (sorted) predicate variable
to which we associate a data variable dX of sort DX ; e is a data term of the sort
DX . Data variables are taken from a set D. The set of all predicate variables is
referred to as P.

The set of all predicate formulae is denoted Pred. Predicate formulae φ not
containing predicate variables are referred to as simple predicates. The set of
predicate variables that occur in a formula φ is denoted by occ(φ). Note that
negation does not occur in predicate formulae, except as an operator in data
terms; b =⇒ φ is a shorthand for ¬b ∨ φ for terms b of sort B.

Note that we use predicate variables X to which we associate a single variable
dX of sort DX instead of vectors dX of sort DX . This does not incur a loss in
generality; it is merely a matter of convenience.

Predicate formulae may contain both bound and unbound (free) data vari-
ables. We assume that the set of bound variables and the set of free variables
in a predicate formula are disjoint. For a closed data term e, i.e. a data term
not containing free data variables, we assume an interpretation function [[ ]] that
maps the term e to the semantic data element [[e]] it represents. For open terms,
we use a data environment ε that maps each variable from D to a data value of
the intended sort. The interpretation of an open term e is denoted by [[e]] ε and
is obtained in the standard way. We write ε[e/d] to stand for the environment ε
for all variables different from d, and ε[e/d](d) = e. A similar notation applies
to predicate environments. For brevity, we do not explicitly distinguish between
the abstract sorts of expressions and their semantic counterparts.
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Definition 2. Let θ be a predicate environment assigning a function DX → B
to every predicate variable X, and let ε be a data environment assigning a value
from domain D to every variable d of sort D. The interpretation [[ ]] θε of a
predicate formula in the context of θ and ε is either true or false, as follows:

[[b]] θε = [[b]] ε [[φ1 ∧ φ2]] θε = [[φ1]] θε and [[φ2]] θε
[[X(e)]] θε = true iff θ(X)( [[e]] ε) [[φ1 ∨ φ2]] θε = [[φ1]] θε or [[φ2]] θε
[[∀d:D. φ]] θε = for all v ∈ D, [[φ]] θ(ε[v/d])
[[∃d:D. φ]] θε = for some v ∈ D, [[φ]] θ(ε[v/d])

Definition 3. Let φ and ψ be predicate formulae. We write φ → ψ iff for all
predicate environments θ and all data environments ε, [[φ]] θε implies [[ψ]] θε.

The symmetric closure of → induces a logical equivalence on Pred, denoted ↔.
Basic properties such as commutativity, idempotence and associativity of ∧ and
∨ are immediately satisfied.

Predicate Variables and Substitution. A basic operation on predicate formulae
is substitution of a predicate formula for a predicate variable. To this end, we
introduce predicate functions : predicate formulae casted to functions. As a short-
hand, we write φ〈dX〉 to indicate that φ is lifted to a function (λdX :DX . φ), i.e.
the variable dX possibly occurring in φ acts as a placeholder for an expression
of sort DX . The semantics of a predicate function is defined in the context of a
predicate environment θ and a data environment ε:

[[φ〈dX〉]] θε = λv∈DX . [[φ]] θε[v/dX ]

The substitution of ψ〈dX〉 for a predicate variable X in a predicate formula φ is
defined by the following set of rules:

b[ψ〈dX〉/X ] = b

Y (e)[ψ〈dX〉/X ] =
{
ψ[e/dX ] if Y = X
Y (e) otherwise

(φ1 ∧ φ2)[ψ〈dX〉/X ] = φ1[ψ〈dX〉/X ] ∧ φ2[ψ〈dX〉/X ]
(φ1 ∨ φ2)[ψ〈dX〉/X ] = φ1[ψ〈dX〉/X ] ∨ φ2[ψ〈dX〉/X ]
(∀d:D. φ)[ψ〈dX〉/X ] = ∀d:D. φ[ψ〈dX〉/X ]
(∃d:D. φ)[ψ〈dX〉/X ] = ∃d:D. φ[ψ〈dX〉/X ]

Example 1. Consider the formulae X(f(d))∧Y (g(d)) and ψ := Y (h(dY )). Then
(X(f(d)) ∧ Y (g(d)))[ψ〈dY 〉/Y ] yields: X(f(d)) ∧ Y (h(g(d))). "#

Property 1. Let φ, ψ be predicate formulae, and θ, ε environments. Then:

[[φ[ψ〈dX〉/X ]]] θε = [[φ]] θ[ [[ψ〈dX 〉]] θε /X ]ε. "#

For convenience, we generalise single syntactic substitutions φ[ψ〈dX〉/X ] to finite
sequences of substitutions using the following notation:
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Definition 4. Let V = 〈X1, . . . , Xn〉 be a vector of predicate variables and let φi be
an arbitrary predicate formula. The consecutive substitution φ

[
Xi∈V

φi〈dXi
〉/Xi

]

is defined as follows:
⎧
⎪⎨

⎪⎩

φ
[
Xi∈〈〉φi〈dXi

〉/Xi

]
= φ

φ
[
Xi∈〈X1,...,Xn〉φi〈dXi

〉/Xi

]
= (φ[φ1〈dX1〉/X1])

[
Xi∈〈X2,...,Xn〉φi〈dXi

〉/Xi

]

When for all φi, at most variableXi occurs in φi and all variables in 〈X1, . . . , Xn〉
are distinct, the consecutive substitution φ

[
Xi∈〈X1,...,Xn〉φi〈dXi

〉/Xi

]
yields

the same for all permutations of vector 〈X1, . . . , Xn〉, i.e. it behaves as a si-
multaneous substitution. In this case, we allow abuse of notation by writing
φ
[
Xi∈{X1,...,Xn}φi〈dXi

〉/Xi

]
.

Parameterised Boolean Equation Systems. A Parameterised Boolean Equation
System (henceforth referred to as an equation system) is a finite sequence of
equations of the form (σX(dX :DX) = φ); φ is a predicate formula in which the
variable dX is considered bound. σ denotes either the least (μ) or the greatest
(ν) fixed point. We denote the empty equation system by ε.

We say an equation system is closed whenever all predicate variables occurring
at the right-hand side of an equation occur at the left-hand side of some equation.
An equation system is open if it is not closed. For a given equation system E ,
the set bnd(E) denotes the predicate variables occurring in the left-hand side
of the equations of E , and the set occ(E) denotes the set of predicate variables
occurring in the predicate formulae of the equations of E . The solution to an
equation system is a predicate environment, defined as follows:

Definition 5. Given a predicate environment θ and an equation system E. The
solution [[E ]] θε is an environment that is defined as follows:

[[ε]] θε = θ

[[(σX(dX :DX) = φ)E ]] θε = [[E ]] (θ
[
σX∈[DX → B]. [[φ〈dX〉]] ( [[E ]] θ[X/X ])ε/X

]
)ε

Note that the fixed points are taken over the complete lattice of functions
([DX → B],�) for (possibly infinite) data sets DX , where f � g is defined
as the point-wise ordering: f � g iff for all v ∈ DX : f(v) implies g(v). The
predicate transformer associated to a predicate function [[φ〈dX〉]] θε, denoted

λX∈[DX → B]. [[φ〈dX〉]] θ[X/X ]ε

is a monotone operator [6,7]. The existence of fixed points of this operator in
the lattice ([DX → B],�) follows immediately from Tarski’s Theorem [15].

Note 1. The solution to an equation system is sensitive to the ordering of the
equations: while (μX = Y )(νY = X) has⊥ as solution forX and Y , the equation
system (νY = X)(μX = Y ) has 0 as solution for X and Y . Manipulations such
as unfolding, migration and substitution, however, do not affect the solution to
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an equation system [7]. Using the latter two, all equation systems can be solved
(using a strategy called Gauß Elimination), provided that one has the techniques
and tools to eliminate a predicate variable from its defining equation. One such
methods is e.g. symbolic approximation, see [7].

3 Invariants for Equation Systems

Invariants for equation systems first appeared in [7]. We first repeat its definition:

Definition 6. Let (σX(dX :DX) = φ) be an equation and let I be a simple
predicate formula, i.e. a formula without predicate variable occurrences. Then I
is an invariant of X iff

I ∧ φ ↔ (I ∧ φ)[(I ∧X(dX))〈dX〉/X ]

The above definition may appear awkward to those familiar only with invariants
for transition systems. It does, however, express what is normally understood as
the invariance property; the unusual appearance is a consequence of the possi-
bility of having multiple occurrences of X in subformulae of φ. The invariance
criterion only concerns a transfer property on equation systems: an initialisation
criterion is not applicable at this level. The analogue to the initialisation crite-
rion is, however, part of Theorem 2 (see page 194), and Theorems 40 and 42
of [7]. For completeness’ sake, we recall the latter and expose its weakness by an
example:

Theorem 1 (See [7]). Let (σX(dX :DX) = φ) be an equation and let I be an
invariant of X. Assume that:

1. for some χ with X /∈ occ(χ), we have for all equation systems E and all η, ε:
[[(σX(dX :DX) = I ∧ φ) E ]] ηε = [[(σX(dX :DX) = χ) E ]] ηε.

2. for the predicate formula ψ we have ψ ↔ ψ[(I ∧X(dX))〈dX〉/X ].

Then for all equation systems E0, E1 and all environments η, ε:

[[(σ′Y (dY :DY ) = ψ) E0(σX(dX :DX) = φ) E1]] ηε
= [[(σ′Y (dY :DY ) = ψ[χ〈dX〉/X ]) E0(σX(dX :DX) = φ) E1]] ηε. "#

Theorem 1 states that if one can show that ψ ↔ ψ[(I ∧X(dX))〈dX〉/X ] (the
analogue to the initialisation criterion for an invariant), and χ is the solution of
X ’s equation strengthened with I, then it suffices to solve Y using χ for X rather
than X ’s original solution. However, a computation of χ cannot take advantage
of PBES manipulations when X ’s equation is open. Such equations arise when
encoding process equivalences [2] and model checking problems [9,6]. A second
issue is that invariants may “break” as a result of a substitution:

Example 2. Consider the following (constructed) closed equation system:

(μX(n:N) = n ≥ 2 ∧ Y (n))
(μY (n:N) = Z(n) ∨ Y (n+ 1))
(μZ(n:N) = n < 2 ∨ Y (n− 1))

(1)



Invariants for Parameterised Boolean Equation Systems 193

The simple predicate formula n ≥ 2 is an invariant for equation Y in equation
system (1): n ≥ 2∧(Z(n)∨Y (n+1)) ↔ n ≥ 2∧(Z(n)∨(n+1 ≥ 2∧Y (n+1))).
However, substituting n < 2∨Y (n− 1) for Z in the equation of Y in system (1)
yields the equation system of (2):

(μX(n:N) = n ≥ 2 ∧ Y (n))
(μY (n:N) = n < 2 ∨ Y (n− 1) ∨ Y (n+ 1))
(μZ(n:N) = n < 2 ∨ Y (n− 1))

(2)

The invariant n ≥ 2 of Y in (1) fails to be an invariant for Y in (2). Worse still,
computing the solution to Y without relying on the equation for Z leads to an
awkward approximation process that does not terminate; one has to resort to
using a pattern to obtain the solution to equation Y of (1):

(μY (n:N) = n ≥ 2 ∧ ∃i:N. Z(n+ i))

Using this solution for Y in the equation for X in (1), and solving the resulting
equation system leads to the solution λv∈N. v ≥ 2 for X and λv∈N. 0 for Y
and Z. A weakness of Theorem 1 is that in solving the invariant-strengthened
equation for Y , one cannot employ knowledge about the equation system at
hand as this is prevented by the strict conditions of Theorem 1. Weakening
these conditions to incorporate information about the actual equation system is
impossible without affecting correctness: solving, e.g., the invariant-strengthened
version for Y of (2) leads to the solution λv∈N. ⊥ for X . Theorem 40 of [7] is
ungainly as it even introduces extra equations. "#

Example 2 shows that identified invariants (cf. [7]) fail to remain invariants when
substitution is exercised on the equation system, and, more importantly, that
Theorem 1 cannot employ PBES manipulations for simplifying the invariant-
strengthened equation.

As we demonstrate in this paper, both issues can be remedied by using a
slightly stronger invariance criterion, taking all predicate variables of an equation
system into account. This naturally leads to a notion of global invariance; in
contrast, we refer to the type of invariance defined in Def. 6 as local invariance.

Let f :V → Pred, V ⊆ P , be a function that maps a predicate variable to
a predicate formula. We say f is simple iff f(X) is simple, that is not con-
taining predicate variables, for all X∈V . Note that the notation f(X) is purely
meta-notation; e.g. it is not affected by syntactic substitutions: f(X)[ψ〈dX〉/X ]
remains f(X), since f(X) is simple.
Definition 7. The simple function f :V → Pred is said to be a global invari-
ant for an equation system E iff V ⊇ bnd(E) and for each (σX(dX :DX) = φ)
occurring in E, we have:

f(X) ∧ φ ↔ (f(X) ∧ φ)
[
Xi∈V

(f(Xi) ∧Xi(dXi ))〈dXi
〉/Xi

]
.

Proposition 1. Let f :V → Pred be a global invariant for an equation system
E. Let W ⊆ V . Then for all equations (σX(dX :DX) = φ) in E, we have:

f(X)∧φ ↔ (f(X)∧φ)
[
Xi∈W

(f(Xi) ∧Xi(dXi ))〈dXi
〉/Xi

]
. "#
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Corollary 1. Let f be a global invariant for an equation system E. Then f(X),
for any X ∈ bnd(E) is a local invariant. "#

Note 2. The reverse of the above corollary does not hold: if for all X ∈ bnd(E),
we have a predicate formula f(X) that is a local invariant for X in E , then f is
not necessarily a global invariant. Consider the following equation system:

(νX(n:N) = Y (n− 1)) (μY (n:N) = X(n+ 1))

X and Y both have n ≥ 5 as local invariants (in fact, any simple predicate is a
local invariant), but (λZ ∈ {X,Y }. n ≥ 5) fails to be a global invariant.

Let pvi(φ) yield the set of predicate variable instantiations in φ:

pvi(b) = ∅ pvi(X(e)) = {X(e)}
pvi(∀d:D. φ) = pvi(φ) pvi(φ1 ∧ φ2) = pvi(φ1) ∪ pvi(φ2)
pvi(∃d:D. φ) = pvi(φ) pvi(φ1 ∨ φ2) = pvi(φ1) ∪ pvi(φ2)

A sufficient condition for a function f to be a global invariant is given below:

Property 2. Let E be an equation system and f :bnd(E) → Pred a simple function;
then f is a global invariant for E if for every equation (σX(dX :DX) = φ) in E
we have f(X) →

∧
Y (e)∈pvi(φ)(f(Y ))[e/dY ]. "#

We next establish an exact correspondence between the solution of an equation
system E and the equation system E ′ which is derived from E by strengthening
it with the global invariant. Strengthening is achieved by the operation Apply:

Definition 8. Let f :V → Pred be a simple function. Let E be an equation system
satisfying bnd(E) ⊆ V . The equation system Apply (f, E) is defined as follows:

Apply (f, ε) = ε
Apply (f, (σX(dX :DX) = φ) E0) = (σX(dX :DX) = f(X) ∧ φ) Apply (f, E0)

The correctness of the above-mentioned correspondence relies, among others,
on the following lemma. The main result of this section is Theorem 2, which
improves upon Theorem 1; it immediately follows the below lemma.

Lemma 1. Let (σX(dX :DX) = φ) be a possibly open equation. Let f :V → Pred
be a simple function such that

1. occ(φ) ⊆ V .
2. f(X) ∧ φ↔ (f(X) ∧ φ)[(f(X) ∧X(dX))〈dX〉/X ].

Then for all environments η, ε:

λv∈DX . [[f(X)]] ε[v/dX ] ∧ (σX ∈ [DX → B]. [[φ〈dX〉]] η[X/X ]ε)(v)
= λv∈DX . [[f(X)]] ε[v/dX ] ∧ (σX ∈ [DX → B]. [[(f(X) ∧ φ)〈dX〉]] η[X/X ]ε)(v)."#

Theorem 2. Let f :V → Pred be a simple function. Let E be an equation system
and let η1, η2 be arbitrary predicate environments. If the following holds:
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1. bnd(E) ∪ occ(E) ⊆ V and
2. for all X ∈ V :

(a) [[f(X) ∧X(dX)]] η1ε = [[f(X) ∧X(dX)]] η2ε.
(b) f(X) ∧ φ↔ (f(X) ∧ φ)

[
Xi∈V

(f(Xi) ∧Xi(dXi))〈dXi
〉/Xi

]
.

then we have for all X ∈ V :

[[f(X) ∧X(dX))]] ( [[E ]] η1ε)ε = [[f(X) ∧X(dX))]] ( [[Apply (f, E)]] η2ε)ε. "#

Corollary 2. Let f :V → Pred be a global invariant for an equation system E.
Then for all predicate formulae φ with occ(φ) ⊆ V and all environments η, ε:

φ↔ φ
[
Xi∈V

(f(Xi) ∧Xi(dXi ))〈dXi
〉/Xi

]

implies [[φ]] ( [[E ]] ηε)ε = [[φ]] ( [[Apply (f, E)]] ηε)ε "#

This means that for an equation system E and a global invariant f of E , it does
not matter whether we use E or its invariant-strengthened version Apply (f, E) to
evaluate a predicate formula φ for which the initialisation criterion for invariant
f holds. As another consequence of Theorem 2, we have the proposition below:

Proposition 2. Let E be an equation system. Let f be a global invariant for E
and assume E contains an equation for X of the form:

(νX(d:D) = f(X)∧
∧

i∈I

Q1 e
1
i :E

1
i . . .Qmi

emi

i :Emi

i . ψi =⇒ X(gi(d, e1i , . . . , e
mi

i )))

where Qj ∈ {∀, ∃} for any j, and for all i, ψi are simple predicate formulae and
gi is a data term that depends only on the values of d and e1i , . . . , e

mi

i . Then X
has the solution f(X). "#
In the terminology of [7], the equation above is a pattern which has solution
f(X). This pattern is an instance of a generalisation of the unsolved pattern
of [7]. This pattern turns out to be extremely useful in the examples of Section 6.

4 Preservation of Global Invariants under
Solution-Preserving Manipulations

A serious defect of local invariants is that this notion is not robust with respect
to substitution. In this section, we study the robustness of (global) invariants
with respect to most common solution-preserving manipulations, viz. migration,
unfolding and substitution [7].

Theorem 3. Let E :≡ E0 (σX(dX :DX) = φ) E1 E2 be an equation system with
occ(φ) = ∅. Let F :≡ E0 E1 (σX(dX :DX) = φ) E2 be the result of a migration.
If f :V → Pred is a global invariant for E then f is a global invariant for F . "#
Unfolding and substitution [7] involve replacing predicate variables with the
right-hand side expressions of their corresponding equation. The difference is
that unfolding operates locally and substitution is a global operation. The fol-
lowing lemma proves robustness of invariants under replacing variables with their
corresponding right-hand side expressions.
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Lemma 2. Let E be an equation system and let f :V → Pred be a global invariant
for E. For any predicate variable X ∈ bnd(E), we denote the right-hand side of
X’s defining equation in E by φX . Then for all X,Y ∈ bnd(E):

f(X) ∧ φX [φY 〈dY 〉/Y ]
↔ (f(X) ∧ φX [φY 〈dY 〉/Y ])

[
Z∈V

(f(Z) ∧ Z(dZ))〈dZ〉/Z
] "#

The above lemma immediately leads to the robustness of invariants under sub-
stitution and unfolding. This is expressed by the following theorems:

Theorem 4. Let E :≡ E0 (σX(dX :DX) = φ) E1 be an equation system and let
f :V → Pred a global invariant for E. Then f is also a global invariant for the
equation system F :≡ E0 (σX(dX :DX) = φ[φ〈dX〉/X ]) E1. "#

Theorem 5. Let E :≡ E0 (σX(dX :DX) = φ) E1 (σ′Y (dY :DY ) = ψ) E2 and
F :≡ E0 (σX(dX :DX) = φ[ψ〈dY 〉/Y ]) E1 (σ′Y (dY :DY ) = ψ) E2 be PBESs. If
f :V → Pred is a global invariant for E then f is also a global invariant for F . "#

An interesting observation is that both substitution and unfolding not only pre-
serve existing global invariants, but also may lead to new global invariants. We
illustrate this phenomenon with an example for unfolding.

Example 3. Let νX(n:N) = X(n + 1) be an equation system. Using unfolding,
we obtain the equivalent equation system νX(n:N) = X(n + 2). Clearly, the
function f that assigns to X the predicate formula even(n) is a global invariant
for the latter equation. However, f is not a global invariant for the original
equation. Thus, by unfolding, the set of invariants for an equation system may
increase. "#

5 Process Invariants and Equation Invariants

Linear process equations (LPEs) have been proposed as symbolic representa-
tions of general (infinite) labelled transition systems, a semantic framework for
specifying and analysing complex, reactive systems. In an LPE, the state of
a process is modelled by a finite vector of (possibly infinite) sorted variables,
and the behaviour is described by a finite set of condition-action-effect rules.
The apparent restrictiveness of this format is misleading: parallelism, (infinite)
non-determinism and other operators can often be mapped losslessly onto LPEs.

Definition 9. A linear process equation is an equation taking the form

P (d:D) =
∑

{
∑

ea:Ea

ca(d, ea) =⇒ a(fa(d, ea)) · P (ga(d, ea)) | a ∈ Act}

where fa:D × Ea → Da, ga:D × Ea → D and ca:D × Ea → B for each action
label a ∈ Act. D, Da and Ea are general data sorts. The restrictions to single
sorts D and Ea are again only for brevity and do not incur a loss of generality.
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In the above definition, the LPE P specifies that if in the current state d the
condition ca(d, ea) holds, for an arbitrary ea of sort Ea, then an action a carrying
data parameter fa(d, ea) is possible and the effect of executing this action is that
the state is changed to ga(d, ea). Thus, the values of the condition, action para-
meter and new state may depend on the current state and the non-deterministic
chosen value for variable ea.

Definition 10. Let P be the LPE of Def. 9. A simple predicate ι is an invariant
for P iff for all actions a ∈ Act: ι ∧ ca(d, ea) → (ι[ga(d, ea)/d]) holds.

Model Checking. In [9,6], the first-order modal μ-calculus (μ-calculus for short)
is defined, a modal language for verification of data-dependent process specifica-
tions. The language is a first-order extension of the standard modal μ-calculus
due to Kozen. It permits the use of data variables and parameters to capture
the essential data-dependencies in the process behaviour. The grammar of the
calculus is given by the following rules:

φ ::= b | X(e) | ¬φ | φ ∧ φ | ∀d:D. φ | [α]φ | (νX(df :Df := e). φ)
α ::= b | a(e) | ¬α | α ∧ α | ∀d:D.α

where ν is the greatest fixed point sign (note that μX(dX :DX := e).φ is a
shorthand for ¬νX(dX :DX := e).¬φ[¬X(dX)〈dX〉/X ]). The meaningful formulae
are those formulae for which every occurrence of a variable X is under an even
number of negations. The semantics of μ-calculus formulae is defined over an
LTS, induced by an LPE P , see [6,9] for details. The global model checking
problem P |= Φ and the local model checking problem P (e) |= Φ, where e is
an initial value for P and Φ is a μ-calculus formula, can be translated to the
problem of solving the equation system E(Φ) [9,6].

Theorem 6. Let Φ be a μ-calculus formula. Let ι be an invariant for the LPE
P of Def. 9. Then (λX∈bnd(E(Φ)). ι) is a global invariant of E(Φ). "#
The reverse of the above theorem does not hold: if f is a global invariant for
an equation system E(Φ) for some formula Φ and LPE P , then f does not
necessarily lead to an invariant for the process P (see the below example).

Example 4. Consider the following process, that models the rise and fall of a
stock value of a company and may report its current value if asked.

M(v:N) =
∑

m:N up ·M(v +m)
+ current(v) ·M(v)
+
∑

m:N m ≤ v =⇒ down ·M(v −m)

Verifying that without decreases, the stock value is always above threshold T
(provided it is so initially), i.e. νX.[¬down]X ∧∀n:N.[current(n)](n > T ), using
an equation system boils down to solving the below equation system:

νX(v:N) = (∀m:N. X(v +m)) ∧ ∀n:N. v = n =⇒ n > T

Clearly, X has v>T as an invariant whereas this is not an invariant for M . "#
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Process Equivalences. In [2] various equivalences, such as strong and branching
bisimulation, between two LPEsM and S have been encoded as solution problems
of equation systems. Branching bisimulation is the most complex of the process
equivalences tackled in [2], yielding the equation system νE2 μE1, which is of al-
ternation depth 2. Here,E1 andE2 are sets of equations obtained from a syntactic
manipulation of the input LPEs M and S, where bnd(E2) = {XM,S, XS,M} and
bnd(E1) = {Y M,S

a , Y S,M
a | a ∈ Act}.

Theorem 7. Let M be an LPE. Assume ι is an invariant for LPE M . We
define function f as follows:

f(Z) =
{
ι if Z ∈ {XM,S, XS,M , Y S,M

a | a ∈ Act}
ι ∧ cMa (d, e) if Z ∈ {YM,S

a | a ∈ Act}

Then f is a global invariant for the equation system νE2μE1, resulting from the
encoding of branching bisimulation between M and a second LPE S. "#

The remaining encodings in [2] yield similar global invariants, see [11]. The sig-
nificance of the preservation of process invariants under the PBES-encoding of
an equivalence lies in the fact that this helps ensuring that the solution of the
equation system does not relate all unreachable states of the input processes.
Relating unreachable parts of processes is often neither meaningful nor compu-
tationally tractable (in particular for infinite state systems).

6 Examples

To illustrate how invariants typically assist in solving equation systems, we pro-
vide two easily understood examples of verifications using equation systems. The
first example treats the privacy problem of a rudimentary voting protocol; the
second is a mutual exclusion problem for readers and writers.

6.1 Voting Protocol

The voting protocol is given by the LPE E below. The intended votes of partic-
ipants are modelled by variable V, a bitlist; we write V.i to indicate the vote of
voter i. A high bit represents a yes and a low bit represents a no vote. Registered
voters are maintained in set R and parameters y, n record the number of casted
yes/no votes so far. Voting of a person is modelled by action vote, and it follows
no particular order. The outcome of the vote is published by action outcome.

E(V :L({0, 1}), R:2N, y, n:N) =
R = ∅ =⇒ outcome(y, n) · δ

+
∑

i:N i ∈ R =⇒ vote(i) · E(V,R \ {i}, y + V.i, n+ (1− V.i))

One way to warrant privacy of the voting process is to ensure that an external
observer cannot tell whether V.i = 0 or V.i = 1 for any voter i. Formally, privacy
is then guaranteed if process E(l, r, 0, 0) is strongly bisimilar to E(π(l), r, 0, 0),
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where list π(l) is an arbitrary permutation of list l. Strong bisimilarity is encoded
by the below equation system (see [2] for the general translation scheme).

(νX(V :L({0, 1}), R:2N, y, n:N, V ′:L({0, 1}), R′:2N, y′, n′:N) =
(∀i:N. i ∈ R =⇒ (i ∈ R′

∧X(V,R \ {i}, y+ V.i, n+ (1 − V.i), V ′, R′ \ {i}, y′ + V ′.i, n′ + (1 − V ′.i))))
∧(∀i:N. i ∈ R′ ⇒ (i ∈ R
∧X ′(V,R \ {i}, y + V.i, n+ (1− V.i), V ′, R′ \ {i}, y′ + V ′.i, n′ + (1− V ′.i))))

∧(R = ∅ ⇐⇒ R′ = ∅) ∧ (R = ∅ =⇒ (y = y′ ∧ n = n′)))
(νX ′(V ′:L({0, 1}), R′:2N, y′, n′:N, V :L({0, 1}), R:2N, y, n:N) =
X(V,R, y, n, V ′, R′, y′, n′))

E(l, r, 0, 0) and E(π(l), r, 0, 0) are bisimilar iff X(l, r, 0, 0, π(l), r, 0, 0) is true. A
symbolic approximation of variable X generates a non-converging series of in-
creasingly complex equations expressing constraints on subsets of R, meaning
that we cannot compute the general solution to X .

The equation system encodes the strong bisimulation relation between two
processes E, i.e. both reachable and unreachable states of the two processes E
will be related in the solution to X . However, we are interested only in the answer
to X(l, r, 0, 0, π(l), r, 0, 0). We state the following three predicate formulae:

– ι1 := R = R′ formalises that we are not interested in relating information
for different sets of voters,

– ι2 := y + n = y′ + n′ formalises that the total number of expressed votes
should be the same in both protocols,

– ι3 := y +
∑

i∈R V.i = y′ +
∑

i∈R′ V ′.i formalises, among others, that we are
dealing with permutations.

Let ι := ι1 ∧ ι2 ∧ ι3; from Property 2, we immediately conclude that ι is an
invariant for X and X ′. Note that ι is a tautology when instantiated with the
initial values due to the verification problem E(l, r, 0, 0) = E(π(l), r, 0, 0). So,
without affecting the answer to our verification problem, we can strengthen the
equations for X and X ′ with ι. The variable X ′, appearing in the equation for
X can be removed by a substitution. We observe that for equation X :

(ι ∧ (R = ∅ ⇐⇒ R′ = ∅) ∧ (R = ∅ =⇒ (y = y′ ∧ n = n′))) ⇐⇒ ι

We find that the equation for X is of the form of Proposition 2; it therefore has
solution ι. Since X(l, r, 0, 0, π(l), r, 0, 0) holds, privacy is indeed guaranteed.

6.2 Readers-Writers Mutual Exclusion

We consider a standard mutual exclusion problem between distributed readers
and writers. A total of N > 0 (N is some arbitrary value) readers and writers
are assumed.

P (nr, nw, t:N) = t ≥ 1 =⇒ rs · P (nr + 1, nw, t− 1)
+ nr > 0 =⇒ re · P (nr − 1, nw, t+ 1)
+ t ≥ N =⇒ ws · P (nr, nw + 1, t−N)
+ nw > 0 =⇒ we · P (nr, nw − 1, t+N)



200 S. Orzan and T.A.C. Willemse

Here the actions rs and ws express the starting of reading and writing of a
process. Likewise, the actions re and we model the ending of reading and writing.
Mutual exclusion between readers and writers holds when:

1. No writer can start if readers are reading: νX.[0]X∧[rs]νY.([¬re]Y ∧[ws]⊥).
2. No reader can start if writers are busy: νX.[0]X ∧ [ws]νY.([¬we]Y ∧ [rs]⊥).

We only treat the first property; proving the second property follows the same
reasoning. The equation system that encodes the first property is given below:

(νX(nr, nw, t:N) = ((t ≥ 1 =⇒ (X(nr + 1, nw, t− 1) ∧ Y (nr + 1, nw, t− 1)))
∧(nr > 0 =⇒ X(nr − 1, nw, t+ 1)) ∧ (t ≥ N =⇒ X(nr, nw + 1, t−N))

∧(nw > 0 =⇒ X(nr, nw − 1, t+N))))
(νY (nr, nw, t:N) = t < N ∧ (t ≥ 1 =⇒ Y (nr + 1, nw, t− 1))

∧(nw > 0 =⇒ Y (nr, nw − 1, t+N)))

With standard techniques, Y can only be solved using an unwieldy pattern [7],
which introduces multiple quantifications and additional selector functions; sym-
bolic approximation does not converge in a finite number of steps. The use of
invariants is the most appropriate strategy here. An invariant of process P is
t = N−(nr+nw ·N), which, by Theorem 6 is also a global invariant for the equa-
tionsX and Y . Furthermore, nr ≥ 1 for Y and 0 forX is a global invariant. Both
X and Y can be strengthened with the above invariants. The simple predicate
formula t < N follows from t = N−(nr+nw·N)∧nr ≥ 1; we can therefore employ
Proposition 2 and conclude that Y has solution t = N − (nr +nw ·N)∧ nr ≥ 1.
Substituting this solution for Y in X , using Proposition 1 to simplify the result-
ing equation, we find the following equivalent equation for X :

(νX(nr, nw, t:N) = ((t ≥ 1 =⇒ (X(nr + 1, nw, t− 1)))
∧(nr > 0 =⇒ X(nr − 1, nw, t+ 1)) ∧ (t ≥ N =⇒ X(nr, nw + 1, t−N))

∧(nw > 0 =⇒ X(nr, nw − 1, t+N)) ∧ t = N − (nr + nw ·N)))

Another application of Proposition 2, immediately leads to the solution t =
N − (nr + nw · N) for X . Thus, writers cannot start writing while readers are
active if initially the values for nr, nw, t satisfy t = N − (nr + nw ·N).

Mutual exclusion can also be expressed by a single μ-calculus formula with
data variables; then invariants linking process and formula variables are required.

7 Closing Remarks

Techniques and concepts for solving PBESs have been studied in detail [7].
Among these is the concept of invariance, which has been instrumental in solv-
ing verification problems that were studied in e.g. [7,2]. In this paper, we further
studied the notion of invariance and show that the accompanying theory is im-
practical for PBESs in which open equations occur. We have proposed a stronger
notion of invariance, called global invariance, and phrased an invariance theo-
rem that remedies the issues of the invariance theorem of [7]. We moreover have
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shown that our notion of invariance is preserved by three important solution-
preserving PBES manipulations. This means that, unlike the notion of invariance
of [7], global invariants can be used in combination with these manipulations
when solving equation systems. As a side-result, we obtain a partial answer to
an open question put forward in [7], concerning a specific pattern for PBESs.

We continued by demonstrating that invariants for processes automatically
yield global invariants in the PBESs resulting from two standard verification
encodings, viz. the encoding of the first-order modal μ-calculus model checking
problem and the encoding of branching bisimulation for two (possibly infinite)
transition systems. This means that in the PBES verification methodology, one
can take advantage of established techniques for checking and discovering process
invariants. We conjecture that many such techniques, see e.g. [12,13], can be put
to use for (automatically) discovering global invariants in PBESs. Additional
research is of course needed to substantiate this conjecture.

Acknowledgements. The authors would like to thank Jan Friso Groote for valu-
able feedback.
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Abstract. We propose a framework for model-based diagnosis of sys-
tems with mobility and variable topologies, modelled as graph transfor-
mation systems. Generally speaking, model-based diagnosis is aimed at
constructing explanations of observed faulty behaviours on the basis of
a given model of the system. Since the number of possible explanations
may be huge we exploit the unfolding as a compact data structure to
store them, along the lines of previous work dealing with Petri net mod-
els. Given a model of a system and an observation, the explanations can
be constructed by unfolding the model constrained by the observation,
and then removing incomplete explanations in a pruning phase. The the-
ory is formalised in a general categorical setting: constraining the system
by the observation corresponds to taking a product in the chosen cate-
gory of graph grammars, so that the correctness of the procedure can be
proved by using the fact that the unfolding is a right adjoint and thus
it preserves products. The theory thus should be easily applicable to a
wide class of system models, including graph grammars and Petri nets.

1 Introduction

The event-oriented model-based diagnosis problem is a classical topic in discrete
event systems [7,15]. Given an observed alarm stream, the aim is to provide ex-
planations in terms of actual system behaviours. Some events of the system are
observable (alarms) while others are not. In particular, fault events are usually
unobservable; therefore, fault diagnosis is the main motivation of the diagnosis
problem. Given a sequence (or partially ordered set) of observable events, the
diagnoser has to find all possible behaviours of the model explaining the obser-
vation, thus allowing the deduction of invisible causes (faults) of visible events
(alarms). The paper [16] provides a survey on fault diagnosis in this direction.

Since the number of possible explanations may be huge, especially in the case
of highly concurrent systems, it is advisable to employ space-saving methods.
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In [16,10], the global diagnosis is obtained as the fusion of local decisions: this
distributed approach allows one to factor explanations over a set of local observers
and diagnoses, rather than centralizing the data storage and handling.

We will build here upon the approach of [5] where diagnoses are stored in
the form of unfoldings. The unfolding of a system fully describes its concurrent
behaviour in a single branching structure, representing all the possible compu-
tation steps and their mutual dependencies, as well as all reachable states; the
effectiveness of the approach lies in the use of partially ordered runs, rather than
interleavings, to store and handle explanations extracted from the system model.

While [5] and subsequent work in this direction was mainly directed to Petri
nets, here we face the diagnosis problem in mobile and variable topologies. This
requires the development of a model-based diagnosis approach which applies to
other, more expressive, formalisms. Unfoldings of extensions of Petri nets where
the topology may change dynamically were studied in [8,6]. Here we focus on
the general and well-established formalism of graph transformation systems.

In order to retain only the behaviour of the system that matches the obser-
vations, it is not the model itself that is unfolded, but the product of the model
with the observations, which represents the original system constrained by the
observation; under suitable observability assumptions, a finite prefix of the un-
folding is sufficient. The construction is carried out in a suitably defined category
of graph grammars, where such a product can be shown to be the categorical
product. A further pruning phase is necessary in order to remove incomplete
explanations that are only valid for a prefix of the observations.

We show the correctness of this technique, i.e., we show that the runs of
the unfolding properly capture all those runs of the model which explain the
observation. This non-trivial result is obtained by using the fact that unfolding
for graph grammars is a coreflection, hence it preserves limits (and especially
products, such as the product of the model and the observation). In order to
ensure that the product is really a categorical product, special care has to be
taken in the definition of the category.

Additional technical details and the proofs of all the results can be found in
the full version of the paper [4].

2 Graph Grammars and Grammar Morphisms

In this section we summarise the basics of graph rewriting in the single-pushout
(spo) approach [13]. We introduce a category of graph grammars, whose mor-
phisms are a variation of those in [2] and we characterise the induced categorical
product, which turns out to be adequate for expressing the notion of composition
needed in our diagnosis framework. Then we show that the unfolding semantics
smoothly extends to this setting, arguing that the unfolding construction can
still be characterised categorically as a universal construction. The proof relies
on the results in [2]; this motivates our choice of the spo approach as opposed
to the more classical double-pushout (dpo) approach, for graph rewriting.
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2.1 Graph Grammars and Their Morphisms

Given a partial function f : A ⇀ B we write f(a) ↓ whenever f is defined on
a ∈ A and f(a)↑ whenever it is undefined. We will denote by dom(f) the domain
of f , i.e., the set {a ∈ A | f(a)↓}. Let f, g : A ⇀ B be two partial functions. We
will write f ≤ g when dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f).

For a set A, we denote by A∗ the set of sequences over A. Given f : A ⇀
B, the symbol f∗ : A∗ → B∗ denotes its extension to sequences defined by
f∗(a1 . . . an) = f(a1) . . . f(an), where it is intended that the elements on which
f is undefined are “forgotten”. Specifically, f∗(a1 . . . an) = ε whenever f(ai) ↑
for any i ∈ {1, . . . , n}. Instead, f⊥:A∗ ⇀ B∗ denotes the strict extension of f to
sequences, satisfying f⊥(a1 . . . an) ↑ whenever f(ai) ↑ for some i ∈ {1, . . . , n}.

A (hyper)graph G is a tuple (NG, EG, cG), where NG is a set of nodes, EG is
a set of edges and cG : EG → N∗

G is a connection function. Given a graph G we
will write x ∈ G to say that x is a node or edge in G, i.e., x ∈ NG ∪EG.

Definition 1 (partial graph morphism). A partial graph morphism f : G ⇀
H is a pair of partial functions f = 〈fN : NG ⇀ NH , fE : EG ⇀ EH〉 such that:

cH ◦ fE ≤ f⊥N ◦ cG (*)

We denote by PGraph the category of hypergraphs and partial graph mor-
phisms. A morphism is called total if both components are total, and the corre-
sponding subcategory of PGraph is denoted by Graph.

Notice that, according to condition (*), if f is defined on an edge then it must
be defined on all its adjacent nodes: this ensures that the domain of f is a well-
formed graph. The inequality in condition (*) ensures that any subgraph of a
graph G can be the domain of a partial morphism f : G ⇀ H .

We will work with typed graphs [9,14], which are graphs labelled over a struc-
ture that is itself a graph, called the graph of types.

Definition 2 (typed graph). Given a graph T , a typed graph G over T is
a graph |G|, together with a total morphism tG : |G| → T . A partial morphism
between T -typed graphs f : G1 ⇀ G2 is a partial graph morphism f : |G1|⇀ |G2|
consistent with the typing, i.e., such that tG1 ≥ tG2 ◦f . A typed graph G is called
injective if the typing morphism tG is injective. The category of T -typed graphs
and partial typed graph morphisms is denoted by T -PGraph.

Definition 3 (graph production, direct derivation). Fixing a graph T of
types, a (T -typed graph) production q is an injective partial typed graph mor-
phism Lq

rq
⇀ Rq. It is called consuming if rq is not total. The typed graphs Lq

and Rq are called left-hand side and right-hand side of the production.

Given a typed graph G and a match, i.e., a total injective
morphism g : Lq → G, we say that there is a direct derivation
δ from G to H using q (based on g), written δ : G ⇒q H, if
there is a pushout square in T -PGraph as on the right.

Lq

g
��

rq
� Rq

h
��

G
d

� H

Roughly speaking, the rewriting step removes from G the image of the items of
the left-hand side which are not in the domain of rq, namely g(Lq − dom(rq)),
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II

C

II

C

I

Fig. 1. Dangling edge removal in spo rewriting

adding the items of the right-hand side which are not in the image of rq, namely
Rq − rq(dom(rq)). The items in the image of dom(rq) are “preserved” by the
rewriting step (intuitively, they are accessed in a “read-only” manner). Addi-
tionally, whenever a node is removed, all the edges incident to such a node are
removed as well. For instance, consider production fail at the bottom of Fig. 2.
Its left-hand side contains a unary edge (i.e., an edge connected to only one node)
and its right-hand side is the empty graph. Nodes and edges are represented as
circles and boxes, respectively. The application of fail to a graph is illustrated
in Fig. 1, where the match of the left-hand side is indicated as shaded.

Definition 4 (typed graph grammar). A (T -typed) spo graph grammar G
is a tuple 〈T,Gs, P, π, Λ, λ〉, where Gs is the (typed) start graph, P is a set
of production names, π is a function which associates to each name q ∈ P a
production π(q), and λ : P → Λ is a labelling over the set Λ. A graph grammar
is consuming if all the productions in the range of π are consuming.

As standard in unfolding approaches, in the paper we will consider consuming
graph grammars only, where each production deletes some item. Hereafter, when
omitted, we will assume that the components of a given graph grammar G are
〈T,Gs, P, π, Λ, λ〉. Subscripts carry over to the component names.

For a graph grammar G we denote by Elem(G) the set NT ∪ ET ∪ P . As
a convention, for each production name q the corresponding production π(q)
will be Lq

rq
⇀ Rq. Without loss of generality, we will assume that the injective

partial morphism rq is a partial inclusion (i.e., that rq(x) = x whenever defined).
Moreover we assume that the domain of rq , which is a subgraph of both |Lq|
and |Rq|, is the intersection of these two graphs, i.e., that |Lq|∩ |Rq| = dom(rq),
componentwise. Since in this paper we work only with typed notions, we will
usually omit the qualification “typed”, and, sometimes, we will not indicate
explicitly the typing morphisms.

In the sequel we will often refer to the runs of a grammar defined as follows.

Definition 5 (runs of a grammar). Let G be a graph grammar. Then Runs(G)
contains all sequences r1r2 . . . rn where ri ∈ P and Gs

r1⇒ G1
r2⇒ G2 . . .

rn⇒ Gn.

Example. As a running example we will consider the graph grammar M whose
start graph and productions are given in Fig. 2. It models a network with mo-
bility whose nodes are either senders (labelled S), receivers (R) or intermediary
nodes (I). Senders may send messages which can then cross connections and
should finally arrive at a receiver. However, a connection may be spontaneously
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Productions:

C

S R

1

R

1

R

II

C

M

1

R

1

R

C

I

II

1

I

1 C

create intermediary node
cnode:

C

Start graph:

C

S R

1

S

CM

1 C 2 1 C 2

M M

1 2 1 2

M

CC

CM

1 C 2 1 2

CMCM

C

1 2 1 2CC

I

1 2

I

CC

receive message

create connection
I

1 2

receive corrupted message

send message

message crosses connection

cross2:
message gets corrupted

cross3:
corrupted message crosses

crpt :
connection gets corrupted

1

S M

cconn:

I

1

fail:
intermediary node fails

snd:

rcv:

crcv:

cross1:

Fig. 2. Example grammar M: message passing over possibly corrupted connections

corrupted, which causes the corruption of any message which crosses it. The
network is variable and of unbounded size as we allow the creation of a new
connection between existing intermediary nodes and the creation of a new con-
nection leading from an existing intermediary node to a new intermediary node.
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Productions (and the corresponding partial morphisms) are depicted as fol-
lows: edges that are deleted or created are drawn with solid lines, whereas edges
that are preserved are indicated with dashed lines. Nodes which are preserved
are indicated with numbers, whereas newly created nodes are not numbered.

Productions that should be observable (a notion that will be made formal in
Section 4) are indicated by bold face letters.

We next define the class of grammars which will focus on in the development.

Definition 6 (semi-weighted SPO graph grammars). A grammar G is
semi-weighted if (i) the start graph Gs is injective, and (ii) for each q ∈ P , for
any x, y in |Rq| − |Lq| if tRq(x) = tRq(y) then x = y, i.e., the right-hand side
graph Rq is injective on the “produced part” |Rq| − |Lq|.

Intuitively, conditions (i) and (ii) ensure that in a semi-weighted grammar each
item generated in a computation has a uniquely determined causal history, a
fact which is essential for the validity of Theorem 15.

Note that grammar M of Fig. 2 is not semi-weighted (if we assume the sim-
plest type graph that contains one node and exactly one edge for every edge
label). It could easily be converted into a semi-weighted grammar, for instance
by creating the start graph (which is not injectively typed) step by step. How-
ever, for the sake of simplicity we do not carry out this construction in the
paper.

A grammar morphism consists of a (partial) mapping between production
names and a component specifying the (multi)relation between the type graphs.
A morphism must “preserve” the graphs underlying corresponding productions
of the two grammars as well as the start graphs. Since these conditions are
exactly the same as in [2] and they are not relevant for understanding this paper,
in the sequel we will refer to the morphisms in [2], making explicit only the new
condition regarding the labelling. The interested reader can find the details in
the full version [4].

Definition 7 (grammar morphism). Let Gi (i ∈ {1, 2}) be graph grammars
such that Λ2 ⊆ Λ1. A grammar morphism f : G1 → G2 is a morphism in
the sense of [2, Def. 15] where the component on productions, i.e., the partial
function fP : P1 ⇀ P2, additionally satisfies, for all q1 ∈ P1

fP (q1) ↓ iff λ1(q1) ∈ Λ2 and, in this case, λ2(fP (q1)) = λ1(q1).

Note that a morphism from G1 to G2 might exist only when Λ2 ⊆ Λ1.

Definition 8 (category of graph grammars). We denote by GG the cate-
gory where objects are spo graph grammars and arrows are grammar morphisms.
By SGG we denote the full subcategory of GG having semi-weighted graph gram-
mars as objects.

The choice of grammar morphisms and, in particular, the conditions on the la-
belling, lead to a categorical product suited for composing two grammars G1 and
G2: productions with labels in Λ1∩Λ2 are forced to be executed in a synchronous
way, while the others are executed independently in the two components.
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Proposition 9 (product of graph grammars). Let G1 and G2 be two graph
grammars. Their product object G = G1 × G2 in GG is defined as follows:

– T = T1 % T2;
– Gs = Gs1 %Gs2, with the obvious typing;
– P = {(p1, p2) | λ1(p1) = λ2(p2)} ∪{(p1, ∅) | λ1(p1) �∈ Λ2}

∪{(∅, p2) | λ2(p2) �∈ Λ1};
– π(p1, p2) = π1(p1) % π2(p2), where πi(∅) is the empty rule ∅ → ∅;
– Λ = Λ1 ∪ Λ2;
– λ(p1, p2) = λi(pi), for any i ∈ {1, 2} such that pi �= ∅;

where, p1 and p2 range over P1 and P2, respectively, and disjoint unions are
taken componentwise. If G1,G2 are both semi-weighted grammars, then G as
defined above is semi-weighted, and it is the product of G1 and G2 in SGG.

2.2 Occurrence Grammars and Unfolding

A grammar G is safe if (i) for all H such that Gs ⇒∗ H , H is injective, and
(ii) for each q ∈ P , the left- and right-hand side graphs Lq and Rq are injective.

In words, in a safe grammar each graph G reachable from the start graph is
injectively typed, and thus we can identify it with the corresponding subgraph
tG(|G|) of the type graph. With this identification, a production can only be
applied to the subgraph of the type graph which is the image via the typing
morphism of its left-hand side. Thus, according to its typing, we can think that
a production produces, preserves or consumes items of the type graph, and using
a net-like language, we speak of pre-set, context and post-set of a production,
correspondingly. Intuitively the type graph T stands for the places of a net,
whereas the productions P represent the transitions.

Definition 10 (pre-set, post-set and context of a production). Let G be
a graph grammar. For any production q ∈ P we define its pre-set •q, context q
and post-set q• as the following subsets of ET ∪NT :

•q = tLq (|Lq | − |dom(rq)|) q = tLq (|dom(rq)|) q• = tRq (|Rq| − rq(|dom(rq)|)).
Symmetrically, for each item x ∈ T we define •x = {q ∈ P | x ∈ q•}, x• = {q ∈
P | x ∈ •q}, x = {q ∈ P | x ∈ q}.

Causal dependencies between productions are captured as follows.

Definition 11 (causality). The causality relation of a grammar G is the (least)
transitive relation < over Elem(G) satisfying, for any node or edge x ∈ T , and for
productions q, q′ ∈ P ,

1. if x ∈ •q then x < q;
2. if x ∈ q• then q < x;
3. if q• ∩ q′ �= ∅ then q < q′.

As usual ≤ is the reflexive closure of <. Moreover, for x ∈ Elem(G) we denote
by �x� the set of causes of x in P , namely {q ∈ P | q ≤ x}.

As in Petri nets with read arcs, the fact that a production application not only
consumes and produces, but also preserves a part of the state, leads to a form
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of asymmetric conflict between productions; for a thorough discussion of asym-
metric event structures see [1].

Definition 12 (asymmetric conflict). The asymmetric conflict relation of a
grammar G is the binary relation ↗ over the set of productions, defined by:

1. if q ∩ •q′ �= ∅ then q ↗ q′;
2. if •q ∩ •q′ �= ∅ and q �= q′ then q ↗ q′;
3. if q < q′ then q ↗ q′.

Intuitively, whenever q ↗ q′, q can never follow q′ in a computation. This holds
when q preserves something deleted by q′ (Condition 1), trivially when q and q′

are in conflict (Condition 2) and also when q < q′ (Condition 3). Conflicts (in
acyclic grammars) are represented by cycles of asymmetric conflict: if q1 ↗ q2 ↗
. . .↗ qn ↗ q1 then {q1, . . . , qn} will never appear in the same computation.

An occurrence grammar is an acyclic grammar which represents, in a branch-
ing structure, several possible computations beginning from its start graph and
using each production at most once. Recall that a relation R ⊆ X×X is finitary
if for any x ∈ X , the set {y ∈ X | R(y, x)} is finite.

Definition 13 (occurrence grammar). An occurrence grammar is a safe
grammar O = 〈T,Gs, P, π, Λ, λ〉 such that

1. causality < is irreflexive, its reflexive closure ≤ is a partial order, and, for
any q ∈ P , the set �q� is finite and asymmetric conflict ↗ is acyclic on �q�;

2. the start graph Gs is the set Min(O) of minimal elements of 〈Elem(O),≤〉
(with the graphical structure inherited from T and typed by the inclusion);

3. any item x in T is created by at most one production in P , i.e., |•x| ≤ 1;

A finite occurrence grammar is deterministic if relation ↗+, the transitive clo-
sure of ↗, is irreflexive. We denote by OGG the full subcategory of GG with
occurrence grammars as objects.

Note that the start graph of an occurrence grammarO is determined by Min(O).
An occurrence grammar is deterministic if it does not contain conflicts (cycles
of asymmetric conflict) so that all its productions can be executed in the same
computation. In the sequel, the productions of an occurrence grammar will often
be called events.

The notion of configuration captures the intuitive idea of (deterministic) com-
putation in an occurrence grammar.

Definition 14 (configuration). Let O = 〈T, P, π〉 be an occurrence grammar.
A configuration is a subset C ⊆ P such that (i) for any q ∈ C it holds �q� ⊆ C
and (ii) ↗C, the asymmetric conflict restricted to C, is acyclic and finitary.

It can be shown that, indeed, all the productions in a configuration can be
applied in a derivation exactly once in any order compatible with ↗.

Since occurrence grammars are particular semi-weighted grammars, there is
an inclusion functor I : OGG → SGG. Such functor has a right adjoint.

Theorem 15. The inclusion functor I : OGG → SGG has a right adjoint,
the so-called unfolding functor U : SGG → OGG.
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As a consequence of the above result U , as a right adjoint, preserves all limits
and in particular products.

The result is a corollary of [2], which, in turn, is obtained through the explicit
definition of the unfolding U(G). Given a grammar G the unfolding construction
produces an occurrence grammar which fully describes its behaviour recording
all the possible graph items which are generated and the occurrences of pro-
ductions. The unfolding is obtained by starting from the start graph (as type
graph), applying productions in any possible way, without deleting items but
only generating new ones, and recording such production instances in the type
graph. The result is an occurrence grammar U(G) and a grammar morphism
f : U(G) → G, called the folding morphism, which maps each item (instance
of production or graph item) of the unfolding to the corresponding item of the
original grammar. Because of space limitations, the construction is not formally
defined here. In Section 4 we will show an example of an unfolding.

3 Interleaving Structures

Interleaving structures [3] are a semantic model which captures the behaviour
of a system as the collection of its possible runs. They are used as a simpler
intermediate model which helps in stating and proving the correctness of the
diagnosis procedure.

An interleaving structure is essentially a collection of runs (sequences of
events) satisfying suitable closure properties. Given a set E, we will denote by
E� the set of sequences over E in which each element of E occurs at most once.

Definition 16 (interleaving structures). A (labelled) interleaving structure
is a tuple I = (E,R,Λ, λ) where E is a set of events, λ:E → Λ is a labelling of
events and R ⊆ E� is the set of runs, satisfying: (i) R is prefix-closed, (ii) R
contains the empty run ε, and (iii) every event e ∈ E occurs in at least one run.

The category of interleaving structures, as defined below, is adapted from [3] by
changing the notion of morphisms in order to take into account the labels. This
is needed to obtain a product which expresses a suitable form of synchronised
composition.

Definition 17 (interleaving morphisms). Let Ii with i ∈ {1, 2} be inter-
leaving structures. An interleaving morphism from I1 to I2 is a partial function
θ:E1 ⇀ E2 on events such that

1. Λ2 ⊆ Λ1;
2. for each e1 ∈ E1, θ(e1)↓ iff λ1(e1) ∈ Λ2 and, in this case, λ2(θ(e1)) = λ1(e1);
3. for every r ∈ R1 it holds that θ∗(r) ∈ R2.

Morphism θ is called a projection if θ is surjective on runs (as a function from
R1 to R2). The category of interleaving structures and morphisms is denoted Ilv.

An occurrence grammar can be easily mapped to an interleaving structure, by
simply taking all the runs of the grammar.
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Definition 18 (interleaving structures for occurrence grammars). For
an occurrence grammar G we denote by Ilv(G) the interleaving structure which
consists of all runs of G, i.e., Ilv(G) = (P,Runs(G), Λ, λ).

We next characterise the categorical product in Ilv, which turns out to be, as
in GG, the desired form of synchronised product.

Proposition 19 (product of interleaving structures). Let I1 and I2 be
two interleaving structures. Then the product object I1 × I2 is the interleaving
structure I = (E,R,Λ, λ) defined as follows. Let

E′ = {(e1, e2) | e1 ∈ E1, e2 ∈ E2, λ1(e1) = λ2(e2)}
∪ {(e1, ∗) | e1 ∈ E1, λ1(e1) �∈ Λ2} ∪ {(∗, e2) | e2 ∈ E2, λ2(e2) �∈ Λ1}

and let πi : E ⇀ Ei be the obvious (partial) projections. Then R = {r ∈ (E′)� |
π∗1(r) ∈ R1, π

∗
2(r) ∈ R2}, E = {e′ ∈ E′ | e occurs in some run r ∈ R}, Λ =

Λ1 ∪ Λ2 and λ is defined in the obvious way.

4 Diagnosis and Pruning

In this section we use the tools introduced so far in order to formalise the di-
agnosis problem. Then we show how, given a graph grammar model and an
observation for such a grammar, the diagnosis can be obtained by first taking
the product of the model and the observation, considering its unfolding and
finally pruning such unfolding in order to remove incomplete explanations. As
already mentioned, typically only a subset of the productions in the system is
observable. Hence, for this section, we fix a graph grammar G with Λ as the
set of labels, and a subset Λ′ ⊆ Λ of observable labels ; an event or production
is called observable if it has an observable label. In order to keep explanations
finite, we will only consider systems that satisfy the following observability as-
sumption (compare [15,11]): any infinite run must contain an infinite number of
observable productions.

In the sequel we will need to consider the runs of a system which have a number
of observable events coinciding with the number of events in the observation. For
this aim the following definition will be useful.

Definition 20 (n-runs of a grammar). Let G be a graph grammar. For a
given n ∈ N we denote by Runsn(G) the set of all runs for which the number of
observable productions equals n.

The outcome of the diagnosis procedure is an occurrence grammar which, intu-
itively, collects all the behaviours of the grammar G modelling the system, which
are able to “explain” the observation.

An observation can be a sequence (in the case of a single observer) or a set of
sequences (in the case of multiple distributed observers) of alarms (observable
events). Here we consider, more generally, partially ordered sets of observations,
which can be conveniently modelled as deterministic occurrence grammars O.
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Fig. 3. A graph grammar representing an observation O

Definition 21 (observation grammar). An observation grammar for a given
grammar G, with observable labels Λ′, is a (finite) deterministic occurrence gram-
mar labelled over Λ′.

Given a sequence of observed events, we can easily construct an observation
grammar O having that sequence as observable behaviour. It will have a pro-
duction for each event in the sequence (with the corresponding label). Each such
production consumes a resource generated by the previous one in the sequence
(or an initial resource in the case of the first production). The same construction
applies to general partially ordered sets observations.

Example. In the example grammar M (see Fig. 2), assume that we have the
following observation: snd2 cconn crcv2, i.e., we observe, in sequence, the send-
ing of a message, the creation of a connection and the reception of a corrupted
message. These three observations can be represented by a simple grammar O
(see Fig. 3) with three productions, each of which either consumes an initial
resource or a resource produced by the previous production. These resources are
modeled as 0-ary edges (labelled X , Y , Z). The initial graph is depicted with
bold lines, and the left- and right-hand sides of the productions of the occurrence
grammar are indicated by a Petri-net-like notation: events are drawn with black
rectangles connected to the respective edges by dashed lines.

When unfolding the product of a grammar G with its observation O, we obtain a
grammar U = U(G×O) with a morphism π:U → O, arising as the image through
the unfolding functor of the projection G × O → O (since the unfolding of an
occurrence grammar is the grammar itself). Now, as grammar morphisms are
simulations, given the morphism π:U → O we know that any computation in U is
mapped to a computation in O. Say that a computation in U is a full explanation
of O if it is mapped to a computation of O including all its productions. As U
can still contain events belonging only to incomplete explanations, the aim of
pruning is to remove such events.

Definition 22 (pruning). Let π:U → O be a grammar morphism from an
occurrence grammar U to an observation O. We define the pruning of π, denoted
by Pr(π), to be the grammar obtained from U by removing all events (including
their consequences) not belonging to the following set:

{q ∈ PU | ∃C ∈ Conf (U): (q ∈ C ∧ π(C) = PO)}

Discussing the efficiency of pruning algorithms is outside the scope of the paper;
for sequential observations an on-the-fly algorithm is discussed in [5].

As described above, the diagnosis is constructed by first taking the product
of G with the observation (this intuitively represents the system constrained by
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Fig. 4. Running example: prefix of the unfolding of the product

the observation). This product is then unfolded to get an explicit representation
of the possible behaviours explaining the observation. Finally, a pruning phase
removes from the resulting occurrence grammar the events belonging (only) to
incomplete explanations. This is formalised in the definition below.

Definition 23 (diagnosis grammar). Let G be the grammar modelling the
system of interest and let O be an observation. Take the product G×O, the right
projection ϕ : G ×O → O and consider π = U(ϕ) : U(G ×O) → O.

Then the occurrence grammar Pr (π) is called the diagnosis grammar of the
model and the observation and denoted by D(G,O).

Note that since the observability assumption holds, it can easily be shown that
the diagnosis grammar is finite, whenever the observation is finite.

Example. We can compute the product of grammars M and O and unfold it.
For reasons of space Fig. 4 shows only a prefix of the unfolding that depicts
one possible explanation: here the message is sent (event a) and crosses the
first connection (b). Possibly concurrently a new connection between the two
intermediate nodes is created (c), which is then also crossed by the message
(d). Again in a possibly concurrent step the last connection is corrupted (e),
leading to the corruption of the message (f) and its reception by the receiver
(g). Observable events are indicated by bold face letters.

Several events of the unfolding have been left out due to space constraints,
for instance:

– Events belonging to alternative explanations: the corruption of the first con-
nection or the corruption of the newly created middle connection (or the
corruption of any non-empty subset of these connections). Alternatively it
might also have been the case that the other sender/receiver pair handles the
message, while the connection (which is not involved in any way) is created
between the two intermediate nodes.

– Events that happen concurrently but are not directly related to the failure,
such as the corruption of a connection over which no message is sent.
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Furthermore there are events belonging to prefixes of the unfolding that can-
not be extended to a full observation. For instance, the unfolding would contain
concurrent events representing sending by the right-hand sender and the creation
of a new connection leading from right to left instead of left to right. However,
this is a false trail since this would never cause the reception of a message by
the right-hand receiver. These incomplete explanations are removed from the
unfolding in the pruning phase.

Note that—due to the presence of concurrent events—the unfolding is a much
more compact representation of everything that might have happened in the
system than the set of all possible interleavings of events.

5 Correctness of the Diagnosis

We now show our main result, stating that the runs of the diagnosis grammar prop-
erly capture all those runs of the system model which explain the observation. This
is done by exploiting the coreflection result (Theorem 15) and by additionally tak-
ing care of the pruning phase (Definition 22). We first need some technical results.

Lemma 24. Let G1,G2 be two occurrence grammars. Consider the product of the
two grammars and its image through the Ilv functor as shown below. Furthermore
consider the product of the interleaving structures Ilv(G1), Ilv (G2). Then the
mediating morphism δ is a projection which is total on events.

Ilv(G1) Ilv(G1)× Ilv(G2)
δ1��

δ2 �� Ilv (G2)

Ilv(G1 × G2)
π1

���������� π2

����������δ
��

To lighten the notation, hereafter, given an interleaving structure I we write λ∗(I)
for λ∗(RI). Recall that, given f : Λ1 ⇀ Λ2, f∗ : Λ∗

1 → Λ∗
2 denotes the (non-strict)

extension of f to sequences. Then f−1 : P(Λ∗
2) → P(Λ∗

1) is its inverse.

Lemma 25. Let G1,G2 be two occurrence grammars and let fi:Λ1 ∪ Λ2 ⇀ Λi

(i ∈ {1, 2}) be the obvious partial inclusions. Then it holds that

λ∗(Ilv (G1 × G2)) = f−1
1 (λ∗1(Ilv(G1))) ∩ f−1

2 (λ∗2(Ilv(G2))).

The next proposition shows that considering the product of the original grammar
G and of the observation O, taking its unfolding and the corresponding labelled
runs, we obtain exactly the runs of G compatible with the observation.

Proposition 26. Let G be a grammar and O an observation, where Λ is the set
of labels of G and Λ′ ⊆ Λ the set of labels of O. Furthermore let f :Λ ⇀ Λ′ be
the obvious partial inclusion. Then it holds that:

λ∗(Ilv(U(G ×O))) = λ∗(Runs(G)) ∩ f−1(λ∗(Runs(O))).

We can conclude that the described diagnosis procedure is complete, i.e., given
an observation of size n, the runs of the diagnosis grammar D(G,O) with n
observable events are in 1-1 correspondence with those runs of G that provide
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Fig. 5. Spurious runs in a diagnosis grammar

a full explanation of the observation. As a preliminary result, on the basis of
Proposition 26 one could have shown that the same holds replacing the diag-
nosis grammar with U(G × O), i.e., the unpruned unfolding. The result below
additionally shows that no valid explanation is lost during the pruning phase.

Theorem 27 (correctness of the diagnosis). With the notation of Proposi-
tion 26 it holds that:

λ∗(Runsn(D(G,O))) = λ∗(Runs(G)) ∩ f−1(λ∗(Runsn(O))).

That is, the maximal interleavings of the diagnosis grammar (seen as label se-
quences) are exactly the runs of the model which explain the full observation.

Observe that, due to the nondeterministic nature of the diagnosis grammar,
events which are kept in the pruning phase as they are part of some full ex-
planation of the observation, can also occur in a different configuration. As a
consequence, although all inessential events have been removed, the diagnosis
grammar can still contain spurious configurations which cannot be extended to
full explanations. As an example, consider the graph grammar G in Fig. 5, given
in a Petri-net-like notation. Assume we observe three unordered events a, b,
c. Then the unfolding of the product basically corresponds to G itself. In the
pruning phase nothing is removed. However there is a configuration (indicated
by the dashed closed line) that cannot be further extended to an explanation.

6 Conclusion

In this paper we formalised event-based diagnosis for systems with variable
topologies, modelled as graph transformation systems. In particular we have
shown how to exploit the coreflection result for the unfolding of graph grammars
in order to show the correctness of a diagnosis procedure generating partially
ordered explanations for a given observation.

We are confident that the approach presented in the paper, although de-
veloped for transformation systems over hypergraphs, can be generalised to the
more abstract setting of adhesive categories. In particular we are currently work-
ing on a generalization of the unfolding procedure that works for spo-rewriting
in (suitable variations of) adhesive categories [12]. This would allow one to have
a kind of parametric framework which can be used to instantiate the results of
this paper to more general rewriting theories.
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We are also interested in distributed diagnosis where every observer separately
computes possible explanations of local observations that however have to be
synchronized. In [3] we already considered distributed unfolding of Petri nets;
for diagnosis however, the non-trivial interaction of distribution and pruning has
to be taken into account. Distribution will require the use of pullbacks of graph
morphisms, in addition to products.
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Abstract. We develop a theory of sorted bigraphical reactive systems.
Every application of bigraphs in the literature has required an ex-

tension, a sorting, of pure bigraphs. In turn, every such application has
required a redevelopment of the theory of pure bigraphical reactive sys-
tems for the sorting at hand. Here we present a general construction of
sortings. The constructed sortings always sustain the behavioural theory
of pure bigraphs (in a precise sense), thus obviating the need to rede-
velop that theory for each new application. As an example, we recover
Milner’s local bigraphs as a sorting on pure bigraphs.

Technically, we give our construction for ordinary reactive systems,
then lift it to bigraphical reactive systems. As such, we give also a con-
struction of sortings for ordinary reactive systems. This construction is
an improvement over previous attempts in that it produces smaller and
much more natural sortings, as witnessed by our recovery of local bi-
graphs as a sorting.

1 Introduction

Bigraphical reactive systems is a framework proposed by Milner and others
[1,2,3,4] as a unifying theory of process models and as a tool for reasoning about
ubiquitous computing. For process models, it has been shown that Petri-nets [5],
CCS [1], various π-calculi [4, 6, 7], the fusion calculus [8], mobile ambients [6],
and Homer [9] can all be understood as bigraphical reactive systems (although
transition semantics are usually captured only approximately). Moreover, Milner
recently used bigraphs as a vehicle for studying confluence, using the λ-calculus
as an example [3,10]. For ubiquitous computing, bigraphical models were inves-
tigated in [11].

A bigraphical reactive system consists of a category of bigraphs and a reaction
relation on those bigraphs; we can think of the bigraphs as terms modulo struc-
tural congruence and the reaction relation as term rewrite rules. The benefit of
working within bigraphical reactive systems comes from their rich behavioural
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theory [1, 4, 2, 6, 12, 13, 14] which (a) induces a labelled transition system auto-
matically for any reaction relation and (b) guarantees that bisimulation on that
transition system is a congruence.

A category of bigraphs is formed according to a single-sorted signature, which
defines the kinds of nodes found in bigraphs of that category. Single-sorted signa-
tures are usually insufficient when we define programming languages or algebraic
models: We need to constrain the combination of operators, so we need richer
notions of sorting. Indeed, every one of [1,2,3,4,5,6,7,9,10,11] construct a richer
sorting to fit the framework of bigraphs to the problem at hand.

Alas, the behavioural theory of bigraphs applies only to single-sorted (or pure)
bigraphs, not to arbitrarily-sorted extensions. Hence, also every one of [1, 2, 3,
4, 5, 6, 7, 9, 10, 11] must re-develop substantial parts of the behavioural theory.
Worse, although some sortings are easy to construct [1,2,6], others require either
hard work [11] or ingenuity [4, 3, 10] to achieve conceptually simple effects.

Up until now, it has been an open question what kinds of extensions would
admit such a redevelopment. In this paper we provide a large class of extensions
for which such a redevelopment is possible. Moreover, we give a method for
automatically constructing sortings for such extensions.

The key observation is that most sortings in the literature exists solely to get
rid of bigraphs that are meaningless for the application at hand. That is, most
sortings exists solely to impose a predicate on the morphisms in the category
of pure bigraphs. We give a method to automatically construct a well-behaved
sorting for any decomposable such predicate. Here, a predicate P is decompos-
able iff it is true at every identity and P (g◦f) implies P (g) and P (f); all but one
of the above-mentioned applications fall into this class. In particular, we prove
that Milner’s local bigraphs [10] arise as a sorting of pure bigraphs.

Thus, by identifying a large class of predicates for which we can construct well-
behaved sortings, we make it easier to work with bigraphical reactive systems
and we push back the limit for what we can hope to achieve with them.

Overview of the technical development. We ask and answer the following
two questions:

1. Which sortings sustain the behavioural theory of bigraphs?
2. How do we construct such a sorting for a given problem domain?

We answer Question 1 by giving a sufficient condition for a sorting of a reactive
system to sustain the behavioural theory of the well-sorted parts of the original
system. We then lift both this result and previous work on sortings for reac-
tive systems [15, 6] to the present setting of bigraphical reactive systems. We
answer Question 2 by giving a new family of sortings, closure sortings, all of
which sustain the behavioural theory. In particular, we show how Milner’s local
bigraphs [10, 3] arise as a special case of the closure sorting.

In more detail: Question 1. Jensen [6] found a sufficient condition, safety, for
a small class of sortings for bigraphs to preserve congruence properties. In [15]
we moved that condition to general sortings of reactive systems.
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In the present paper we complement that result with a sufficient condition for
a sorting to preserve and reflect reaction and transition semantics for any well-
sort of reactive system. We say that sorting with that property “has semantic
correspondence.” Altogether, in the setting of reactive systems we now have
sufficient conditions for a sorting to reflect congruence properties and operational
semantics; this is what we mean by “sustaining the behavioural theory”. We then
proceed to lift these conditions to bigraphical reactive systems which, despite the
name, are not an instance of ordinary reactive systems. Moreover, we argue that
in general, to construct a well-behaved sorting of a bigraphical reactive system,
it is sufficient to construct a well-behaved sorting of the underlying reactive
system.

In more detail: Question 2. As part of the safety condition mentioned above,
it is required that if a decomposable context has a sorting, then the sorting
can be decomposed correspondingly. In particular, the “has a sorting” predicate
P on the pure category is decomposable, i.e., P (f ◦ g) implies P (f) and P (g).
Thinking in terms of sorted algebra or programming languages this is a very
natural condition — a refinement of a sorting should not constrain the way a
well-sorted term can be decomposed.

In [15] we discovered that banning bigraphs containing particular “bad” sub-
bigraphs corresponds exactly to giving a decomposable predicate. This insight
gave rise to an answer to Question 2, albeit only for reactive systems: We gave,
for any predicate P on the morphisms of a category, a sorting called the predicate
sorting. The predicate sorting sustains the theory of reactive systems.

In practice, however, the predicate sorting turns out to provide far more sorts
than did the sortings found in an ad hoc way for the applications in [1, 2, 3,
4, 5, 6, 7, 9, 10, 11]. In the present paper, we construct a new family of sortings,
the closure sortings. Like the predicate sortings, closure sortings sustain the
behavioural theory of both bigraphs and reactive systems. Unlike the predicate
sortings, closure sortings give sorts much closer to what we find in the literature.
As a (spectacular!) example, we show that Milner’s Local bigraphs [10, 3] are
recovered in a closure sorting, by taking Milner’s scoping condition as a predicate
on bigraphs.

Outline. In Section 2 we revisit Leifer and Milner’s classic Reactive Systems
[12,13], a precursor to bigraphs. In Section 3, we recall the definition of a sorting
of a reactive system and recall our previous generalisation of Jensen’s safety
condition. In Section 4, we give a general condition for a sorting of a reactive
system to preserve dynamics up to a predicate (Theorem 1), partially answering
Question 1. In Section 5, we give the closure sorting (Definition 12), partially
answering Question 2 above (Theorem 2). In Section 6, we remark on lifting
these partial answers to the setting of bigraphical reactive systems, thus arriving
at complete answers to both questions. Finally, in Section 7, as an extended
example, we recover local bigraphs as a full sub-sorting of a closure sorting
(Theorem 3).
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For want of space, proofs have been omitted from this extended abstract; they
can be found in [16].

2 Reactive Systems

In this section, we recall Milner and Leifer’s Reactive Systems [17,13,12]. These
systems form the conceptual basis of bigraphical reactive systems. Except for
the running example, this section contains no original work.

Let C be a category, and let Rε be an object of C. We think of morphisms
with domain Rε as agents or processes and all other morphisms as contexts. A
reaction rule (l, r) is a cospan of agents with common domain Rε; intuitively, l
and r are the left- and right-hand sides of a rewrite rule. A set R of reaction
rules induces a reaction relation, , obtained by closing reaction rules under
contexts:

a b iff ∃f ∈ C, ∃(l, r) ∈ R. a = f ◦ l, b = f ◦ r. (1)

Altogether, these components constitute a reactive system.

Definition 1 (Reactive system). A reactive system over a category C com-
prises a distinguished object Rε and a set R of reaction rules; the reaction rules
give rise to a reaction relation by (1) above. We identify a reactive system with
its reaction rules, writing R for both.

In this definition we have omitted the notion of activity usually associated with
reactive systems. Activity can be recovered as a sorting both in the case of
reactive systems [16] and in the case of bigraphical reactive systems [6].

Example 1. Here is a small process language.

P,Q ::= 0 | a | s | (P |Q) (2)

These are the nil process 0, atomic processes a and s, and parallel composition
of processes. As usual, we consider processes up to a structural congruence com-
prising the commutative monoid laws for | and 0. Clearly, the set of processes
is isomorphic to the free, commutative monoid over {a, s}; that is, a category
with a single object, terms up to structural congruence as morphisms, compo-
sition f ◦ g = f |g, and identity 0. (In this case, there is no distinction between
agents and contexts: all morphisms are both.) Call this category C. We intend a
to model a normal process and s to model two processes in a synchronized state.
Here are the reaction rules:

(a|a, s ) “two processes synchronize,” (3a)
(s , a|a) “processes drop synchronization.” (3b)

Here are two reactions, using first rule 3a, then 3b: a|a|s s|s s|a|a.



222 L. Birkedal, S. Debois, and T. Hildebrandt

Leifer and Milner give a method for deriving labeled transitions for any reac-
tive system. If the underlying category has sufficient relative pushouts (RPOs),
then the bisimulation on those labeled transitions is a congruence. To construct
labeled transitions, we take as labels minimal contexts enabling reaction. The
notion of idem-pushout (IPOs) captures minimality1.

Definition 2. For a reactive system R over a category C, we define the transi-
tion relation by f g

h iff there exists a context i and a reaction rule (l, r) ∈ R
s.t. the following diagram commutes, and the square is an IPO.

f

l

g

i

r

h (4)

Example 2. C is isomorphic to the category of multisets over {a, s} (with multiset
union as composition). Thus C has pushouts, given by multiset subtraction, and
thus RPOs. The pushout of multisets simply adds what is missing: The pushout
of a and a|a is a and 0, the pushout of a and s is s and a. Because IPOs are
precisely the pushouts in this category, we find transitions for an agent a by
taking the pushout of a and either left-hand side of the two rules.

a a s by rule (3a) (5)
a s a|a|a by rule (3b) (6)

There are no transitions from a with label a|a. A label can only add what is
missing, and the agent a is only one “a” short of the left-hand side a|a of rule (3a).

As mentioned, the bisimulation on such derived transition systems is a congru-
ence whenever the underlying category has RPOs [13, 12].

Proposition 1 ([12]). Let R be a reactive system on a category C. If C has
RPOs, then the bisimulation on the derived transitions is a congruence.

3 Sortings

In this section, we recall the notion of sorting [15] for categories. As in the
previous section, this section contains nothing new but the running example.

Definition 3 (Sorting). A sorting of a category C is a functor F : X → C
that is faithful and surjective on objects.

We shall consistently confuse a sorting functor F with its domain: We write
F → C, and we speak interchangeably of F as a category and as a functor.

1 For brevity, we omit the definitions of both RPOs and IPOs.
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Example 3. Suppose we want to restrict our process language such that at most
two processes are synchronized at any time, i.e., no process can contain a subterm
s|s. We cannot just stipulate that there are no such terms, because the compo-
sition of s and s would then be undefined. Instead, we define a sorting F → C
that refines the single homset of C into three.

The category F has two objects, 0 and 1. The homsets F(0, 0) and F(1, 1) are
identical, comprising morphisms of C that do not contain an s; F(0, 1) comprises
morphisms with at most one s. Here is a sketch of F .

0 1
maybe s

no s no s

Composition is defined as in C; it is easy to check that this composition is well-
defined on our refined homsets.

Usually when we construct a sorting F → C, we will want to apply Proposition 1
to the category F . Hence, we want sortings that allow us to infer the existence
of RPOs in F from the existence of RPOs in C. The following notion of transfer
helps us do that.

Definition 4 (Transfer of RPOs). A sorting F → C transfers RPOs iff when-
ever the image of a square s in F has an RPO, then that RPO has an F -preimage
that is an RPO for s.

Jensen gives a sufficient condition, safety, for a sorting to transfer RPOs [6]; we
generalized that condition in [15] (see also [16]; again for brevity, we omit the
definition here).

Proposition 2 ([6,15]). Let F → C be a safe sorting. Then F transfers RPOs,
and, if C has RPOs then so does F .

4 Semantic Correspondence

In Example 3 above we used the sorting H → C to get rid of morphisms not sat-
isfying the predicate “contain at most one s”. Thus, that sorting is a realization
of a predicate on the morphisms of C. Of the sortings in [1,2,3,4,5,6,7,9,10,11],
only the one in [7] is not a realization of a predicate.

However, not every sorting realizing a predicate is equally interesting; we must
require also that the sorted category supports the same reactive systems as the
original one, at least when we restrict our attention to the “good” morphisms of
the original category. This semantic correspondence is part of what we mean by
“sustaining the behavioural theory”. In this section, towards answering Ques-
tion 1, we give a sufficient condition for a sorting of a reactive system to admit
such semantic correspondence.

This result generalizes our previous [15], where we proved that a particular
sorting has semantic correspondence2. As in that paper, we will consider only
2 Although in that paper, we used the somewhat inaccurate term “preserves seman-

tics” rather than the present “has semantic correspondence”.



224 L. Birkedal, S. Debois, and T. Hildebrandt

predicates P that are decomposable, that is, that are true at every identity and
have P (f ◦ g) implies P (f) and P (g). This restriction is not very severe; for
free structures, decomposable predicates are precisely those that prohibit terms
containing some given set of subterms [15].

To formalize the notion of “semantic correspondence”, we need the notion of
reflection of a reactive system.

Definition 5 (Reflection of a reactive system). Let F → C be a sorting,
and let R be a reactive system on C. For a preimage R̂ε of Rε, the reflection of
R at R̂ε is R̂, where

R̂ = {(f, g) | ∃x.f, g : R̂ε → x ∧ (F (f), F (g)) ∈ R}. (7)

We can now define semantic correspondence precisely.

Definition 6 (Correspondence of reactions, transitions). Let F → C be a
sorting, let R,S be reactive systems on F,C, respectively, and let P be a decom-
posable predicate on C. The sorting F → C has correspondence of P -transitions
for R,S iff whenever f, g, h are morphisms of C with P (g ◦ f) and P (h), then

f
g

h iff ∃f̂ , ĝ, ĥ. f̂ ĝ
ĥ where

F (f̂) = f, F (ĝ) = g, F (ĥ) = h.
(8)

We define correspondence of P -reactions similarly.

Note that despite F faithful, f̂ , ĝ, ĥ are not necessarily unique.
Before we can define the general notion of semantic correspondence, we need

first a notion of a reactive system respecting a predicate.

Definition 7 (P -respecting reactive system). Let R be a reactive system
and let P be a predicate on R’s underlying category. We say that R is a P -
respecting reactive system iff every rule (l, r) ∈ R has both P (l) and P (r).

We lift the correspondence from a property of reactive systems to a property
of sortings: A sorting F → C has semantic correspondence iff any P -respecting
reactive system on C has a reflection in F with which it is in semantic corre-
spondence.

Definition 8 (Semantic correspondence). We say that a sorting F → C
has semantic correspondence up to P iff for any P -respecting reactive system R
on C, there exists a reflection R̂ of R at some R̂ε such that F has correspondence
of P -reactions and P -transitions for R̂,R.

Theorem 1 below gives a sufficient condition for a sorting to have semantic cor-
respondence. This condition depends on the notion of “weak joint opfibration”,
which was introduced in [15]. Intuitively, a weak joint opfibration is a functor
which has most general lifts of every cospan in its domain. The following notion
of “jointly opcartesian” captures such most general lifts.
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Definition 9 (Jointly opcartesian). Let F → C be a functor. A cospan f, g
in C is said to be jointly opcartesian iff whenever f ′, g′ is a cospan, f, f ′ is a
span, and g, g′ is a span (see the diagram below, left side) with F (f ′) = k ◦F (f)
and F (g′) = k ◦ F (g) (see the diagram below, right side), then there exists a
unique lift k̂ of k s.t. f ′ = k̂ ◦ f and g′ = k̂ ◦ f ′.

f
f ′

k̂

g
g′

F (f ′)
F (f)

F (g)
F (g′)

k

Example 4. In the sorting F → C of Example 3, the cospan a, a has a jointly
opcartesian lift a : 0 −→ 0 ←− 0 : a; the cospan s, a has a jointly opcartesian
lift s : 0 −→ 1 ←− 0 : a.

Armed with jointly opcartesian lifts, we define weak joint opfibrations.

Definition 10 (Weak joint opfibration [15]). A functor F : X → C is a
weak joint opfibration iff whenever F (f), F (g) form a cospan in C, then there
exists a jointly opcartesian pair f̂ , ĝ with F (f̂) = F (f) and F (ĝ) = F (g).

Finally, getting back to our sufficient condition for a sorting to have semantic
respondents, we now need only the following auxiliary definition.

Definition 11. Let F → C be a sorting, let x be an object of F , and let P be a
predicate on C. We say F reflects P at x if every morphism f : F (x) → c with
P (f) has a lift at x.

Theorem 1. Let F → C be a sorting, let P be a decomposable predicate on C,
let R be a reactive system on C, and let R̂ε be an F -preimage of Rε. Then (a)
the reactions of the reflection of R at R̂ε correspond to the P -reactions of R
if (i) the image of F is P , (ii) F reflects P at R̂ε, and (iii) F is a weak joint
opfibration. Moreover, (b) the transitions of the reflection of R at R̂ε corresponds
to the P -transitions of R if also F transfers and preserves RPOs. In this case,
F has semantic correspondence up to P .

Between them, Theorem 1 above and Proposition 2 recalled in the preceding
section answer Question 1. The former gives us a sufficient condition for a sorting
to admits the necessary operational semantics; the latter gives as a sufficient
condition for a sorting to reflect congruence properties. Technically, this answer
applies only to sortings a reactive systems, however, it is straightforward to lift
the answer to the case of bigraphical reactive systems; more on such in Section 6.

5 Closure Sortings

In this section, we answer Question 2: We define, for each decomposable predi-
cate P , a Closure sorting realizing P . Every closure sorting transfers RPOs and
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has semantic correspondence up to P . We define closure sortings in terms of cat-
egories and reactive systems here, but in Section 6, we remark on lifting them
to bigraphs.

Suppose we want to construct a sorting realizing a decomposable predicate P
on the morphisms of a category C. The basic problem here is that we may have
morphisms f : x → y and g : y → z which satisfy P individually but not when
composed, i.e., P (f) and P (g), but ¬P (g ◦ f). At each preimage of y, we must
choose whether to admit f or g. We make this choice explicit in the closure
sorting by taking as pre-images for an object y pairs (F,G) of sets of morphisms
such that every g ∈ G has domain y and can be composed with every f ∈ F ,
that is, f has codomain y and P (g ◦f). This approach leads to too many objects
in the sorted category, so we further insist that (F,G) be maximal, that is, that
adding morphisms to either F or G would violate f ∈ F, g ∈ G =⇒ P (g ◦ f).

To formalize maximality, first define g ⊥ f iff P (g ◦ f). Then define, for
any c ∈ C, operators � and � by

�F = {g : c → x | g ⊥ F, any x ∈ C}
�G = {f : y → c | G ⊥ f, any y ∈ C} ,

(9)

where, e.g., g ⊥ F is lifted pointwise3. We can now define that (F,G)c is maximal
iff �F = G and �G = F .

Definition 12 (Closure sorting). Let C be a category, and let P be a de-
composable predicate on C. The closure sorting C(P ) → C has objects (F,G)c

where c is an object of C and F,G are sets of morphisms of C s.t. every f ∈ F
and g ∈ G has cod(f) = c = dom(g) and P (g ◦ f). Moreover, (F,G)c must
be maximal. C(P ) has morphisms k : (F,G)c → (H, J)d those k : c → d in C
satisfying

f ∈ F =⇒ k ◦ f ∈ H and j ∈ J =⇒ j ◦ k ∈ G . (10)

It is fairly easy to establish that � and � form a Galois connection: �F ⊇ G
iff F ⊆ �G. Thus �� and �� are indeed closure operators: ���F = �F
and ���G = �G. (Hence the name “closure sorting”.) We can use these
closure operators to “fill up” a pair (F,G)c that is not maximal, taking ei-
ther (�G,��G)c or (��F,�F )c. This realization is crucial in establishing that
the fibres of a closure sorting are lattices and, in turn, that every closure sorting
satisfies the premises of Proposition 2 and Theorem 1.

Lemma 1. Let P be a decomposable predicate on C. Then C(P ) (1) is safe, (2)
is a weak joint opfibration, and (3) lifts P -agents at every object c of C.

By Proposition 2 and Theorem 1, every closure sorting transfers RPOs and has
semantic correspondence.

Theorem 2. Let C be a category with RPOs, and let P be a decomposable pred-
icate on C. Then C(P ) has RPOs, transfers RPOs, and has semantic correspon-
dence up to P .
3 The operators �, � are related to the BiLog [18] adjuncts to composition.
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Example 5. The sorting F → C of Example 3 is indeed a closure sorting for
the predicate “contains at most one s”; we recover the objects 0 and 1 as 0 =
(��{0},�{0}) and 1 = (�{0},��{0}). By Theorem 2, F has RPOs and has
semantic correspondence up to that predicate.

The closure sorting answers Question 2, “how do we construct a sorting given
some problem domain” by virtue of Theorem 2. Technically, the answer applies
only to reactive system, but again, it is straightforwardly lifted to the setting
bigraphical reactive systems; we discussed this lifting in more detail in the next
section.

6 Bigraphical Reactive Systems

As mentioned in the introduction, bigraphical reactive systems are not instances
of ordinary reactive systems. Because categories of bigraphs do not contain rel-
ative pushouts, Milner, Leifer, and Jensen introduced supported pre-categories
[13,4, 1].

Intuitively, the supported pre-category of pure bigraphs adds a notion of iden-
tity of sub-terms; the totality of identities in some term is called its support,
hence “supported”. For the notion of support to make sense, composition of
bigraphs with overlapping support is left undefined, hence “pre-category”.

For each supported pre-category S we obtain a category [S] by considering
equal morphisms which differ only in the particular identities chosen for their
support. The support quotient functor ηS : S → [S] takes each supported term
to such a support equivalence class. The category of abstract bigraphs arise as
the quotient [S] of the supported pre-category S, the concrete bigraphs.

This solution, using supported pre-categories, is widely regarded as being
overly ad hoc. Following a suggestion by Leifer [13], Sassone and Sobocinski
[19,20] investigated using instead first two-categories and later bi-categories as
foundations for reactive systems. Unfortunately, comfortable as their results may
be, no one has as yet formalised bigraphs in one of these more general settings.
Hence, we stick with the present formalisation in supported pre-categories, at
least for the present paper.

Fortunately, lifting Jensen’s previous work and the results of the preceding
sections to the setting of supported pre-categories pose no real difficulties, it
only requires a lot of footwork. For want of space, we omit that footwork here;
the interested reader is referred to [16]. We do, however, make the following
comments.

A sorting on pure abstract bigraphs induces a sorting on the corresponding
concrete bigraphs, found by taking the pullback of that sorting along the support
quotient.

F [S]

SF �

F

ηS (11)
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Here we have concrete bigraphs S, abstract bigraphs [S]; ηS : S → [S] is the
support quotient. We are given a sorting F → [S], and we find the corresponding
sorting F � → S simply by taking the pullback (in the category of supported pre-
categories) of F → [S] along ηS .

It turns out that if the original sorting functor satisfies the sufficient conditions
we have seen so far, then the induced sorting functor will sustain the behavioural
theory. That is, in this case, the induced sorting will preserve congruence proper-
ties and enjoy semantic correspondence. Moreover, there is essentially a bijection
between the sortings of a supported pre-category (S in the above diagram) and the
sortingsof its support quotient ([S] in the abovediagram).Hence, for practicalwork
with bigraphical models, it is sufficient to consider sortings of abstract bigraphs.

Readers who find all this a bit hand-wavy are again referred to [16], where they
will find formalisation. In particular, Proposition 2, Theorem 1, and Theorem 2
of the present paper are stated and proved in the bigraphical setting there as [16,
Theorem 5.26, Theorem 5.29, and Theorem 5.31]. The above-mentioned bijection
theorem is [16, Theorem 5.21].

Altogether, by lifting in this manner the result of the preceding sections,
we fully answer the two questions posed in the introduction: we have sufficient
conditions for a sorting to preserve congruence properties and enjoy semantic
correspondence, and we have a construction, the closure sorting, for constructing
sortings satisfying these conditions.

We proceed to demonstrate the viability of the closure sortings by recovering
Milner’s local bigraphs as a particular closure sorting.

7 Local Bigraphs and Closure Sortings

In the setting of bigraphical reactive systems we have binding bigraphs [4] as a
natural extension of pure bigraphs [1,4]; moreover, we have local bigraphs [10,3]
as a natural extension of binding bigraphs. It has been suspected [21] that local
bigraphs represent the end of this evolutionary ladder. In this section, we clarify
what this evolution is and demonstrate that the closure sorting for a predicate
derived from the scope rule is its natural endpoint. In the process, we prove that
local bigraphs can, in a sense to be made precise, be replaced by the closure
sorting for this predicate.

We do not reiterate the definition of pure and local bigraphs here. Refer to
one of [1, 4] for the definition of pure bigraphs; to one of [18, 11] for intuition
and examples of pure bigraphs; to [4] for the definition of binding bigraphs; and
to [10, 3] for the definition of local bigraphs.

Binding bigraphs partition the ports of a signature into the binding ports and
the free ports. The intuition of binding ports is that [4, p.68]:

“all points linked to a binding port of a node u lie inside u.”

Although Milner and Jensen use the word “points” and later clarify that these
may be names as well as ports, binding bigraphs are surely but a means of re-
stricting pure bigraphs to those that only peer a binding port with ports beneath
it. This condition, called the scope condition, is easily seen to be decomposable.
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Definition 13 (Scope predicate). Let Σ be a binding signature. The Scope
predicate for Σ is a predicate PΣ on the morphisms of B(U(Σ)), that is, on
the pure bigraphs over U(Σ). For a bigraph f of B(U(Σ)), we define PΣ(f) iff
whenever a binding port p on a node n is in a link, then any other port p′ in
that link is on a node that has n as an ancestor.

Binding ports are intended to model binders in term languages, e.g., the binder
k in the input prefix x(k).P of the π-calculus [4,6]. (The introduction of binding
ports also enables a more expressive definition of parametric reaction rules. We
shall not discuss this application here).

The progression from binding to local bigraphs is one including more and
more ways to decompose bigraphs satisfying the scope predicate PΣ given above.
The closure sorting for PΣ is an endpoint of this progression, as it contains by
definition every possible such decomposition. We discuss this progression in some
detail because so reveals, we believe, the essence of binding and local bigraph.
The discussion will be somewhat technical, however, so feel free to skip ahead
to the paragraph titled “Replaceability”.

To make sure that the scope condition is preserved by composition, binding
bigraphs augment objects with locations of names. Each name x in an object
(m,X) is either global or located at a specific place i ∈ m. A binding bigraph
is then permitted to link only appropriately located ports or inner names to
located outer names or binding ports. (When we say that something is “linked
to a binding port” we actually mean peered with that binding port. Because no
link can contain two binding ports, it is sound to identify an edge with a binding
port linked to that edge).

Ascribing only a single place to each located name does not account for all
possible decompositions of a bigraph satisfying the scope condition. For instance,
the following two pure bigraphs both satisfy the scope condition, as does their
composition. However, we can assign no location to x that will make f a valid
binding bigraph.

f : (2, {x}) → (1, ∅) = /x.k(x)(−0 | −1)
g : (0, ∅) → (2, {x}) = hx | hx

To remedy this deficiency, [3] introduces local bigraphs. These assign to each
name x of an interface (m,X) a subset m′ ⊂ m of places, instead of just a single
place i ∈ m. The global names of binding bigraphs correspond to everywhere
located names.

Local bigraphs still do not capture every possible decomposition of pure bi-
graphs satisfying the scope condition. To wit, consider the following two bi-
graphs.

f : (1, {x, y}) → (1, ∅) = /x, y.−0 (12)
g : (1, ∅) → (1, {x, y}) = k(x)(hy) (13)

The interfaces of local bigraphs are simply not capable of expressing that in g,
the name x can be free, as long as any context can only link it to names within
the scope of the control k(x), such as the name y in this example.
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The closure sorting for the scope condition includes exactly this kind of ad-
ditional interfaces, and thus allows this decomposition. For the application of
local bigraphs in [10], encoding of the lambda calculus as a bigraphical reactive
system, this extra flexibility is not exploited: For any term or reaction rule con-
taining binders, the bound names will not appear in the interface. However, as
we will make precise below, the extra flexibility is not harmful.

Replaceability. The closure sorting for the scope predicate is also a viable
substitute for local bigraphs in the following precise sense. There exists a full
embedding ι : B(Σ) → C(PΣ) of local bigraphs into the closure sorting for PΣ .
This embedding witnesses B(Σ) being a sub-sorting of C(PΣ) in the sense that
it makes the following diagram commute.

B(U(Σ))

B(Σ) C(PΣ)ι

(14)

Moreover, this embedding both preserves and reflects bisimilarity for any re-
active system R on B(Σ) and its image R in C(PΣ). Indeed, ι preserves and
reflects transitions, and the morphisms in the image of ι has no transitions
outside of that image. In this sense, the closure sorting C(PΣ) is a reasonable
substitute for local bigraphs.

Theorem 3. Let Σ be a binding signature, let PΣ be the Scope predicate on
B(Σ), and let R be a reactive system on C(PΣ). Suppose f is an agent of R
in B(Σ). There is a transition ι(f) g′

h′ in C(PΣ) if and only if there is a
transition f g

h in B(Σ) and both ι(g) = g′ and ι(h) = h′. It follows that
for agents f, g of B(Σ) we have f ∼ g if and only if ι(f) ∼ ι(g).

It follows that local bigraphs sustain the behavioural theory of pure bigraphs.
Milner proved as much by hand [10, 3]; now, we get the same result for free.

Corollary 1. Let Σ be a binding signature. For any supported reactive system
on B(Σ), bisimilarity on the supported transitions is a congruence.

However, we also expand on Milner’s results, because Theorem 1 gives us that
local bigraphs have semantic correspondence up to PΣ .

Corollary 2. Let Σ be a binding signature. Then the sorting B(Σ) → B(U(Σ))
respects supported PΣ-reactions and -transitions.

The proof of Theorem 3 hinges on the following characterisation of C(PΣ), which
is interesting in its own right in so far as it tells us exactly what is missing from
the interfaces of local bigraphs to allow all decompositions.

Lemma 2. Let Σ be a binding signature, let C(PΣ) be the closure sorting for
the scope predicate PΣ, and let (m,X) be an object of B(Σ). Let Γ (m,X) =
P({0, . . . ,m− 1}) +P(X) be the set comprising subsets of places and subsets of
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names of the object (m,X). We call maps ρ : X → Γ (m,X) s.t. ρ(x) ∈ P(X)
implies x ∈ ρ(x) generating maps for (m,X).

The fibre of C(PΣ) → B(U(Σ)) over (0, X) is isomorphic to the partial order
that has only one object. The fibre of C(PΣ) over (m,X) for m > 0 is isomorphic
to the partial order over generating maps for (m,X), ordered pointwise by ρ(x) �
�(x) if and only if either (a) ρ(x) ⊆ �(x) ⊆ P({0, . . . ,m− 1), (b) �(x) ⊆ ρ(x) ⊆
P(X), or (c) ρ(x) ⊆ P({0, . . . ,m− 1}) and �(x) ⊆ P(X).

The generating maps ρ : X → Γ (m,X) cover exactly the decomposition in (13),
with the intuition that if ρ(x) ∈ P(X) then x is a name that occurs in a binder
that may be safely linked to names in ρ(x).

We recover the interfaces of local bigraphs as the generating maps ρ : X →
P({0, . . . ,m − 1}) that take every name to a left inject, that is, that assigns
locations to names.

We have now shown how local bigraphs arise as a special case closure sorting.
In [16] it was shown how Milner’s homomorphic sorting [1] also arise as a special
case on the closure sorting.

8 Conclusion and Future Work

First, we have given a sufficient condition for a sorting to reflect reactive and
transition semantics of well-sorted terms. Second, we have extended the theory
of sortings for reactive systems with a new construction of sortings for decom-
posable predicates, the closure sorting. Third, we have sketched a generalisation
of the theory of sortings for reactive systems to the setting of supported pre-
categories. Finally, we proved that local bigraphs arise naturally as a sub-sorting
of the closure sorting obtained from the scope condition. Besides alleviating the
need for redeveloping the behavioural theory for local bigraphs, it supports local
bigraphs as the natural extension of bigraphs with local names. We conjecture
that the sortings [1,2, 3,4, 5, 6, 9, 10, 11] can all be obtained as closure sortings.
(Of the sortings mentioned in the introduction, this list leaves out only the
edge-sortings of [7], which does not appear to approximate predicates).

We see two main avenues of future work. One is to investigate sortings in other
frameworks, in particular within graph rewriting [22, 23] and the 2-categorical
approach to reactive systems [20, 19]. Another is to investigate the algebraic
properties of sortings and if the closure sorting is somehow universal among
sortings that capture a decomposable predicate and respect the behavioural
theory.
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Abstract. We present an algorithm for partial order reduction in the context of
a countable universe of deterministic actions, of which finitely many are enabled
at any given state. This means that the algorithm is suited for a setting in which
resources, such as processes or objects, are dynamically created and destroyed,
without an a priori bound. The algorithm relies on abstract enabling and disabling
relations among actions, rather than associated sets of concurrent processes. It
works by selecting so-called probe sets at every state, and backtracking in case
the probe is later discovered to have missed some possible continuation.

We show that this improves the potential reduction with respect to persistent
sets. We then instantiate the framework by assuming that states are essentially
sets of entities (out of a countable universe) and actions test, delete and create
such entities. Typical examples of systems that can be captured in this way are
Petri nets and (more generally) graph transformation systems. We show that all
the steps of the algorithm, including the estimation of the missed actions, can be
effectively implemented for this setting.

1 Introduction

Explicit state model checking is, by now, a well-established technique for verifying
concurrent systems. A strong recent trend is the extension of results to software systems.
Software systems have, besides the problems encountered in the traditional concurrent
automata, the additional problem of unpredictable dynamics, for instance in the size of
the data structures, the depth of recursion and the number of threads.

Typically, the number of components in concurrent software systems is fairly large,
and the actions performed by those components, individually or together (in case of
synchronization), can be interleaved in many different ways. This is the main cause
of the well-known state space explosion problem model checkers have to cope with.
A popular way of tackling this problem is by using so-called partial order reduction.
The basic idea is that, in a concurrent model of system behaviour based on interleaving
semantics, different orderings of independent actions, e.g., steps taken by concurrent
components, can be treated as equivalent, in which case not all possible orderings need
to be explored.

In the literature, a number of algorithms have been proposed based on this technique;
see, e.g. [2, 3, 4, 12, 13]. These are all based upon variations of two core techniques:
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persistent (or stubborn) sets [3, 12] and sleep sets [3]. In their original version, these
techniques are based on two important assumptions:

1. The number of actions is finite and a priori known.
2. The system consists of a set of concurrent processes; the orderings that are pruned

away all stem from interleavings of actions from distinct processes.

Due to the dynamic nature of software, the domain of (reference) variables, the identity
of method frames and the number of threads are all impossible to establish beforehand;
therefore, the number of (potential) actions is unbounded, meaning that assumption 1
is no longer valid. This has been observed before by others, giving rise to the devel-
opment of dynamic partial order reduction; e.g., [2, 5]. As for assumption 2, there are
types of formalism that do not rely on a pre-defined set of parallel processes but which
do have a clear notion of independent actions. Our own interest, for example, is to
model check graph transformation systems (cf. [7,11]); here, not only is the size of the
generated graphs unbounded (and so assumption 1 fails) but also there is no general
way to interpret such systems as sets of concurrent processes, and so assumption 2 fails
as well.

In this paper, we present a new technique for partial order reduction, called probe
sets, which is different from persistent sets and sleep sets. Rather than on concurrent
processes, we rely on abstract enabling and disabling relations among actions, which
we assume to be given somehow. Like persistent sets, probe sets are subsets of enabled
actions satisfying particular local (in)dependence conditions. Like the existing dynamic
partial order reduction techniques, probe sets are optimistic, in that they underestimate
the paths that have actually to be explored to find all relevant behaviour. The technique
is therefore complemented by a procedure for identifying missed actions.

We show that probe set reduction preserves all traces of the full transition system
system modulo the permutation of independent actions. Moreover, we show that the
probe set technique is capable of reducing systems in which there are no non-trivial
persistent sets, and so existing techniques are bound to fail.

However, the critical part is the missed action analysis. In principle, it is possible to
miss an action whose very existence is unknown. To show that the detection of such
missed actions is nevertheless feasible, we further refine our setting by assuming that
actions work by manipulating (reading, creating and deleting) entities, in a rule-based
fashion. For instance, in graph transformation, the entities are graph nodes and edges.
Thus, the actions are essentially rule applications. Missed actions can then be conserv-
atively predicted by overestimating the applicable rules.

The paper is structured as follows. In Section 2, we introduce an abstract frame-
work for enabling and disabling relations among actions in a transition system. In
Section 3 we define missed actions and probe sets, give a first version of the algo-
rithm and establish the correctness criterion. Section 4 then discusses how to identify
missed actions and construct probe sets, and gives the definitive version of the algo-
rithm. All developments are illustrated on the basis of a running example introduced
in Section 2. Section 5 contains an evaluation and discussion of related and future
work.
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2 Enabling, Disabling and Reduction

Throughout this paper, we assume a countable universe of actions Act, ranged over by
a, b, . . ., with two binary relations, an irreflexive relation 	 and a reflexive relation 
:

Stimulation: a 	 b indicates that a stimulates b;
Disabling: a 
 b indicates that a disables b.

The intuition is that a stimulates b if the effect of a fulfills part of the precondition of
b that was not fulfilled before (meaning that b cannot occur directly before a), whereas
it disables b if it violates part of b’s precondition (meaning that b cannot occur directly
after a). If b neither is stimulated by a nor disables a then it is independent of a (meaning
that it might occur concurrently with a). In the theory of event structures (e.g., [14]),
	 roughly corresponds to a notion of (direct) cause and 
 to asymmetric conflict (e.g.,
[8]; see also [6] for a systematic investigation of event relations).1 Fig. 1 shows an
example.

do [x+y<3] ->
x := (x+1)%3;

or [x+y<3] ->
y := (y+1)%3;

od

•

• •

• • •

• •

x1 y1

x2 y1 x1 y2

y1

x0

x2 y2 x1

y0 x1 x2 x0 y1 y2 y0

x1 
 	 

x2 
 	 

x0 	 
 	 	
y1 
 
 	
y2 
 
 	
y0 	 	 	 


(a) (b) (c)

Fig. 1. A non-deterministic process (a), its transition system (b) and the stimulus and disabling
relations (c). Action xi [yi] assigns i to x [y], with pre-condition x + y < 3.

We also use words, or sequences of actions, denoted v, w ∈ Act∗. The empty word
is denoted ε. The set of actions in w is denoted Aw. With respect to stimulation and
disabling, not all words are possible computations. To make this precise, we define a
derived influence relation over words:

v � w :⇔ ∃a ∈ Av, b ∈ Aw : a 	 b ∨ a � b.

(where a � b is equivalent to b 
 a.) v � w is pronounced “v influencesw.” Influence
can be positive or negative. For instance, in Fig. 1, x1·x2 � y1·y2 due to x2 � y2 and
x1·y1 � x2·y2 due to x1 	 x2, whereas x1 and y1·y2 do not influence one another.

Definition 1 (word feasibility). A word w is feasible if

– for all sub-words a·v·b of w, if a 
 b then ∃c ∈ Av : a 	 c 	 b;
– for all sub-words v1·v2 of w, v2 � v1 implies v1 � v2.

1 This analogy is not perfect, since in contrast to actions, events can occur only once.
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The intuition is that infeasible words do not represent possible computations. For in-
stance, if a 
 b, for the action b to occur after a, at least one action in between must
have “re-enabled” b; and if v2 occurs directly after v1, but v1 does not influence v2, then
v2 might as well have occurred before v1; but this also rules out that v2 influences v1.

For many purposes, words are interpreted up to permutation of independent actions.
We define this as a binary relation over words.

Definition 2 (equality up to permutation of independent actions)., ⊆ Act∗×Act∗

is the smallest transitive relation such that v·a·b·w , v·b·a·w if a �� b.

Some properties of this equivalence, such as the relation with feasibility, are expressed
in the following proposition.

Proposition 3

1. If v is feasible and v , w, then w is feasible;
2. , is symmetric over the set of feasible words.
3. v·w1 , v·w2 if and only if w1 , w2.

It should be noted that, over feasible words, the setup now corresponds to that of
(Mazurkiewicz) traces, which have a long tradition; see, e.g., [1, 9]. The main differ-
ence is that our underlying notion of influence, built up as it is from stimulation and
disabling, is more involved than the symmetric binary dependency relation that is com-
monly used in this context — hence for instance the need here to restrict to feasible
words before, is symmetric.

We also define two prefix relations over words, the usual “hard” one (!), which
expresses that one word is equal to the first part of another, and a “weak” prefix (�) up
to permutation of independent actions. It is not difficult to see that, over feasible words,
both relations are partial orders.

v ! w :⇔ ∃u : v·u = w (1)

v � w :⇔ ∃u : v·u , w. (2)

2.1 Transition Systems

We deal with transition systems labelled by Act. As usual, transitions are triples of
source state, label and target state, denoted q −a→ q′. We use q0 −w→ qn+1 with w =
a0 · · · an as an abbreviation of q0 −a0−→ q1 −a1−→ · · · −an−→ qn+1. Formally:

Definition 4. A transition system is a tuple S = 〈Q,−→, ι〉 such that ι ∈ Q and −→ ⊆
Q× Act×Q, with the additional constraints that for all q, q1, q2 ∈ Q:

– All traces are feasible; i.e., ι −w→ q implies w is feasible;
– The system is deterministic up to independence; i.e., q −w1−→ q1 and q −w2−→ q2 with
w1 , w2 implies q1 = q2.

– All out-degrees are finite; i.e., enabled(q) = {a | ∃q −a→ q′} is a finite set.

The second condition implies (among other things) that the actions in Act are fine-
grained enough to deduce the successor state of a transition entirely from its source state
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and label. Although this is clearly a restriction, it can always be achieved by including
enough information into the actions. Some more notation:

q � w :⇔ ∃q′ : q −w→ q′

q ↑w := q′ such that q −w→ q′.

q � w expresses that q enables w, and q ↑w is q after w, i.e., the state reached from
q after w has been performed. Clearly, q ↑w is defined (uniquely, due to determinism)
iff q � w. In addition to determinism modulo independence, the notions of stimulation
and disabling have more implications on the transitions of a transition system. These
implications are identified in the following definition.

Definition 5 (dependency consistency and completeness). A transition system S is
called dependency consistent if it satisfies the following properties for all q ∈ Q:

q � a ∧ a 	 b =⇒ q � b (3)

q � a ∧ a 
 b =⇒ q � a·b. (4)

S is called dependency complete if it satisfies:

q � a·b ∧ a �	 b =⇒ q � b (5)

q � a ∧ q � b ∧ a �
 b =⇒ q � a·b. (6)

Dependency consistency and completeness are illustrated in Fig. 2.

(a 	 b)
•
q

• •

a b
/

(a 
 b)
•
q

•

•

a

b
/

(a �	 b)
•
q

• •

•

a

b

b

(a �
 b)
•
q

• •

•

a

b

b

(3) (4) (5) (6)

Fig. 2. The consistency and completeness properties of Def. 5. The (negated) dashed arrows are
implied by the others, under the given dependency relations.

The following property states an important consequence of dependency complete-
ness, namely that weak prefixes of traces are themselves also traces. (Note that this
does not hold in general, since weak prefixes allow reshuffling of independent actions).

Proposition 6. If S is a dependency complete transition system, then q � w implies
q � v for all q ∈ Q and v � w.

The aim of this paper is to reduce a dependency complete transition system to a smaller
transition system (having fewer states and transitions), which is no longer dependency
complete but from which the original transition system can be reconstructed by com-
pleting it w.r.t. (5) and (6). We now define this notion of reduction formally.
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•

• •

x1 y1

x2 y1
x1 y2

y1

x0

x2 y2
x1

y0

•

x1 y1

x2 y1 x1 y2

y1

x0

x2 y2 x1

y0

(a) (b)

Fig. 3. An incorrect (a) and a correct (b) reduction of the transition system in Fig. 1. The fat
nodes and arrows are the states and transitions of the reduced system.

Definition 7 (reduction). Let R,S be two dependency consistent transition systems.
We say that R reduces S if QR ⊆ QS , TR ⊆ TS , ιR = ιS , and for all w ∈ Act∗

ιS �S w =⇒ ∃v ∈ Act∗ : w � v ∧ ιR �R v.

We will often characterise a reduced transition system only through its set of states QR.
For example, Fig. 3 shows two reductions of the transition system in Fig. 1, one

invalid (a) and one valid (b). In (a), among others the trace x1·x2·x0 is lost.
It follows from Proposition 6 that the reduction of a dependency complete transition

system is essentially lossless: if R reduces S and S is complete, then the reachable
part of S can be reconstructed from R up to isomorphism. In particular, it immediately
follows that deadlock states are preserved by reduction:

Proposition 8. If R,S are dependency consistent transition systems such that S is de-
pendency complete and R reduces S, then for any reachable deadlock state q ∈ QS

(i.e., such that ∀a ∈ Act : q � a) it holds that q ∈ QR.

2.2 Entity-Based System Specifications

Above we have introduced a very abstract notion of actions and dependencies. We will
now show a way to instantiate this framework. In the following, Ent is a countable
universe of entities, ranged over by e, e1, e′, . . .

Definition 9. An action a is said to be Ent-based if there are associated finite disjoint
sets

– Ra ⊆ Ent, the set of entities read by a;
– Na ⊆ Ent, the set of entities forbidden by a;
– Da ⊆ Ent, the set of entities deleted by a;
– Ca ⊆ Ent, the set of entities created by a.

The set of Ent-based actions is denoted Act[Ent]. For Ent-based actions a, b we define

a 	 b :⇔ Ca ∩ (Rb ∪Db) �= ∅ ∨Da ∩ (Cb ∪Nb) �= ∅ (7)

a 
 b :⇔ Da ∩ (Rb ∪Db) �= ∅ ∨ Ca ∩ (Cb ∪Nb) �= ∅ (8)
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Since Ent and Act may both be infinite, we have to impose some restrictions to make
sure that our models are effectively computable. For this purpose we make the following
important assumption:

Enabling is finite. For every finite set E ⊆ Ent, the set of potentialle applicable ac-
tions {a ∈ Act | Ra ∪Da ⊆ E} is finite.

A transition system S is called Ent-based if A ⊆ Act[Ent] and for every q ∈ Q there is
an associated finite set Eq ⊆ Ent, such that Eq = Eq′ implies q = q′.

Definition 10 (Entity-based transition systems). A transition system S is called Ent-
based if all transitions are labelled by Ent-based actions, and for all q ∈ Q:

– There is a finite set Eq ⊆ Ent, such that Eq = Eq′ implies q = q′;
– For all a ∈ Act[Ent], q � a iff (Ra ∪Da) ⊆ Eq and (Na ∪ Ca) ∩ Eq = ∅;
– For all a ∈ enabled(q), q ↑ a is determined by Eq ↑ a = (Eq \Da) ∪ Ca.

It can be shown that these three conditions on the associated events, together with the
assumption that enabling is computable, actually imply feasibility, determinism and
finite out-degrees. The following (relatively straightforward) proposition states that this
setup guarantees some further nice properties.

Proposition 11. Every Ent-based transition system is dependency complete and con-
sistent, and has only feasible words as traces.

Models whose behaviour can be captured by entity-based transition systems include:
Turing machines (the entities are symbols at positions of the tape), Petri nets (the entities
are tokens), term and graph rewrite systems (the entities are suitably represented sub-
terms and graph elements, respectively). Computability of enabling is guaranteed by
the rule-based nature of these models: all of them proceed by attempting to instantiate
a finite set of rules on the given finite set of entities, and this always results in a finite,
computable set of rule applications, which constitute the actions.

For instance, the transition system of Fig. 1 is obtained (ad hoc) by using entities
ex>0, ex>1, ey>0 and ey>1, setting Eι = ∅ and defining the actions as follows:

a Ra Na Da Ca

x1 ex>0

x2 ex>0 ey>0 ex>1

x0 ey>1 ex>0, ex>1

a Ra Na Da Ca

y1 ey>0

y2 ey>0 ex>0 ey>1

y0 ex>1 ey>0, ey>1

(9)

3 Missed Actions and Probe Sets

All static partial order reduction algorithms explore subsets of enabled transitions in
such a way that they guarantee a priori not to rule out any relevant execution path of
the system. Dynamic partial order reduction algorithms, such as e.g. [2], on the other
hand, potentially “miss” certain relevant execution paths. These missed paths then have
to be added at a later stage. The resulting reduction may be more effective, but additional
resources (i.e. time and memory) are needed for the analysis of missed execution paths.
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For instance, in the reduced system of Fig. 3(a), the transitions are chosen such that all
actions that run the danger of becoming disabled are explored. Nevertheless, actions x0

and y0 are missed because they have never become enabled.
Our dynamic partial order reduction algorithm selects the transitions to be explored

on the basis of so-called probe sets. We will now introduce the necessary concepts.

3.1 Missed Actions

We define a vector in a transition system as a tuple consisting of a state and a trace
leaving that state. Vectors are used especially to characterise their target states, in such a
way that not only the target state itself is uniquely identified (because of the determinism
of the transition system) but also the causal history leading up to that state.

Definition 12 (vector). A vector (q, w) of a transition system S consists of a state
q ∈ Q and a word w such that q � w.

Missed actions are actions that would have become enabled along an explored execu-
tion path if the actions in the path had been explored in a different order. To formalise
this, we define the (weak) difference between words, which is the word that has to be
concatenated to one to get the other (modulo independence), as well as the prime cause
within w of a given action a, denoted ↓aw, which is the smallest weak prefix of w that
includes all actions that influence a, directly or indirectly:

w− v := u such that v·u , w

↓aw := v such that w− v �� a ∧ ∀v′ � w : (w− v′ �� a ⇒ v � v′).

Clearly, w− v exists if and only if v � w; in fact, as a consequence of Proposition 3.3,
it is then uniquely defined up to ,. The prime cause ↓aw, on the other hand, is always
defined; the definition itself ensures that it is unique up to ,. A representative of ↓aw
can in fact easily be constructed from w by removing all actions, starting from the tail
and working towards the front, that do not influence either a or any of the actions not
removed. For instance, in Fig. 1 we have x1·y1·y2− y1 = x1·y2 whereas x1·y1·y2− y2

is undefined; furthermore, ↓y2x1·y1 = y1.

Definition 13 (missed action). Let (q, w) be a vector. We say that an action a is missed
along (q, w) if q � w·a but q � v·a for some v � w. The missed action is characterised
by ↓av·a rather than just a; i.e., we include the prime cause. A missed action is said to
be fresh in (q, w) if w = w′·b and a is not a missed action in (q, w′).

The set of fresh missed actions along (q, w) is denoted fma(q, w). It is not difficult to
see that v·a ∈ fma(q, w) impliesw = w′·b such that b � a; otherwise a would already
have been missed in (q, w′).

A typical example of a missed action is (y1·y2) ∈ fma(ι, x1·x2·y1) in Fig. 1: here
ι � x1·x2·y1·y2 but ι � y1·y2 with y1 � x1·x2·y1. Note that indeed y1 	 y2.

3.2 Probe Sets

The most important parameter of any partial order reduction is the selection of a (proper)
subset of enabled actions to be explored. For this purpose, we define so-called probe
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Algorithm 1. Probe set based partial order reduction, first version

1: let Q ← ∅; // result set of states, initialised to the empty set
2: let C ← {(ιS , ε)}; // set of continuations, initialised to the start state
3: while C �= ∅ do // continue until there is nothing left to do
4: choose (q, w) ∈ C; // arbitrary choice of next continuation
5: let C ← C \ {(q, w)};
6: if q ↑w /∈ S then // test if we saw this state before
7: let Q ← Q ∪ {q ↑w}; // if not, add it to the result set
8: for all v·m ∈ fma(q, w) do // identify the fresh missed actions
9: let Q ← Q ∪ {q ↑ v′ | v′ � v}; // add intermediate states

10: let C ← C ∪ {(q ↑ v·m, ε)}; // add a continuation
11: end for
12: choose p ∈ Pq,w; // choose a probe set for this continuation
13: let C ← C ∪ {(q ↑ p(a), w·a− p(a)) | a ∈ dom(p)}; // add next continuations
14: end if
15: end while

sets, based on the disabling among the actions enabled at a certain state (given as the
target state q ↑w of a vector (q, w)). Furthermore, with every action in a probe set, we
associate a part of the causal history that can be discharged when exploring that action.
(Thus, our probe sets are actually partial functions).

Definition 14 (probe set). For a given vector (q, w), a probe set is a partial function
p: enabled(q ↑w) ⇀ Act∗ mapping actions enabled in q ↑w onto words, such that the
following conditions hold:

1. For all a ∈ dom(p) and b ∈ enabled(q ↑w), b 
 a implies b ∈ dom(p);
2. For all a ∈ dom(p) and b ∈ enabled(q ↑w), p(a) �� ↓bw implies b ∈ dom(p);
3. For all a ∈ dom(p), p(a) � ↓aw.

We use Pq,w to denote the set of all probe sets for a vector (q, w). We say that an action
a is in the probe set p if a ∈ dom(p). The first condition states that probe sets are
closed under inverse disabling. The second and third conditions govern the discharge of
the causal history: the fragment that can be discharged must be contained in the prime
cause of any action not in the probe set (Clause 2) and of a itself (Clause 3). Of these,
Clause 2 is the most involved: if we discharge any action that does not contribute to (the
cause of) some b, then we must probe b as well, so that missed actions stimulated by b
can still be identified. Section 4.3 gives some guidelines on how to select probe sets.

Algorithm 1. gives a first version of the reduction algorithm. In Fig. 4 we apply this
algorithm to the example system of Fig. 1, obtaining the reduced system in Fig. 3(b).
The first column shows the value of C at the beginning of the loop; the second col-
umn represents the choice of continuation; the third is the resulting set of fresh missed
actions; the fourth column gives the increase in the result set Q; and the final column
shows the choice of probe set.

3.3 Correctness

In order to have a correct reduction of a transition system, we must select sufficiently
many probe sets and take care of the missing actions. Let us define this formally.
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iteration C (q, v) ∈ C fma(q, v) ΔQ p ∈ Pq,v

1 (ι, ε) ι (x1, ε)
2 (ι, x1) (ι, x1) q1 (x2, ε)
3 (ι, x1·x2) (ι, x1·x2) q3 (x0, x1·x2), (y1, ε)
4 (q3, x

0), (ι, x1·x2·y1) (q3, x
0)

5 (ι, x1·x2·y1) (ι, x1·x2·y1) y1·y2 q6, q2

6 (q5, ε) (q5, ε) q5 (x1, ε), (y0, ε)
7 (q5, x

1), (q5, y
0) (q5, x

1) q7

8 (q5, y
0) (q5, y

0)

Fig. 4. Step-by-step execution of Algorithm 1. on the example of Fig. 1

Definition 15 (probing). Let S be a transition system. A probing for S is a K-indexed
set P = {pq,w}(q,w)∈K where

1. K is a set of vectors of S such that (ι, ε) ∈ K;
2. For all (q, w) ∈ K , pq,w is a probe set such that (q ↑ pq,w(a), w·a− pq,w(a)) ∈ K

for all a ∈ dom(pq,w).
3. for all (q, w) ∈ K and all v·a ∈ fma(q, w), there is a word u � w− v such that

(q ↑ v·a, u) ∈ K and u �� a.

We write (q, w) ↑ p(a) for the vector (q ↑ pq,w(a), w·a− pq,w(a)) in Clause 2. P is
called fair if for all (q, w) ∈ K there is a function nq,w: enabled(q ↑w)→IN, assigning
a natural number to all actions enabled in q ↑w, such that for all a ∈ enabled(q ↑w),
either a ∈ dom(pq,w), or n(q,w) ↑ p(b)(a) < nq,w(a) for some b ∈ dom(p).

Clause 2 guarantees that, from a given probe set, all regular explored successors (of
actions in the probe set) are indeed also probed; Clause 3 takes care of the missed
actions. Fairness ensures that every enabled action will eventually be included in a
probe set. In Section 4.3 we will show how to guarantee fairness.

The following is the core result of this paper, on which the correctness of the algo-
rithm depends. It states that every fair probing gives rise to a correct reduction. The
proof can be found in the appendix.

Theorem 16. If P is a fair probing of a transition system S, then the transition system
R characterized by QR = {q ↑w | (q, w) ∈ dom(P )} reduces S.

If we investigate Algorithm 1. in this light, it becomes clear that this is not yet cor-
rect. The total collection of vectors and probe sets produced by the algorithm give
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rise to a correct probing in the sense of Def. 15 (where the u of Clause 3 is always
set to ε), and also generates a probing; however, this probing is not fair. As a result,
Algorithm 1. suffers from the so-called “ignoring problem” well-known from other
partial order reductions.

4 The Algorithm

In this section, we put the finishing touch on the algorithm: ensuring fairness, identi-
fying missed actions, and constructing probe sets. For this, we take the entity-based
setting from Section 2.2.

4.1 Identifying Missed Actions

As we have discussed in Section 3, finding the missed actions fma(q, v) by investigating
all weak prefixes of v negates the benefits of the partial order reduction. In the the entity-
based setting of Section 2.2, however, a more efficient way of identifying missed actions
can be defined on the basis of an over-approximation. We define the over-approximation
of the target state of a vector (q, w), denoted q⇑w, as the union of all entities that have
appeared along that vector, and the weak enabling of an action a by a set of entities E,
denoted E 
 a, by only checking for the presence of read and deleted entities and not
the absence of forbidden and created entities.

q ⇑w := Eq ∪
⋃

a∈Aw
Ca

E 
 a :⇔ (Ra ∪Da) ⊆ E

This gives rise to the set of potentially missed actions, which is a superset of the set of
fresh missed actions.

Definition 17 (potentially missed actions). Let (q, w·b) be a vector. Then, a ∈ Act is
a potentially missed action if either b 
 a, or the following conditions hold:

1. a is weakly but not strongly enabled: q ⇑w 
 a and q ↑w � a,
2. a was somewhere disabled: ∃c ∈ Aw : c 
 a;
3. a is freshly enabled: b 	 a.

We will use pma(q, v) to denote the set of potentially missed actions in the vector
(q, v). It is not difficult to see that pma(q, v) ⊇ fma(q, v) for arbitrary vectors (q, v).
However, even for a given a ∈ pma(q, v) it is not trivial to establish whether it is really
missed, since this still involves checking if there exists some v′ � v with q ↑ v′ � a,
and we have little prior information about v′. In particular, it might be that v′ is smaller
than the prime cause ↓av. For instance, if Eq = {1}, Cb = {2}, Dc = {1, 2} and
Ra = {1, 2} then q � v·a with v = b·c·b, and ↓av = v; nevertheless, there is a prefix
v′ � v such that q � v′·a, viz. v′ = b.

In some cases, however, the latter question is much easier to answer; namely, if the
prime cause ↓av is the only possible candidate for such a v′. The prime cause can
be computed efficiently by traversing backwards over v and removing all actions not
(transitively) influencing a.
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Definition 18 (reversing actions). Two entity-based actions a, b are reversing if Ca ∩
Db �= ∅ or Da ∩ Cb �= ∅. A word w is said to be reversing free if no two actions
a, b ∈ Aw are reversing.

We also use reva(w) = {b ∈ Aw | a, b are reversing} to denote the set of actions in a
word w that are reversing with respect to a. Reversing freedom means that no action
(partially) undoes the effect of another. For instance, in the example above b and c
are reversing due to Cb ∩ Dc = {1}, so v is not reversing free. The following result
now states that for reversing free vectors, we can efficiently determine the fresh missed
actions.

Proposition 19. Let (q, v) is a vector with v reversing free.

1. For any action a, q � v′·a with v′ � v implies v′ = ↓av.
2. fma(q, v) = {a ∈ pma(q, v) | q � ↓av·a}.

4.2 Ensuring Fairness

To ensure that the probing we construct is fair, we will keep track of the “age” of the
enabled actions. That is, if an action is not probed, its age will increase in the next
round, and probe sets are required to include at least one action whose age is maximal.
This is captured by a partial function α: Act ⇀ IN. To manipulate these, we define

α⊕A := {(a, α(a) + 1) | a ∈ dom(α)} ∪ {(a, 0) | a ∈ A \ dom(α)}
α6A := {(a, α(a)) | a /∈ A}
maxα := {a ∈ dom(α) | ∀b ∈ dom(α) : α(a) ≥ α(b)}

A satisfies α :⇔ α = ∅ or A ∩max(α) �= ∅.

So, α⊕A initialises the age of the actions inA to zero, and increases all other ages;α6A
removes the actions in A from α; maxα is the set of oldest actions; and A satisfies the
fairness criterion if it contains at least one oldest action, or α is empty.

4.3 Constructing Probe Sets

When constructing probe sets, there is a trade-off between the size of the probe set and
the length of the vectors. On the one hand, we aim at minimising the size of the probe
sets; on the other hand, we also want to minimise the size of the causal history. For
example, probe sets consisting of pairs (a, ε) only (for which the second condition of
Def. 14 is fulfilled vacuously, and the third trivially) are typically small, but then no
causal history can be discharged. Another extreme case is when a probe set consists of
pairs (a, ↓aw). In this case, the maximal amount of causal history is discharged that is
still consistent with the third condition of Def. 14, but the probe set domain is likely to
equal the set of enabled actions, resulting in no reduction at all.

The probe sets pq,w we construct will furthermore ensure that the vectors of the new
continuation points are reversing free. Therefore, for every pq,w we additionally require
that for all a ∈ dom(pq,w) : reva(w) ⊆ Ap(a). Since reva(w) ⊆ A↓aw, this does not
conflict with Def. 14.
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Algorithm 2. Probe set based partial order reduction algorithm, definitive version.

1: let Q ← ∅;
2: let C ← {(ιS , ε, ∅)}; // age function initially empty
3: while C �= ∅ do
4: choose (q, w, α) ∈ C;
5: let C ← C \ {(q, w, α))};
6: if q ↑w /∈ S then
7: let Q ← Q ∪ {q ↑w};
8: for all v·m ∈ fma(q, w) do // calculated according to Proposition 19.2
9: let Q ← Q ∪ {q ↑ v′ | v′ � v};

10: let C ← C ∪ {(q ↑ v·m, ε, ∅)};
11: end for
12: choose p ∈ Pq,w such that dom(p) satisfies α, and ∀a ∈ dom(p) : reva(w) ⊆ Ap(a);

// choose a fair probe set, and ensure reversing freedom
13: let α ← α ⊕ enabled(q ↑w) � dom(p); // update the age function
14: let C ← C ∪ {(q ↑ p(a), w·a− p(a), α) | a ∈ dom(p)};
15: end if
16: end while

An interesting probe set pq,w could be constructed such that pq,w satisfies the condi-
tion on disabling actions and furthermore pq,w(a) = ↓aw except for one action, say a′,
which is mapped to the empty vector, i.e. pq,w(a′) = ε. This action a′ then ensures that
no further action needs to be included in the probe set. The selection of this action a′

can be based on the length of its prime cause within w.
There is a wide range of similar heuristics that use different criteria for selecting the

first action from which to construct the probe set or for extending the causal history to
be discharged. Depending on the nature of the transition system to be reduced, specific
heuristics might result in more reduction. This is a matter of future experimentation.

Algorithm 2. now shows the definitive version of the algorithm. The differences with
the original version are commented. Correctness is proved using Theorem 16. The proof
relies on the fact that the algorithm produces a fair probing, in the sense of Def. 15.

Theorem 20. For a transition system S, Algorithm 2. produces a set of states Q ⊆ QS

characterising a reduction of S.

For our running example of Figs. 1 and 4, there are several observations to be made.

– The probe sets we constructed in Fig. 4 (on an ad hoc basis) are reversing free. Note
that (in terms of (9)) x0 reverses x1 and x2; likewise, y0 reverses y1 and y2.

– The run in Fig. 4 is not fair: after the first step, the age of y1 becomes 1 and hence
y1 should be chosen rather than x2. This suggests that our method of enforcing
fairness is too rigid, since the ignoring problem does not actually occur here.

5 Conclusion

Summary. We have proposed a new algorithm for dynamic partial order reduction with
the following features:
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– It can reduce systems that have no non-trivial persistent sets (and so traditional
methods do not have an effect).

– It is based on abstract enabling and disabling relations, rather than on concurrent
processes. This makes it suitable for, e.g., graph transformation systems.

– It uses a universe of actions that does not need to be finite or completely known
from the beginning; rather, by adopting an entity-based model, enabled and missed
actions can be computed on the fly. This makes it suitable for dynamic systems,
such as software.

– It can deal with cyclic state spaces.

We have proved the algorithm correct (in a rather strong sense) and shown it on a small
running example. However, an implementation is as yet missing.

Related Work. Traditional partial order reduction (see e.g. [3, 12]) is based on stati-
cally determined dependency relations, e.g. for constructing persistent sets. More re-
cently, dynamic partial order reduction techniques have been developed that compute
dependency relations on-the-fly. In [2], for example, partial order reduction is achieved
by computing persistent sets dynamically. This technique performs a stateless search,
which is the key problem of applying it to cyclic state spaces. In [5], Gueta et al. in-
troduce a Cartesian partial order reduction algorithm which is based on reducing the
number of context switches and is shown also to work in the presence of cycles. Both
approaches are based on processes or threads performing read and/or write operations
on local and/or shared variables. The setting we propose is more general in the sense
that actions are able to create or delete entities that can be used as communication
objects. Therefore, our algorithm is better suited for systems in which resources are
dynamically created or destroyed without an a priori bound.

Future Work. As yet, there is no implementation of probe sets. Now that the theoreti-
cal correctness of the approach is settled, the first step is to implement it and perform
experiments. We plan to integrate the algorithm in the Groove tool set [10], which will
then enable partial order reduction in the context of graph transformations. The ac-
tual reduction results need to be compared with other algorithms, by performing some
benchmarks; see, e.g., [5].

In the course of experimentation, there are several parameters by which to tune the
method. One of them is obviously the choice of probe sets; a discussion of the possible
variation points was already given in Section 4. However, the main issue, which will
eventually determine the success of the method, is the cost of backtracking necessary
for repairing missed actions, in combination with the precision of our (over-)estimation
of those missed actions. If the over-estimation is much too large, then the effect of the
partial order reduction may be effectively negated.

To improve this precision, analogous to the over-approximation of an exploration
path, an under-approximation can be used for decreasing the number of potentially
missed actions. Actions that create or forbid entities that are in the under-approximation
can never be missed actions and do not have to be considered. Essentially, also including
this under-approximation means we are introducing a three-valued logic for determin-
ing the presence of entities.
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Other issues to be investigated are the effect of heuristics such as discussed in
Section 4.3, alternative ways to ensure fairness, and also the combination of our al-
gorithm with the sleep set technique [3].

Acknowledgment. We want to thank Wouter Kuijper for contributing to this work in its
early stages, through many discussions and by providing a useful motivating example.
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Abstract. In the context of probabilistic automata, time efficient algo-
rithms for probabilistic simulations have been proposed lately. The space
complexity thereof is quadratic in the size of the transition relation, thus
space requirements often become the practical bottleneck. In this pa-
per, we exploit ideas from [3] to arrive at a space-efficient algorithm
for computing probabilistic simulations based on partition refinement.
Experimental evidence is given that not only the space-efficiency is im-
proved drastically. The experiments often require orders of magnitude
less time.

1 Introduction

Probabilistic automata (PAs) are a central model for concurrent systems exhibit-
ing random phenomena. Not uncommon for concurrent system models, their ver-
ification often faces state space explosion problems. Probabilistic simulation [12]
has been introduced to compare the stepwise behaviour of states in probabilis-
tic automata. As in the non-probabilistic setting [9], the simulation preorder is
especially important in compositional verification and model checking on prob-
abilistic current systems.

In the non-probabilistic setting, a decision algorithm for the simulation pre-
order has been proposed in [7] with complexity O(mn) where n denotes the
number of states and m denotes the number of transitions of labelled graphs.
The space complexity is O(n2) due to the need of saving the simulation rela-
tions. Since space could become the bottleneck in many applications [4], a space
efficient algorithm has been introduced by Bustan and Grumberg [3]. With n�
denoting the number of simulation equivalence classes, the resulting space com-
plexity is O(n2

� + n logn�), which can be considered optimal: the first part is
needed to save the simulation preorder over the simulation equivalence classes,
and the second part is needed to save to which simulation equivalence class
a state belongs. The corresponding time complexity obtained is rather exces-
sive: O(n2n2

�(n
2
� +m)). Tan and Cleaveland [13] combined the techniques in [7]

with the bisimulation minimisation algorithm [10], and achieved a better time
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complexity O(m log n + mn∼), where n∼ denotes the number of bisimulation
equivalence classes. The corresponding space complexity O(m+ n2

∼).
Gentilini et al. [6] incorporated the efficient algorithm of [7] into the partition

refinement scheme and achieved a better time complexity O(mn2
�) while keeping

the optimal space complexity O(n2
�+n logn�). This is achieved by characterising

a simulation relation by a partition pair, which consists of a partition of the set
of states and a relation over the partition. Then, the simulation problem can
be reduced to a generalised coarsest partition problem (GCPP), which consists
of determining the coarsest stable partition pair. The algorithm starts with the
coarsest partition pair and refines both the partition and the relation over the
partition according to stability conditions. In [11], an algorithm has been pro-
posed with time complexity O(mn�) and space complexity O(nn�). Recently,
van Glabbeek and Ploeger [14] have shown that the proofs in [6] were flawed,
but have provided a fix for the main result.

In the probabilistic setting, Baier et al. [1] introduced a polynomial decision
algorithm for simulation preorder with time complexity O((mn6 +m2n3)/ logn)
and space complexity O(m2), by tailoring a network flow algorithm to the prob-
lem, embedded in an iterative refinement loop. Drastic improvements are possible
by observing that the networks on which the maximum flows are calculated, are
very similar across iterations of the refinement loop [17,16]. By adaptation of
the parametric maximum flow algorithm [5] to solve the maximum flows for the
arising sequences of similar networks, an algorithm with overall time complexity
O(m2n) and space complexity O(m2) has been introduced.

In this paper, we first discuss the smallest quotient automata induced by
simulation preorder for PAs. Then, we discuss how to incorporate the partition
refinement scheme into the algorithm for deciding simulation preorder. As in
the non-probabilistic setting, we show first that simulation relations can also
be characterised by partition pairs, thus the problem can be reduced to GCPP.
Since in PAs, states have in general non-trivial distributions instead of single
state as successors, a new proof technique is needed for the partition refinement
scheme: In the non-probabilistic setting, edges have no labels and predecessor-
based method can be used to refine the partition. This can not be extended to
the probabilistic setting in an obvious way, since in PAs, states have successor
distributions equipped with action labels. We propose a graph based analysis
to refine the partition for PAs. As in [6], the relation over the partition is re-
fined according to stability conditions. We arrive at an algorithm with space
complexity O(n2

� + n logn�). Since PAs subsume labelled graphs, this can be
considered as optimal. We get, however, a rather excessive time complexity of
O(mn� + m2

�n
4
� + m2

∼n
2
�) where m∼ denotes the number of transitions in the

bisimulation quotient. Similar to algorithms for deciding simulation preorder for
PAs [16], one can use parametric maximum flow techniques to improve the time
complexity. However, more memory is then needed due to the storage of the
networks and the maximum flow values of the corresponding networks across
iterations. We show combined with parametric maximum flow techniques, our
algorithm uses time O(mn� +m2

∼n
2
�) and space O(m2

� + n logn�).
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We have implemented both the space-efficient and time-efficient variants of
the partition refinement based algorithm. Experimental results show that the
space-efficient algorithm is very effective in time and memory. Comparing to the
original algorithm, not only the space-efficiency is improved drastically, often
orders of magnitude less time are required. As in [2], both regular and random
experiments show that the parametric maximum flow based implementation does
not perform better in general.

This paper is organised as follows. After recalling some definitions in Sec-
tion 2, we show in Section 3 that every probabilistic automaton has a quotient
automaton which is the smallest in size, and this quotient automaton can be
obtained by the simulation preorder. In Section 4, we show that simulation re-
lations can also be characterised by partition pairs. Using this, we develop a
partition refinement based algorithm for computing the simulation preorder in
Section 5. Finally, we report experimental results in Section 6 and conclude the
paper in Section 7. All proofs and more examples can be found in [15].

2 Preliminaries

Let AP be a fixed, finite set of atomic propositions. Let X,Y be finite sets. For
f : X → R, let f(A) denote

∑
x∈A f(x) for all A ⊆ X . If f : X × Y → R is

a two-dimensional function, let f(x,A) denote
∑

y∈A f(x, y) for all x ∈ X and
A ⊆ Y , and f(A, y) denote

∑
x∈A f(x, y) for all y ∈ Y and A ⊆ X . For a finite

set S, a distribution μ on S is a function μ : S → [0, 1] satisfying the condition
μ(S) ≤ 1. The support of μ is defined by Supp(μ) = {s | μ(s) > 0}, and the size
of μ is defined by |μ| = |Supp(μ)|. Let Dist(S) denote the set of distributions
over the set S. We recall the definition of probabilistic automata [12]:

Definition 1. A probabilistic automaton (PA) is a tuple M = (S, s0, Act,P, L)
where S is a finite set of states, s0 ∈ S is the initial state, Act is a finite set of
actions, P ⊆ S ×Act×Dist(S) is a finite set, called the probabilistic transition
matrix, and L : S → 2AP is a labelling function.

For (s, α, μ) ∈ P, we use s α→ μ as a shorthand notation, and call μ an α-successor
distribution of s. Let Act(s) = {α | ∃μ : s α→ μ} denote the set of actions
enabled at state s. For a set of states B ⊆ S, let Act(B) = ∪s∈BAct(s). For
s ∈ S and α ∈ Act(s), let Stepsα(s) = {μ ∈ Dist(S) | s α→ μ} and Steps(s) =
∪α∈Act(s)Stepsα(s). A state s is reachable from s0, if there exists a sequence
(s0, α0, μ0), . . . , (sk−1, αk−1, μk−1), sk with sk = s, and si

αi→ μi and μi(si+1) > 0
for i = 0, . . . , k − 1.

Simulation Relations. Simulation requires that every α-successor distribution
of one state has a corresponding α-successor distribution of the other state. The
correspondence of distributions is naturally defined with the concept of weight
functions [8].

Definition 2. Let μ ∈ Dist(S), μ′ ∈ Dist(S′) and R ⊆ S×S′. A weight function
for (μ, μ′) with respect to R is a function Δ : S × S′ → [0, 1] such that (i)
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Δ(s, s′) > 0 implies (s, s′) ∈ R, (ii) μ(s) = Δ(s, S′) for s ∈ S and (iii) μ′(s′) =
Δ(S, s′) for s′ ∈ S′.

For (s, s′) ∈ R we write also s R s′. We write μ �R μ
′ if there exists a weight

function for (μ, μ′) with respect to R. Obviously, for all R ⊆ R′, μ �R μ
′ implies

that μ �R′ μ′. We recall first the definition of simulation relation [12] inside one
PA:

Definition 3. Let M = (S, s0, Act,P, L) be a PA. The relation R ⊆ S × S is
a simulation over M iff for all s1, s2 with s1 R s2 it holds that: L(s1) = L(s2)
and if s1

α→ μ1 then there exists a transition s2
α→ μ2 with μ1 �R μ2. We write

s1 � s2 iff there exists a simulation R over M such that s1 R s2.

We say also that s2 simulates s1 in M iff s1 � s2. The preorder � is the coarsest
simulation relation over M. If s � s′ and s′ � s, we say that they are simulation
equivalent, and write s , s′. The notion of simulation relations can be lifted to
the automata level.

Definition 4. Let M1 = (S1, s1, Act1,P1, L1) and M2 = (S2, s2, Act2,P2, L2)
be two PAs with disjoint set of states. We say that R ⊆ S1 × S2 is a simulation
over M1 ×M2 iff (s1, s2) ∈ R and for all s, s′ with s R s′ it holds that: L(s) =
L(s′) and if s α→ μ then there exists a transition s′ α→ μ′ with μ �R μ

′. We write
M1 � M2 iff there exists a simulation R over M1 ×M2 such that s1 R s2.

If M1 � M2 and M2 � M1, we say that they are simulation equivalent, and
write M1 ,M2.

Partitions. A partition of S is a set Σ which consists of pairwise disjoint subsets
of S such that S = ∪B∈ΣB. The elements of a partition are also referred to as
blocks. A partition Σ is finer than Σ′ if for each block Q ∈ Σ there exists a
unique block Q′ ∈ Σ′ such that Q ⊆ Q′. If Σ is finer than Σ′, the parent block
of B ∈ Σ with respect to Σ′, denoted by ParΣ′(B), is defined as the unique block
B′ ∈ Σ′ with B ⊆ B′. For s ∈ S, let [s]Σ denote the unique block in Σ containing
state s. If Σ is clear from the context, we write simply [s]. For a distribution
μ ∈ Dist(S) and a partition Σ over S, we define the induced lifted distribution
with respect to Σ, denoted as liftΣ(μ) ∈ Dist(Σ), by: liftΣ(μ)(B) =

∑
s∈B μ(s).

For a given PAM = (S, s0, Act,P, L), a partition Σ over S is called consistent
with respect to the labelling function L, if for all B ∈ Σ and for all s, s′ ∈ B it
holds that L(s) = L(s′). Intuitively, if Σ is consistent with respect to L, states
in the same block have same labels. Recall s � s′ implies that L(s) = L(s′). In
this paper we consider only partitions which are consistent with respect to L.
For consistent partition Σ and B ∈ Σ, we write L(B) to denote the label of B.

The partition Σ over S induces an equivalence relation ≡Σ defined by: s ≡Σ

s′ iff [s] = [s′]. If R is an equivalence relation, we let S/R denote the set of
equivalence classes, which can also be considered a partition of S. Let IS =
{(s, s) | s ∈ S} denotes the identity relation. For an arbitrary relation R with
IS ⊆ R, let R∗ denote the transitive closure of it, which is a preorder. It induces
an equivalence relation ≡R∗ defined by: s ≡R∗ s′ if sR∗s′ and s′R∗s. As a
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shorthand notation, we let S/R∗ denote the corresponding set of equivalence
classes S/≡R∗ .

The Quotient Automata. Let M = (S, s0, Act,P, L) be a PA, and consider
the partition Σ over S. For notational convenience, we use μ ∈ Dist(S) to denote
a distribution over S, and πΣ ∈ Dist(Σ) to denote a lifted distribution over the
partition Σ. If the partition Σ is clear from the context, we use π instead of πΣ .
For a set B ⊆ S, we write

– B
α→ πΣ if there exists s ∈ B and s α→ μ with πΣ = liftΣ(μ),

– B
α� πΣ if for all s ∈ B there exists s α→ μ with πΣ = liftΣ(μ).

The ∃-quotient automaton ∃M/Σ is the tuple (Σ,B0, Act,P∃, L
′) where B0

is the unique block containing the initial state s0, and the transition matrix is
defined by: P∃ = {(B,α, πΣ) | B ∈ Σ ∧ B α→ πΣ}, and the labelling function
is defined by L′(B) = L(B). Note that L′(B) is well defined because we have
assumed that the partition Σ is consistent with respect to L. If no confusion
arises, we use B both as a state in the ∃-quotient automaton, and as a set of
states in M.

We introduce some notations for the ∃-quotient automaton. For s ∈ Σ and
α ∈ Act(s), let StepsΣ,α(s) = {π ∈ Dist(Σ) | s α→ μ ∧ π = liftΣ(μ)}, and for
B ∈ Σ let StepsΣ,α(B) = ∪s∈BStepsΣ,α(s).

The ∀-quotient automaton ∀M/Σ is defined similarly: it is the tuple (Σ,B0,
Act, P∀, L

′) where the transition matrix is defined by: P∀ = {(B,α, πΣ) | B ∈
Σ ∧B

α� πΣ}, and B0, L
′ as defined for the ∃-quotient automaton.

3 The Minimal Quotient Automaton

For a given PA M = (S, s0, Act,P, L), in this section we show that there exists
a PA M′ which is simulation equivalent with M, and M′ is the smallest in size.

In the non-probabilistic setting [3], the notion of little brothers is introduced
which states that state s1 is a little brother of s2 if they have a common prede-
cessor s3, and s2 simulates s1 but not the other way around. We lift this notion
to PAs:

Definition 5. Let s ∈ S be a state, and let α ∈ Act(s) be an enabled action out
of s. For two distributions μ, μ′ ∈ Stepsα(s), we say that μ is a little brother of
μ′ if it holds that μ �� μ′ and μ′ ��� μ.

By eliminating the little brothers from each state s ∈ S in a PA we get a
simulation equivalent PA:

Lemma 1. Let M be a PA, and let M′ be the PA obtained from M by elimi-
nating little brothers. Then, M,M′.

Recall that the preorder � on S induces an equivalence relation ,. The follow-
ing lemma states that M and its ∀-quotient automaton with respect to , are
simulation equivalent.
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Lemma 2. Given a PA M, the equivalence relation , over M induces a par-
tition of S defined by: Σ = {{s′ | s′ ∈ S ∧ s , s′} | s ∈ S}. Then, ∀M/Σ and
M are simulation equivalent: ∀M/Σ ,M.

Note that the ∀-quotient automaton can be obtained from the ∃-quotient automata
by eliminating little brothers in it. Combining Lemma 1 and the above lemma, we
have thatM, its ∀-quotient automaton, and its ∃-quotient automaton are pairwise
simulation equivalent. For the PA M = (S, s0, Act,P, L), we let n = |S| denote
the number of the states, and m =

∑
s∈S

∑
α∈Act(s)

∑
μ∈Stepsα(s) |μ| denote the

size of the transitions. The following lemma states that the ∀-quotient automaton
ofM is the smallest one among those PAs which are simulation equivalent to M.

Lemma 3. Let M = (S, s0, Act,P, L) be a PA in which all states are reachable
from s0. Let M′ = (S′, s′0, Act,P

′, L′) be any other PA which is simulation equiv-
alent with M. Let Σ denote the partition of S induced by ,. Moreover, letmΣ , nΣ

be the size of transitions and states of ∀M/Σ, m′, n′ be the size of transitions and
states of M′ respectively. Then, it holds that nΣ ≤ n′ and mΣ ≤ m′.

In the above lemma, we require that all states in the PA are reachable from the ini-
tial state. Note this is not a real restriction. As in the non-probabilistic setting [3],
by pruning the unreachable states ofMwe get a PA which is simulation equivalent
to M. Thus, to construct the minimal quotient automaton for M, we can elimi-
nate the unreachable states, compute the simulation preorder, and then delete the
little brothers. The dominating part is to decide the simulation preorder.

4 Simulation Characterised by Partition Pairs

In the non-probabilistic setting, the simulation preorder for unlabelled graph is
characterised by partition pairs [3,6] which consist of a partition of the state
space and a binary relation over the partition. Then, a partition refinement ap-
proach is introduced based on partition pairs. In this section, we adapt the notion
of partition pairs to PAs, and then we show that we can characterise simulation
relations for PAs by partition pairs. This is the basis for the partition refinement
approach which will be introduced in the next section. In the remainder of this
section, we fix a PA M = (S, s0, Act,P, L).

We say that the pair (B,B′) ∈ Σ × Σ respects the labelling function L if
L(B) = L(B′). Now we give the definition of partition pairs.

Definition 6 (Partition Pair). A partition pair over S is a pair 〈Σ,Γ〉 where
Σ is a partition of S, and Γ ⊆ Σ × Σ is a reflexive relation over Σ satisfying
the condition: all pair (B,B′) ∈ Γ respects the labelling function L.

We also call Γ the partition relation. Let Υ denote the set of all partition pairs
over S. For 〈Σ,Γ〉 ∈ Υ and B,B′ ∈ Σ, we also write also BΓB′ if (B,B′) ∈ Γ .
A partition pair induces a binary relation on S as follows:

Definition 7 (Induced Relation). The partition pair 〈Σ,Γ〉 ∈ Υ induces the
binary relation on S by: �〈Σ,Γ〉= {(s, s′) | [s]Γ [s′]}.
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Let 〈Σ,Γ〉, 〈Σ′, Γ ′〉 ∈ Υ . If Σ if finer than Σ′, and �〈Σ,Γ〉⊆�〈Σ′,Γ ′〉 holds, we
say that Γ is finer than Γ ′. Now we introduce a partial order on Υ :

Definition 8 (Partial Order). We define an order � ⊆ Υ × Υ as follows:
〈Σ,Γ〉� 〈Σ′, Γ ′〉 if Σ is finer than Σ′ and Γ is finer than Γ ′.

If 〈Σ,Γ〉� 〈Σ′, Γ ′〉 we say 〈Σ,Γ〉 is finer than 〈Σ′, Γ ′〉. Obviously the defined re-
lation is a partial order: � satisfies the reflexivity, antisymmetry and transitivity
conditions. Now we introduce the stability of partition pairs.

Definition 9 (Stable Partition Pairs). A partition pair 〈Σ,Γ〉 ∈ Υ is stable
if for each BΓB′ and B α→ πΣ, there exists B′ α� π′Σ such that πΣ �Γ π

′
Σ.

Let Υsta denote the set of all stable partition pairs, and let Υ �
sta ⊆ Υsta be the set

of stable partition pairs in which the partition relation is a preorder. We show
that a stable partition pair induces a simulation relation.

Theorem 1 (Induced Simulation Relation). Let 〈Σ,Γ〉 ∈ Υsta be a stable
partition pair. Then, the induced relation �〈Σ,Γ〉 is a simulation relation.

In the following we give the definition that a set of states is stable with respect
to a partition pair:

Definition 10. Let 〈Σ,Γ〉 be a partition pair and let B ∈ Σ. Assume that
Q ⊆ B. We say that Q is stable with respect to 〈Σ,Γ〉 if Q α→ πΣ implies that
there exists Q

α� π′Σ such that πΣ �Γ π
′
Σ.

Assume that Σ′ is a refinement of Σ. Then, we say that Σ′ is stable with respect
to 〈Σ,Γ〉 if each B ∈ Σ′ is stable with respect to 〈Σ,Γ〉.
Simulations & Stable Partition Pairs. We define a function which estab-
lishes connections between simulation relations and stable partition pairs. Recall
that IS = {(s, s) | s ∈ S} denotes the identity relation over S. We consider the
set Ξ := {R ⊆ S × S | IS ⊆ R} of relations containing the identity relation. We
define the function H : Ξ → Υ by: H(R) = (S/R∗ , ΓR) where ΓR is defined by:
BΓRB

′ if sR∗s′ for all s ∈ B and s′ ∈ B′. For R ∈ Ξ, H(R) is a partition pair
where the partition is induced by ≡R∗ , and BΓRB

′ if states in B′ are reachable
from states in B in the transitive closure R∗. If R is a simulation relation, sR∗s′

implies that L(s) = L(s′) which implies that ΓR respects the labelling function.
The following lemma states that for a preorder and a simulation relation, the
image of it is an element of Υ �

sta :

Lemma 4. Assume R ∈ Ξ is a preorder and a simulation relation. Then,
H(R) ∈ Υ �

sta .

Let Ξ� ⊆ Ξ be the set consisting of R ∈ Ξ which is a preorder and a simulation
relation. We show that the function obtained from H with restricted domain Ξ�

and co-domain Υ �
sta , is bijective.

Lemma 5. Let the function h : Ξ� → Υ �
sta defined by: h(R) = H(R) if R ∈ Ξ�.

Then, h is bijective.
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Recall that � is a preorder, and is the largest simulation relation. We use
〈Σ�, Γ �〉 to denote the partition pair h(�). Thus, � can be obtained via com-
puting 〈Σ�, Γ �〉. In the following lemma we show that 〈Σ�, Γ �〉 is the unique,
maximal element of Υ �

sta :

Theorem 2 (Unique, Maximal Element). The partition pair 〈Σ�, Γ �〉 is
the unique, maximal element of Υ �

sta .

Thus, to determine the simulation preorder �, it is sufficient to compute the par-
tition pair 〈Σ�, Γ �〉. As in [6] we refer to it as the generalised coarsest partition
problem (GCPP).

5 Solving the GCPP

Let M = (S, s0, Act,P, L) be a PA. In this section we propose an algorithm
for solving the GCPP, i.e., computing the partition pair 〈Σ�, Γ �〉 based on the
partition refinement strategy. The idea is that we start with the partition pair
〈Σ0, Γ0〉 which is coarser than 〈Σ�, Γ �〉, and refine it with respect to the stability
conditions. The Algorithm SimQuo is presented in Algorithm 1. As an initial
partition pair we take Σ0 = {{s′ ∈ S | L(s) = L(s′)∧Act(s) = Act(s′)} | s ∈ S}.
Intuitively, states with the same set of labels and enabled actions are put in
the the same initial block. By construction Σ0 is consistent with respect to L.
The initial partition relation is defined by: Γ0 = {(B,B′) ∈ Σ0 × Σ0 | L(B) =
L(B′) ∧ Act(B) ⊆ Act(B′)}. Obviously, Γ0 respects the labelling function L. It
is easy to see that for partition pair 〈Σi, Γi〉 which is finer than 〈Σ0, Γ0〉, Σi is
consistent with respect to L, and Γi respects L as well.

In lines 5–15 of the algorithm, a finite sequence of partition pairs 〈Σi, Γi〉 with
i = 0, 1, . . . , l is generated. We will show that it satisfies the following properties:

– Γi is acyclic for i = 0, 1, . . . , l,
– 〈Σi, Γi〉 is coarser than 〈Σ�, Γ �〉 for i = 0, 1, . . . , l,
– 〈Σi+1, Γi+1〉 is finer than 〈Σi, Γi〉 for i = 0, 1, . . . , l − 1,
– 〈Σl, Γl〉 = 〈Σ�, Γ �〉.

The core task consists of how to refine the partition pair 〈Σi, Γi〉 satisfying the
above conditions.

In the non-probabilistic setting, a space-efficient algorithm [6] is proposed for
a directed graph G = (V,E). A refinement operator1 was used to generate the
partition pair 〈Σi+1, Γi+1〉 from 〈Σi, Γi〉 satisfying all of the properties mentioned
above. The refinement of blocks works as follows. For each block B ∈ Σi let
E−1(B) = {s ∈ V | ∃s′ ∈ B.(s, s′) ∈ E} denote the set of predecessors of states
in B. Then, using B′ as a splitter, B is split into two part: B1 = B ∩E−1(B′) and
B2 = B \ B1. The predecessor based method for splitting blocks, however, can

1 The refinement operator must guarantee that the refined partition relation Γi+1 must
be acyclic. Recently, van Glabbeek and Ploeger [14] have shown that the operator
in [6] was flawed, and provided a non-trivial fix for the operator.
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Algorithm 1. SimQuo(M): Quotient algorithm to decide 〈Σ�, Γ �〉 over M
1: i ← 0
2: Σ0 = {{s′ ∈ S | L(s) = L(s′) ∧ Act(s) = Act(s′)} | s ∈ S}
3: Γ0 ← {(B, B′) ∈ Σ0 × Σ0 | L(B) = L(B′) ∧ Act(B) ⊆ Act(B′)}
4: repeat
5: Σi+1 ← ∅, Γi+1 ← ∅
6: for all B ∈ Σi do
7: Σi+1 ← Σi+1 ∪ Split(B, Σi)
8: Γi+1 ← {(Q, Q′) ∈ Σi+1 × Σi+1 | ParΣi(Q) �= ParΣi(Q

′) ∧ (ParΣi(Q),
ParΣi(Q

′)) ∈ Γi or ParΣi(Q) = ParΣi(Q
′) ∧ Reach(Q,Q′)}

9: Construct the ∃-quotient automaton ∃M/Σi+1

10: repeat
11: for all (Q, Q′) ∈ Γi+1 do

12: if not (∀Q
α� πΣi+1 ⇒ ∃Q′ α→ π′

Σi+1
∧ πΣi+1 �Γi+1 π′

Σi+1
) then

13: Γi+1 ← Γi+1 \ {(Q, Q′)}
14: until Γi+1 does not change
15: i + +
16: until 〈Σi+1, Γi+1〉 = 〈Σi, Γi〉

not be applied to the probabilistic setting. The reason is that in PAs states have
successor distributions instead of a single successor state. Moreover, the checking
of the correspondence between distributions used for simulation involves weight
functions which require additional attention. In the following we first propose a
graph based analysis to refine the partition (lines 5–7). Then, we discuss how to
refine the partition relation (lines 8–15).

Refinement of the Partition. Consider the partition pair 〈Σi, Γi〉 ∈ Υ with
〈Σ�, Γ �〉�〈Σi, Γi〉. The refinement operator Split consists of finding a finer par-
tition Σi+1 which is stable with respect to 〈Σi, Γ

∗
i 〉. For B ∈ Σi, Split(B,Σi) =

{Q1, . . . , Qk} is a partition overB such that for allQi it should hold: ifQi
α→ πΣi ,

there exists Qi
α� π′Σi

such that πΣi �Γ∗
i
π′Σi

(cf. Definition 10). To construct
this partition, we start with the following partition of B: VB = {{s′ ∈ S | ∀α ∈
Act(s). StepsΣi,α(s) = StepsΣi,α(s′)} | s ∈ S}. Note that VB is finer than the
partition for B we are searching for. We construct now a graph GB = (VB , EB)
for the block B, in which for Q,Q′ ∈ VB , we add the edge (Q,Q′) ∈ EB if the
following condition holds:

∀πΣi ∈ StepsΣi,α(Q). ∃π′Σi
∈ StepsΣi,α(Q′). πΣi �Γi π

′
Σi

(1)

Note the condition πΣi �Γi π
′
Σi

could be checked via maximum flow compu-
tations [1]. We obtain the partition Split(B,Σi) by constructing the max-
imal strongly connected components (SCCs) of GB. Let Split(B,Σi) denote
the partition for B obtained by contracting the SCCs of GB: Split(B,Σi) =
{∪X∈CX | C is an SCC of GB}. Moreover, as in Algorithm SimQuo, let Σi+1 =
∪B∈ΣiSplit(B,Σi). The following lemma shows that the obtained partition
Σi+1 is coarser than Σ�.
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Lemma 6. For all i ≥ 0, Σi+1 is finer than Σi, and Σ� is finer than Σi.

The following lemma shows that, for acyclic Γi, the partition Σi+1 is stable with
respect to 〈Σi, Γ

∗
i 〉:

Lemma 7. Assume that Γi is a acyclic. For all i ≥ 0, Σi+1 is stable with respect
to 〈Σi, Γ

∗
i 〉.

Refinement of the Partition Relations. Similar to the refinement of parti-
tions, at the end of iteration i, we want to get the partition relation Γi+1 which
is finer than Γi, but still coarser than Γ �. At line 8, the partition relation Γi+1

is initialised such that it contains (Q,Q′) if
– either Q,Q′ have different parent blocks B �= B′ with B = ParΣi(Q) and
B′ = ParΣi(Q′) such that (B,B′) ∈ Γi holds,

– or they have same parent block B and the SCC for Q′ can be reached by the
SCC for Q in GB. This constraint is abbreviated by Reach(Q,Q′) (line 8).

To get a coarser partition relation, we want to remove from Γi+1 those pairs
(B,B′) satisfying the condition: no state in B can be simulated by any state in
B′. Conversely, we want to keep those pairs (B,B′) satisfying the condition that
there exists at least a state in B which can be simulated by an arbitrary state in
B′. This condition, however, depends on the concrete transitions of state s ∈ B.
To be able to work completely on the quotient automaton ∃M/Σi+1, we consider
the weakness of the above condition:

∀B
α� πΣi+1 ⇒ ∃B′ α→ π′Σi+1

∧ πΣi+1 �Γi+1 π
′
Σi+1

(2)

Again, the condition πΣi+1 �Γi+1 π
′
Σi+1

could be checked via maximum flow
computations [1]. Note the similarity to Condition 1: we consider only transitions
of the form B

α� πΣi+1 from B (line 12 in SimQuo).

Lemma 8. For all i ≥ 0, Γi+1 is finer than Γi, and Γ � is finer than Γi.

Correctness. In this section we show the correctness of the algorithm SimQuo.
By Lemmata 6 and 8, we see that the partition pair 〈Σi+1, Γi+1〉 obtained in the
algorithm is finer than 〈Σi, Γi〉, and coarser than 〈Σ�, Γ �〉. The following lemma
shows that the partition relation Γi is acyclic:

Lemma 9 (Acyclicity). For all i ≥ 0, the partition relation Γi is acyclic.

Proof. We prove by induction on i. In the first iteration the statement holds:
since the inclusion relation ⊆ is transitive, no cycles except self loop exist in
Γ0. Now consider iteration i. By induction hypothesis assume that the partition
relation Γi at the beginning of iteration i is acyclic. We shall show that Γi+1

is acyclic until the end of i-te iteration. Consider the initial value of Γi+1 at
line 8 at iteration i. Note at this position we may still assume that Γi is acyclic
by induction hypothesis. This implies that during the initialisation of Γi+1 only
sub-blocks from some same parent block B ∈ Σi can form cycles of length
n > 1. Assume such a cycle is formed from B: Q1Γi+1Q2Γi+1 . . . , QnΓi+1Q1 . . .
with n > 1. Since Q1Γi+1Q2 implies that Reach(Q1, Q2) and the reachability is
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transitive, we get that Q1, . . . , Qn must belong to the same SCC in GB which is
a contradiction. Thus, Γi+1 is acyclic after initialisation. Since afterwards pairs
will only be removed from Γi+1, it remains acyclic.

Theorem 3 (Correctness). Assume that SimQuo terminates at iteration l,
then, 〈Σ�, Γ �〉 = 〈Σl, Γl〉.

Proof. By termination we have that 〈Σl, Γl〉 = 〈Σl+1, Γl+1〉. By Lemma 9 the
partition relation Γl+1 is acyclic. Applying Lemma 7 we have that Σl+1 is stable
with respect to 〈Σl, Γ

∗
l 〉 which implies that Σl is stable with respect to 〈Σl, Γ

∗
l 〉.

We prove first that the partition pair 〈Σl, Γ
∗
l 〉 is stable. Let (B,B′) ∈ Γ ∗

l , and
B

α→ π1 with π1 ∈ Dist(Σl). Since Σl is stable with respect to 〈Σl, Γ
∗
l 〉, there

must exist π′1 ∈ Dist(Σl) with B
α� π′1 such that π1 �Γ∗

l
π′1. Since (B,B′) ∈ Γ ∗

l ,
there is a sequence B1, . . . , Bn such that B1ΓlB2Γl . . . Bn with B1 = B and
Bn = B′ and n ≥ 2. Σl is stable with respect to 〈Σl, Γ

∗
l 〉 implies that the

block Bi is stable with respect to 〈Σl, Γ
∗
l 〉 for all i = 1, . . . , n. Moreover, pairs

in Γl satisfy Condition 2. Thus there exists distributions πi, π
′
i ∈ Dist(Σl) for

i = 1, . . . , n and such that it holdsBi
α→ πi,Bi

α� π′i, and: π1 �Γ∗
l
π′1 �Γl

π2 �Γ∗
l

π′2 �Γl
. . . πn �Γ∗

l
π′n. Thus we have that π1 �Γ∗

l
π′n which implies that the

partition pair 〈Σl, Γ
∗
l 〉 is stable. By Lemma 2 we have that 〈Σl, Γ

∗
l 〉� 〈Σ�, Γ �〉.

By Lemmata 6 and 8 we have that 〈Σ�, Γ �〉�〈Σl, Γl〉. Hence, 〈Σ�, Γ �〉 = 〈Σl, Γl〉.

Complexity. The following lemma shows that the number of iterations of the
algorithm SimQuo is linear in |Σ�|:

Lemma 10. Assume that SimQuo terminates at iteration l, then, l ∈ O(|Σ�|).

For the complexity analysis, we introduce some notations. As before, given
M = (S, s0, Act,P, L), we let n,m denote the number of states and transi-
tions respectively. We let Σ∼ denote the partition induced by the bisimulation
relation ∼, and let n∼ and m∼ denote the number of states and transitions of
the ∃-quotient2 automaton ∃M/Σ∼ . Let n� and m� denote the number of states
and transitions of the quotient automaton ∃M/Σ� .

Theorem 4 (Complexity). Given a PA M, the algorithm SimQuo has time
complexity O(mn� +m2

�n
4
� +m2

∼n
2
�), and space complexity O(n2

� + n logn�).

The space complexity can be considered optimal: the O(n2
�) part is needed to

save the partition relations, and the O(n log n�) part is needed to save to which
simulation equivalence class a state belongs. The worst case time complexity in
each iteration is in the order of O(m+m2

�n
3
� +m2

∼n
3
�). Together with Lemma 10

we get a rather excessive time complexity. We consider an iteration i of the
algorithm SimQuo. In the inside repeat loop of this iteration, the weight function
condition πΣi+1 �Γi+1 π

′
Σi+1

(see Condition 2) can be checked via solving a

2 In fact, the ∃-quotient automaton and the ∀-quotient automaton with respect to the
bisimulation relation ∼ coincide.
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maximum flow problem over a network constructed out of πΣi+1 , π′Σi+1
and

Γi+1. Observe that the networks on which the maximum flows are calculated
in the inside repeat loop are very similar. Similar to algorithms in PAs [16], we
could apply parametric maximum flow techniques (PMFs) to improve the time
complexity: instead of recompute the maximum we could reuse the maximum
computed in the last iteration. The penalty is that more memory is needed due
to the need to store the networks and flows of it across iterations.

Theorem 5 (Complexity with PMFs). Using PMFs, the algorithm SimQuo

has time complexity O(mn� +m2
∼n

2
�), and space complexity is O(m2

� +n logn�).

6 Experimental Results

In this section, we evaluate our new partition refinement based algorithm. De-
pending whether PMFs are used in the algorithm, we have implemented both the
space-efficient and time-efficient variants of the partition refinement based algo-
rithm. We compare the results to previous algorithms in [1,16]. All experiments
were run on a Linux machine with an AMD Athlon(tm) XP 2600+ processor at
2 GHz equipped with 2GB of RAM.

Dining Cryptographers. Consider the dining cryptographer models taken
from the PRISM web-site. In [2], various optimisations are proposed for com-
puting probabilistic simulation. We take the most space efficient configuration
(0000) and refer to it as the Original algorithm in the sequel. Note that other
configurations use more memory, and are at most faster by a factor of two, thus
are not considered here. We compare it to our new partition refinement based
algorithm: the configuration QuoPMF for the algorithm using PMFs and the
configuration Quotient for the algorithm without using PMFs.

In Table 1 experiments are shown: in the upper part only one state label
is considered, in the middle part uniform distribution of two different labels is
considered, in the lower part we have uniform distribution of three different la-
bels. For 6 cryptographers and one or two labels, the configuration Original runs
out of memory; this is denoted by –. The number of the simulation equivalence
classes is given in row #blocks, and the number of iterations of the refinement
loops for the configurations Quotient and QuoPMF is given in row #refinement.

As expected, in the configuration Original the memory is indeed the bottleneck,
while the partition refinement based algorithm uses significant less memory. More
surprisingly is that partition refinement based algorithm often requires orders of
magnitude less time, especially for small number of labels. The reason is that for
this case study the simulation quotient automaton has much less states than the
original automaton. Moreover, in the quotient automaton, most of the transitions
fall into the same lifted distributions, thus making the maximum flow computa-
tion cheaper. Another observation is that the number of different labels affect the
performance of all of the configurations, but in a different way. For the configura-
tion Original more labels indicate that the initial relation is smaller thus always
less time and memory are needed. For both Quotient and QuoPMF more labels
give a finer initial partition, which means also a large quotient automaton during
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Table 1. Time and memory used for Dining Cryptographers

Cryptographers 3 4 5 6 3 4 5 6

States 381 2166 11851 63064 381 2166 11851 63064
Transitions 780 5725 38778 246827 780 5725 38778 246827

Time (s) Memory (MB)

Original 0.52 20.36 987.40 – 0.95 27.41 763.09 –
Quotient 0.03 0.76 19.52 533.40 0.02 0.11 0.71 4.35
QuoPMF 0.03 0.73 18.93 528.00 0.02 0.14 0.89 5.25
#blocks 10 24 54 116

#refinement 3 3 3 3

Original 0.13 4.67 266.04 – 0.21 4.68 104.46 –
Quotient 0.05 0.93 18.53 394.80 0.02 0.12 0.93 7.07
QuoPMF 0.05 0.96 19.46 420.60 0.02 0.21 2.42 26.02
#blocks 63 247 955 3377

#refinement 4 4 4 4

Original 0.07 2.42 150.74 13649.30 0.14 2.69 58.92 1414.57
Quotient 0.06 2.31 60.01 1185.16 0.02 0.18 2.32 22.67
QuoPMF 0.07 3.04 81.14 1536.78 0.03 0.41 10.75 124.53
#blocks 96 554 2597 8766

#refinement 3 4 4 5

the refinement loops. For this example the running time for one or two labels are
almost the same, whereas with three labels more time is needed.

It is notable that the QuoPMF configuration does not perform well at all,
even though it has better theoretical complexity in time. This observation is the
same as we have observed in [2]: the corner cases (number of iterations in the
inside repeat-loop is bounded by n2

�) which blow up the worst case complexity
are rare in practice.

Self Stabilising Algorithm. We now consider the self stabilising algorithm
due to Israeli and Jalfon, also taken from the PRISM web-site. As the previous
case study, in the upper, middle and lower part of the table we have one, two
and three different uniformly distributed labels respectively. For 13 processes
and one label, the configuration QuoPMF runs out of memory which is denoted
by –. For this case study, we observe that the simulation quotient automaton
has almost the same number of states as the original one. Thus, Original is the
fastest configuration. Another observation is that the configuration Quotient
needs almost the same amount of memory for three different number of labels.
Recall that the space complexity of the configuration Quotient isO(n2

�+n logn�).
In this case study the number of blocks differs only slightly for different number of
labels, thus almost the same amount of memory is needed for this configuration.

Random Models. Most of the real models have a sparse structure: the number
of successor distributions and the size of each distribution are small. Now we con-
sider randomly generated PAs in which we can also observe how the algorithms
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Table 2. Time and memory used for the self stabilising algorithm

Processes 10 11 12 13 10 11 12 13

States 1023 2047 4095 8191 1023 2047 4095 8191
Transitions 8960 19712 43008 93184 8960 19712 43008 93184

Time (s) Memory (MB)

Original 11.35 53.66 259.18 1095.96 5.88 20.10 91.26 362.11
Quotient 20.25 138.60 470.84 2440.83 0.36 1.24 4.50 17.04
QuoPMF 28.17 177.54 655.09 – 93.40 375.47 1747.35 –
#blocks 974 1987 4024 8107

#refinement 6 6 7 7

Original 1.73 8.68 37.63 199.31 0.92 3.34 12.42 47.25
Quotient 10.60 52.60 234.96 1248.30 0.38 1.29 4.63 17.35
QuoPMF 14.57 73.06 325.82 1704.87 17.93 80.14 338.45 1379.45
#blocks 1019 2042 4090 8185

#refinement 5 6 6 7

Original 0.61 2.47 13.56 66.62 0.47 1.42 5.28 18.38
Quotient 10.36 39.02 260.09 900.99 0.38 1.29 4.62 17.35
QuoPMF 14.29 54.34 360.63 1235.27 2.24 11.97 28.93 142.68
#blocks 1015 2042 4085 8185

#refinement 6 5 8 6

Table 3. Random models with various maximal distribution size D

D 5 7 9 11 13 15 17 19
Transitions 1927 2717 3121 3818 4040 4711 5704 6389

Time (s)

Original 0.50 1.10 1.80 3.19 3.76 6.04 10.26 14.12
Quotient 0.58 0.56 0.56 0.60 0.63 0.64 0.72 0.78
QuoPMF 0.54 0.54 0.52 0.59 0.60 0.60 0.70 0.74

#refinement 4 3 3 3 3 3 3 3

Memory (kB)

Original 138.23 137.58 108.18 132.85 115.10 131.88 145.19 144.30
Quotient 37.89 47.69 52.91 61.44 64.68 72.58 84.99 93.22
QuoPMF 263.77 179.51 128.60 144.11 107.94 83.46 110.10 106.02

behave for dense models. We consider random model with 200 states, in which
there are two actions |Act| = 2, the size of each α-successor distribution in the
model is uniform distributed between {2, . . . , D}, and the number of successor
distributions for each state is uniform distributed between {1, . . . ,MS}. Only
one state label is considered.

In Table 3 we set MS = 2 and consider various values of D. Because of the
large distribution size, in all of these random models the simulation quotient
automaton is the same as the corresponding original automaton, thus there is
no reduction at all. Even in this extreme case, the partition refinement based
methods reduce the memory by approximately 30%. Because of the large size of
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Table 4. Random models with various maximal number of successor distributions MS

MS 10 15 20 25 30 35 40 45
Transitions 3732 5283 7432 9250 11217 12659 13800 16170

Time (s)

Original 2.62 6.40 25.49 26.18 29.92 18.63 23.35 13.30
Quotient 1.15 2.97 6.82 4.88 4.44 2.83 4.67 2.45
QuoPMF 1.26 3.56 7.68 4.98 4.51 2.82 4.74 2.52
#blocks 200 200 200 13 22 9 11 5

#refinement 4 5 9 6 4 3 4 2

Memory (kB)

Original 348.79 437.73 501.16 567.91 575.46 628.32 633.17 670.90
Quotient 61.07 81.00 108.54 121.71 147.15 165.33 180.14 210.29
QuoPMF 1063.00 1663.16 2831.99 149.80 184.65 171.88 190.35 211.19

distributions, the corresponding maximum flow computations become more ex-
pensive for the configuration Original. In the partition refinement based approach
the maximum flow computations are carried in the quotient automaton in each
iteration, which saves considerable time. Thus the partition refinement based
methods are faster, and scale much better than the configuration Original. Com-
paring with the configuration Quotient, the parametric maximum flow based
method (configuration QuoPMF) uses more memory, and has only negligible
time advantages. In Table 4 we fix the maximal size of distribution to D = 5,
and consider various values of MS . With the increase of MS , it is more prob-
able that states are simulation equivalent, which means also that the num-
ber of blocks tends to be smaller for large MS . Also for this kind of dense
models, we observe that significant time and space advantages are achieved.
Again, the PMF-based method does not perform better in time, and uses more
memory.

7 Conclusions

In this paper we proposed a partition refinement based algorithm for deciding
simulation preorders. The space complexity of our algorithm is as good as the
best one for the non-probabilistic setting, which is a special case of this setting.
We discussed how to reduce the time complexity further by exploiting parametric
maximum flow algorithms. Our implementation of the space-efficient and time-
efficient variants of the algorithm has given experimental evidence, comparing
to the original algorithm, not only the space-efficiency is improved drastically.
Often the computation time is decreased by orders of magnitude.

Acknowledgements. Thanks to Jonathan Bogdoll for helping us with the imple-
mentation, to Holger Hermanns, Joost-Pieter Katoen, and Frits W. Vaandrager
for providing many valuable pointers to the literature.
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Abstract. Abstraction is a key technique to combat the state space
explosion problem in model checking probabilistic systems. In this pa-
per we present new ways to abstract Discrete Time Markov Chains
(DTMCs), Markov Decision Processes (MDPs), and Continuous Time
Markov Chains (CTMCs). The main advantage of our abstractions is
that they result in abstract models that are purely probabilistic, which
maybe more amenable to automatic analysis than models with both non-
deterministic and probabilistic steps that typically arise from previously
known abstraction techniques. A key technical tool, developed in this
paper, is the construction of least upper bounds for any collection of
probability measures. This upper bound construction may be of inde-
pendent interest that could be useful in the abstract interpretation and
static analysis of probabilistic programs.

1 Introduction

Abstraction is an important technique to combat state space explosion, wherein
a smaller, abstract model that conservatively approximates the behaviors of the
original (concrete) system is verified/model checked. Typically abstractions are
constructed on the basis of an equivalence relation (of finite index) on the set of
(concrete) states of the system. The abstract model has as states the equivalence
classes (i.e., it collapses all equivalent states into one), and each abstract state
has transitions corresponding to the transitions of each of the concrete states in
the equivalence class. Thus, the abstract model has both nondeterministic and
(if the concrete system is probabilistic) probabilistic behavior.

In this paper, we present new methods to abstract probabilistic systems mod-
eled by Discrete Time Markov Chains (DTMC), Markov Decision Processes
(MDP), and Continuous Time Markov Chains (CTMC). The main feature of
our constructions is that the resulting abstract models are purely probabilistic in
that they do not have any nondeterministic choices. Since analyzing models that
have both nondeterministic and probabilistic behavior is more challenging than
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analyzing models that are purely probabilistic, we believe that this may make our
abstractions more amenable to automated analysis; the comparative tractability
of model-checking systems without non-determinism is further detailed later in
this section.

Starting from the work of Saheb-Djahromi [19], and further developed by
Jones [11], orders on measures on special spaces (Borel sets generated by Scott
open sets of a cpo) have been used in defining the semantics of probabilistic pro-
grams. Ordering between probability measures also play a central role in defining
the notion of simulation for probabilistic systems. For a probabilistic model, a
transition can be viewed as specifying a probability measure on successor states.
One transition then simulates another if the probability measures they specify
are related by the ordering on measures. In this manner, simulation and bisimu-
lation relations were first defined for DTMCs and MDPs [12], and subsequently
extended to CTMCs [3]. Therefore, in all these settings, a set of transitions is
abstracted by a transition if it is an upper bound for the probability measures
specified by the set of transitions being abstracted.

The key technical tool that we develop in this paper is a new construction
of least upper bounds for arbitrary sets of probability measures. We show that
in general, measures (even over simple finite spaces) do not have least upper
bounds. We therefore look for a class of measurable spaces for which the existence
of least upper bounds is guaranteed for arbitrary sets of measures. Since the
ordering relation on measures is induced from the underlying partial order on
the space over which the measures are considered, we identify conditions on
the underlying partial order that are sufficient to prove the existence of least
upper bounds — intuitively, these conditions correspond to requiring the Hasse
diagram of the partial order to have a “tree-like” structure. Furthermore, we
show that these conditions provide an exact characterization of the measurable
spaces of our interest — for any partial order not satisfying these conditions,
we can construct two measures that do not have a least upper bound. Finally,
for this class of tree-like partial orders, we provide a natural construction that
is proven to yield a well-defined measure that is a least upper bound.

These upper bound constructions are used to define abstractions as follows.
As before, the abstract model is defined using an equivalence relation on the
concrete states. The abstract states form a tree-like partial order with the min-
imal elements consisting of the equivalence classes of the given relation. The
transition out of an abstract state is constructed as the least upper bound of
the transitions from each of the concrete states it “abstracts”. Since each upper
bound is a single measure yielding a single outgoing transition, the resulting ab-
stract model does not have any nondeterminism. This intuitive idea is presented
and proved formally in the context of DTMCs, MDPs and CTMCs.

A few salient features of our abstract models bear highlighting. First, the fact
that least upper bounds are used in the construction implies that for a particular
equivalence relation on concrete states and partial order on the abstract states,
the abstract model constructed is finer than (i.e., can be simulated by) any purely
probabilistic models that can serve as an abstraction. Thus, for verification
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purposes, our model is the most precise purely probabilistic abstraction on a cho-
sen state space. Second, the set of abstract states is not completely determined
by the equivalence classes of the relation on concrete states; there is freedom in
the choice of states that are above the equivalence classes in the partial order.
However, for any such choice that respects the “tree-like” requirement on the un-
derlying partial order, the resulting model will be exponentially smaller than the
existing proposals of [8,13]. Furthermore, we show that there are instances where
we can get more precise results than the abstraction schemes of [8,13] while using
significantly fewer states (see Example 4). Third, the abstract models we construct
are purely probabilistic which makes model checking easier. Additionally, these
abstractions can potentially be verified using statistical techniques which do not
work when there is nondeterminism [24,23,21]. Finally, CTMC models with non-
determinism, called CTMDP, are known to be difficult to analyze [2]. Specifically,
the measure of time-bounded reachability can only be computed approximately
through an iterative process; therefore, there is only an approximate algorithm
for model-checking CTMDPs against CSL. On the other hand, there is a theoret-
ically exact solution to the corresponding model-checking problem for CTMCs by
reduction to the first order theory of reals [1].

Related Work. Abstractions have been extensively studied in the context of
probabilistic systems. General issues and definitions of good abstractions are
presented in [12,9,10,17]. Specific proposals for families of abstract models in-
clude Markov Decision Processes [12,5,6], systems with interval ranges for tran-
sition probabilities [12,17,8,13], abstract interpretations [16], 2-player stochastic
games [14], and expectation transformers [15]. Recently, theorem-prover based
algorithms for constructing abstractions of probabilistic systems based on predi-
cates have been presented [22]. All the above proposals construct models that ex-
hibit both nondeterministic and probabilistic behavior. The abstraction method
presented in this paper construct purely probabilistic models.

2 Least Upper Bounds for Probability Measures

This section presents our construction of least upper bounds for probability mea-
sures. Section 2.1 recalls the relevant definitions and results from measure the-
ory. Section 2.2 presents the ordering relation on measures. Finally, Section 2.3
presents the least upper bound construction on measures. Due to space consid-
erations, many of the proofs are deferred to [4] for the interested reader.

2.1 Measures

A measurable space (X,Σ) is a set X together with a family of subsets,
Σ, of X , called a σ-field or σ-algebra, that contains ∅ and is closed under
complementation and countable union. The members of a σ-field are called the
measurable subsets of X . Examples of σ-fields are {∅, X} and P(X) (the
powerset of X). We will sometimes abuse notation and refer to the measurable
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space (X,Σ) by X or by Σ, when the σ-field or set, is clear from the context.
The intersection of an arbitrary collection of σ-fields on a set X is again a σ-field,
and so given any B ⊆ P(X) there is a least σ-field containing B, which is called
the σ-field generated by B.

A positive measure μ on a measurable space (X,Σ) is a function from Σ
to [0,∞] such that μ is countably additive, i.e., if {Ai | i ∈ I} is a countable
family of pairwise disjoint measurable sets then μ(

⋃
i∈I Ai) =

∑
i∈I μ(Ai). In

particular, if I = ∅, we have μ(∅) = 0. A measurable space equipped with a
measure is called a measure space. The total weight of a measure μ on
measurable space X is μ(X). A probability measure is a positive measure
of total weight 1. We denote the collection of all probability measures on X by
M=1(X).

2.2 A Partial Order on Measures

In order to define an ordering on probability measures we need to consider mea-
surable spaces that are equipped with an ordering relation. An ordered measur-
able space (X,Σ,�) is a set X equipped with a σ-field Σ and a preorder on X 1

� such that (X,Σ) is a measurable space. A (probability) measure on (X,Σ,�)
is a (probability) measure on (X,Σ). Finally, recall that a set U ⊆ X is upward
closed if for every x ∈ U and y ∈ X with x � y we have that y ∈ U . The order-
ing relation on the underlying set is lifted to an ordering relation on probability
measures as follows.

Definition 1. Let X = (X,Σ,�) be an ordered measurable space. For any prob-
ability measures μ, ν on X , define μ ≤ ν iff for every upward closed set U ∈ Σ,
μ(U) ≤ ν(U).

Our definition of the ordering relation is formulated so as to be applicable to
any general measurable space. For probability distributions over finite spaces,
it is equivalent to a definition of lifting of preorders to probability measures
using weight functions as considered in [12] for defining simulations. Indeed,
Definition 1 can be seen to be identical to the presentation of the simulation
relation in [7,20] where this equivalence has been observed as well.

Recall that a set D ⊆ X is downward closed if for every y ∈ D and x ∈ X
with x � y we have that x ∈ D. The ordering relation on probability measures
can be dually cast in terms of downward closed sets which is useful in the proofs
of our construction.

Proposition 1. Let X = (X,Σ,�) be an ordered measurable space. For any
probability measures μ, ν on X , we have that μ ≤ ν iff for every downward
closed set D ∈ Σ, μ(D) ≥ ν(D).

In general, Definition 1 yields a preorder that is not necessarily a partial order.
We identify a special but broad class of ordered measurable spaces for which the
1 Recall that preorder on a set X is a binary relation �⊆ X × X such that � is

reflexive and transitive.
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⊥

l r

�

Fig. 1. Hasse Diagram of T . Arrows directed from smaller element to larger element.

ordering relation is a partial order. The spaces we consider are those which are
generated by some collection of downward closed sets.

Definition 2. An ordered measurable space (X,Σ,�) is order-respecting if there
exists D ⊆ P(X) such that every D ∈ D is downward closed (with respect to �)
and Σ is generated by D.

Example 1. For any finite setA, the space (P(A),P(P(A)),⊆) is order-respecting
since it is generated by all the downward closed sets of (P(A),⊆). One special case
of such a space that we will make use of in our examples is where T = P({0, 1})
whose Hasse diagram is shown in Figure 1; we will denote the elements of T by
⊥ = ∅, l = {0}, r = {1}, and 0 = {0, 1}. Then T = (T,P(T ),⊆) is an order-
respecting measurable space. Finally, for any cpo (X,�), the Borel measurable
space (X,B(X),�) is order-respecting since every Scott-closed set is downward
closed.

Theorem 1. For any ordered measurable space X = (X,Σ,�), the relation ≤
is a preorder on M=1(X ). The relation ≤ is additionally a partial order (anti-
symmetric) if X is order-respecting.

Example 2. Recall the space T = (T,P(T ),⊆) defined in Example 1. Consider
the probability measure λ, where l has probability 1, and all the rest have prob-
ability 0. Similarly, τ is the measure where 0 has probability 1, and the rest
0, and in ρ, r gets probability 1, and the others 0. Now one can easily see that
λ ≤ τ and ρ ≤ τ . However λ �≤ ρ and ρ �≤ λ.

2.3 Construction of Least Upper Bounds

Least upper bound constructions for elements in a partial order play a crucial role
in defining the semantics of languages as well as in abstract interpretation. As we
shall show later in this paper, least upper bounds of probabilistic measures can
also be used to define abstract models of probabilistic systems. Unfortunately,
however,probability measures over arbitrary measurable spaces do not necessarily
have least upper bounds; this is demonstrated in the following example.

Example 3. Consider the space T defined in Example 1. Let μ be the probability
measure that assigns probability 1

2 to ⊥ and l, and 0 to everything else. Let ν
be such that it assigns 1

2 to ⊥ and r, 0 to everything else. The measure τ that
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assigns 1
2 to 0 and ⊥ is an upper bound of both μ and ν. In addition, ρ that

assigns 1
2 to l and r, and 0 to everything else, is also an upper bound. However

τ and ρ are incomparable. Moreover, any lower bound of τ and ρ must assign a
probability at least 1

2 to ⊥ and probability 0 to 0, and so cannot be an upper
bound of μ and ν. Thus, μ and ν do not have a least upper bound.

We therefore identify a special class of ordered measurable spaces over which
probability measures admit least upper bounds. Although our results apply to
general measurable spaces, for ease of understanding, the main presentation here
is restricted to finite spaces. For the rest of the section, fix an ordered measurable
space X = (X,P(X),�), where (X,�) is a finite partial order. For any element
a ∈ X , we use Da to denote the downward-closed set {b | b � a}. We begin by
defining a tree-like partial order; intuitively, these are partial orders whose Hasse
diagram resembles a tree (rooted at its greatest element).

Definition 3. A partial order (X,�) is said to be tree-like if and only if (i) X
has a greatest element 0, and (ii) for any two elements a, b ∈ X if Da ∩Db �= ∅
then either Da ⊆ Db or Db ⊆ Da.

We can show that over spaces whose underlying ordering is tree-like, any set of
probability measures has a least upper bound. This construction is detailed in
Theorem 2 and its proof below.

Theorem 2. Let X = (X,P(X),�) be an ordered measurable space where (X,�)
is tree-like. For any Γ ⊆ M=1(X ), there is a probability measure ∇(Γ ) such that
∇(Γ ) is the least upper bound of Γ .

Proof. Recall that for a set S ⊆ X , its set of maximal elements maximal(S) is
defined as {a ∈ S | ∀b ∈ S. a � b ⇒ a = b}. For any downward closed set D, we
have thatD = ∪a∈maximal(D)Da. From condition (ii) of Definition 3, if a, b are two
distinct maximal elements of a downward closed set D then Da ∩Db = ∅ and the
sets comprising the union are pairwise disjoint. For any measure μ, we therefore
have that μ(D) =

∑
a∈maximal(D) μ(Da) for any downward closed set D.

Define the function ν on downward closed subsets of X as follows. For a
downward closed set of the form Da, where a ∈ X , take ν(Da) = infμ∈Γ μ(Da),
and for any downward closed set D take ν(D) =

∑
a∈maximal(D) ν(Da). We will

define the least upper bound measure ∇(Γ ) by specifying its value pointwise on
each element ofX . Observe that for any a ∈ X , the setDa\{a} is also downward
closed. We therefore define ∇(Γ )({a}) = ν(Da)− ν(Da \ {a}), for any a ∈ X .

Observe that ν(D) ≤ infμ∈Γ μ(D). We therefore have that∇(Γ )({a}) ≥ 0. For
any downward closed setD, we can see that∇(Γ )(D) = ν(D). Thus,∇(Γ )(X) =
∇(Γ )(D�) = ν(D�) = infμ∈Γ μ(D�) = 1, and so ∇(Γ ) is a probability measure
on X .

For any downward closed set D, we have that ∇(Γ )(D) = ν(D) and ν(D) ≤
infμ∈Γ μ(D) which allows us to conclude that∇(Γ ) is an upper bound of Γ . Now
consider any measure τ that is an upper bound of Γ . Then, τ(D) ≤ μ(D) for any
measure μ ∈ Γ and all downward closed setsD. In particular, for any element a ∈
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X , τ(Da) ≤ infμ∈Γ μ(Da) = ν(Da) = ∇(Γ )(Da). Thus, for any downward closed
set D, we have that τ(D) =

∑
a∈maximal(D) τ(Da) ≤

∑
a∈maximal(D)∇(Γ )(Da) =

∇(Γ )(D). Hence, ∇(Γ ) ≤ τ , which concludes the proof. "#

We conclude this section, by showing that if we consider any ordered measurable
space that is not tree-like, there are measures that do not have least upper bounds.
Thus, the tree-like condition is an exact(necessary and sufficient) characterization
of spaces that admit least upper bounds of arbitrary sets of probability measures.

Theorem 3. Let X = (X,P(X),�) be an ordered measurable space, where
(X,�) is a partial order that is not tree-like. Then there are probability measures
μ and ν such that μ and ν do not have a least upper bound.

Proof. First consider the case when X does not have a greatest element. Then
there are two maximal elements, say a and b. Let μ be the measure that assigns
measure 1 to a and 0 to everything else, and let ν be the measure that assigns
1 to b and 0 to everything else. Clearly, μ and ν do not have an upper bound.

Next consider the case when X does have a greatest element 0; the proof in
this case essentially follows from generalizing Example 3. If X is a space as in
the theorem then since (X,�) is not tree-like, there are two elements a, b ∈ X
such that Da∩Db �= ∅, Da \Db �= ∅, and Db \Da �= ∅. Let c ∈ Da∩Db. Consider
the measure μ to be such that μ({c}) = 1

2 , μ({a}) = 1
2 , and is equal to 0 on all

other elements. Define the measure ν to be such that ν({c}) = 1
2 , ν({b}) = 1

2 ,
and is equal to 0 on all other elements. As in Example 3, we can show that μ
and ν have two incomparable minimal upper bounds. "#

Remark 1. All the results presented in the section can be extended to ordered
measure spaces X = (X,P(X),�) when X is a countable set; see [4].

3 Abstracting DTMCs and MDPs

In this section we outline how our upper bound construction can be used to
abstract MDPs and DTMCs using DTMCs. We begin by recalling the definitions
of these models along with the notion of simulation and logic preservation in
Section 3.1, before presenting our proposal in Section 3.2.

3.1 Preliminaries

We recall 3-valued PCTL and its discrete time models. In 3-valued logic, a
formula can evaluate to either true (0), false (⊥), or indefinite (?); let B3 =
{⊥, ?,0}. The formulas of PCTL are built up over a finite set of atomic propo-
sitions AP and are inductively defined as follows.

ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | P��p(Xϕ) | P��p(ϕ U ϕ)

where a ∈ AP, ��∈ {<,≤, >,≥}, and p ∈ [0, 1].
The models of these formulas are interpreted over Markov Decision Processes,

formally defined as follows. Let Q be a finite set of states and let Q = (Q,P(Q))
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be a measure space. A Markov Decision Process (MDP) M is a tuple (Q,→, L),
where →⊆ Q ×M=1(Q) (non-empty and finite), and L : (Q × AP) → B3 is a
labeling function that assigns a value in B3 to each atomic proposition in each
state. We will say q → μ to mean (q, μ) ∈→. A Discrete Time Markov Chain
(DTMC) is an MDP with the restriction that for each state q there is exactly
one probability measure μ such that q → μ. The 3-valued semantics of PCTL
associates a truth value in B3 for each formula ϕ in a state q of the MDP; we
denote this by [[q, ϕ]]M. We skip the formal semantics in the interests of space
and the reader is referred to [8] 2.

Theorem 4 (Fecher-Leucker-Wolf [8]). Given an MDP M, and a PCTL
formula ϕ, the value of [[q, ϕ]]M for each state q, can be computed in time poly-
nomial in |M| and linear in |ϕ|, where |M| and |ϕ| denote the sizes of M and
ϕ, respectively.

Simulation for MDPs, originally presented in [12] and adapted to the 3-valued
semantics in [8], is defined as follows. A preorder �⊆ Q × Q is said to be a
simulation iff whenever q1 � q2 the following conditions hold.

– If L(q2, a) = 0 or ⊥ then L(q1, a) = L(q2, a) for every proposition a ∈ AP,
– If q1 → μ1 then there exists μ2 such that q2 → μ2 and μ1 ≤ μ2, where
μ1 and μ2 are viewed as probability measures over the ordered measurable
space (Q,P(Q),�).

We say q1 ! q2 iff there is a simulation � such that q1 � q2. A state q1 in an
MDP (Q1,→1, L1) is simulated by a state q2 in MDP (Q2,→2, L2) iff there is a
simulation � on the direct sum of the two MDP’s (defined in the natural way)
such that (q1, 0) � (q2, 1).

Remark 2. The ordering on probability measures used in simulation definition
presented in [12,8] is defined using weight functions. However, the definition
presented here is equivalent, as has been also observed in [7,20].

Finally, there is a close correspondence between simulation and the satisfaction
of PCTL formulas according to the 3-valued interpretation.

Theorem 5 (Fecher-Leucker-Wolf [8]). Consider q, q′ states of MDP M
such that q ! q′. For any formula ϕ, if [[q′, ϕ]]M �=? then [[q, ϕ]]M = [[q′, ϕ]]M 3.

3.2 Abstraction by DTMCs

Abstraction, followed by progressive refinement, is one way to construct a small
model that either proves the correctness of the system or demonstrates its failure
to do so. Typically, the abstract model is defined with the help of an equivalence
relation on the states of the system. Informally, the construction proceeds as
2 In [8] PCTL semantics for MDPs is not given; however, this is very similar to the

semantics for AMCs which is given explicitly.
3 This theorem is presented only for AMC. But its generalization to MDPs can be

obtained from the main observations given in [8]. See [4].
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follows. For an MDP/DTMC M = (Q,→, L) and equivalence relation ≡ on Q,
the abstraction is the MDP A = (QA,→A, LA), where QA = {[q]≡ |q ∈ Q} is the
set of equivalence classes of Q under ≡, and [q]≡ has a transition corresponding
to each q′ → μ for q′ ∈ [q]≡.

However, as argued by Fecher-Leucker-Wolf [8], model checking A directly
may not be feasible because it has large number of transitions and therefore a
large size. It maybe beneficial to construct a further abstraction of A and an-
alyze the further abstraction. In what follows, we have an MDP, which maybe
obtained as outlined above, that we would like to (further) abstract; for the rest
of this section let us fix this MDP to be A = (QA,→A, LA). We will first present
the Fecher-Leucker-Wolf proposal, then ours, and compare the approaches, dis-
cussing their relative merits.

Fecher et al. suggest that a set of transitions be approximated by intervals that
bound the probability of transitioning from one state to the next, according to
any of the non-deterministic choices present in A. The resulting abstract model,
which they call an Abstract Markov Chain (AMC) is formally defined as follows.

Definition 4. The Abstract Markov Chain (AMC) associated with A is formally
the tuple M = (QM,→�,→u, LM), where QM = QA is the set of states, and
LM = LA is the labeling function on states. The lower bound transition →� and
upper bound transition →u are both functions of type QM → (QM → [0, 1]), and
are defined as follows:

q →� μ iff ∀q′ ∈ QM. μ(q′) = minq→Aν ν({q′})
q →u μ iff ∀q′ ∈ QM. μ(q′) = maxq→Aν ν({q′})

Semantically, the AMC M is interpreted as an MDP having from each state q
any transition q → ν, where ν is a probability measure that respects the bounds
defined by →� and →u. More precisely, if q →� μ� and q →u μu then μ� ≤ ν ≤
μu, where ≤ is to be interpreted as pointwise ordering on functions.

Fecher et al. demonstrate that the AMC M (defined above) does indeed simulate
A, and using Theorem 5 the model checking results of M can be reflected to A.
The main advantage of M over A is that M can be model checked in time that
is a polynomial in 2|QM| = 2|QA|; model checking A may take time more than
polynomial in 2|QA|, depending on the number of transitions out of each state q.

We suggest using the upper bound construction, presented in Section 2.3, to
construct purely probabilistic abstract models that do not have any nondeter-
minism. Let (X,�) be a tree-like partial order. Recall that the set of minimal
elements of X , denoted by minimal(X), is given by minimal(X) = {x ∈ X | ∀y ∈
X. y � x ⇒ x = y}.

Definition 5. Consider the MDP A = (QA,→A, LA). Let (Q,�) be a tree-like
partial order, such that minimal(Q) = QA. Let Q = (Q,P(Q),�) be the ordered
measurable space over Q. Define the DTMC D = (QD,→D, LD), where

– QD = Q,
– For q ∈ QD, let Γq = {μ | ∃q′ ∈ QA. q

′ � q and q′ →A μ}. Now, q →D
∇(Γq), and
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– For q ∈ QD and a ∈ AP, if for any q1, q2 ∈ QA with q1 � q and q2 � q,
we have L(q1, a) = L(q2, a) then L(q, a) = L(q1, a). Otherwise L(q, a) =?

Proposition 2. The DTMC D simulates the MDP A, where A and D are as
given in Definition 5.

Proof. Consider the relation R� over the states of the disjoint union of A
and D, defined as R� = {((q, 0), (q, 0)) | q ∈ QA} ∪ {((q′, 1), (q′′, 1)) | q′, q′′ ∈
QD, q

′ � q′′} ∪ {((q, 0), (q′, 1)) | q ∈ QA, q
′ ∈ QD, q � q′}. From the definition

of D, definition of simulation and the fact that ∇ is the least upper bound op-
erator, it can be shown that R� is a simulation. "#

The minimality of our upper bound construction actually allows to conclude
that D is as good as any DTMC abstraction can be on a given state space. This
is stated precisely in the next proposition.

Proposition 3. Let A = (QA,→A, LA) be an MDP and (Q,�) be a tree-like
partial order, such that minimal(Q) = QA. Consider the DTMC D = (QD,→D,
LD), as given in Definition 5. If D′ = (QD,→′

D, LD) is a DTMC such that the
relation R� defined in the proof of Proposition 2 is a simulation of A by D′ then
D′ simulates D also.

Comparison with Abstract Markov Chains. Observe that any tree-like partial
order (Q,�) such that minimal(Q) = QA is of size at most O(|QA|); thus, in
the worst case the time to model check D is exponentially smaller than the time
to model check M. Further, we have freedom to pick the partial order (Q,�).
The following proposition says that adding more elements to the partial order
on the abstract states does indeed result in a refinement.

Proposition 4. Let A = (QA,→A, LA) be an MDP and (Q1,�1) and (Q2,�2)
be tree-like partial orders such that Q1 ⊆ Q2, �2 ∩(Q1 × Q1) =�1, and QA =
minimal(Q1) = minimal(Q2). Let D1 be a DTMC over (Q1,�1) and D2 a DTMC
over (Q2,�2) as in Definition 5. Then, D1 simulates D2.

Thus, one could potentially identify the appropriate tree-like partial order to be
used for the abstract DTMC through a process of abstraction-refinement.

Finally, we can demonstrate that even though the DTMC D is exponentially
more succinct than the AMC M, there are examples where model checking D
can give a more precise answer than M.

Example 4. Consider an MDP A shown in Figure 2 where state 1 has two tran-
sitions one shown as solid edges and the other as dashed edges; transitions out
of other states are not shown since they will not play a role. Suppose the atomic
proposition a is 0 in {1, 2} and ⊥ in {3, 4}, and the proposition b is 0 in {1, 3}
and ⊥ in {2, 4}. The formula ϕ = P≤ 3

4
(Xa) evaluates to 0 in state 1.

The AMC M as defined in Definition 4, is shown in Figure 3. Now, because
the distribution ν, given by ν({1}) = 1

2 , ν({2}) = 1
2 , ν({3}) = 0, and ν({4}) = 0
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Fig. 5. Transition out of 1 in DTMC D

satisfies the bound constraints out of 1 but violates the property ϕ, ϕ evaluates
to ? in state 1 of M.

Now consider the tree-like partial order shown in Figure 4; arrows in the figure
point from the smaller element to the larger one. If we construct the DTMC D
over this partial order as in Definition 5, the transition out of state 1 will be as
shown in Figure 5. Observe also that proposition a is 0 in {1, 2, 5}, ⊥ in {3, 4, 6}
and ? in state 0; and proposition b is 0 in {1, 3}, ⊥ in {2, 4} and ? in {5, 6,0}.
Now ϕ evaluates to 0 in state 1, because the measure of paths out of 1 that
satisfy X¬a is 1

4 . Thus, by Theorem 5, M is not simulated by D. It is useful
to observe that the upper bound managed to capture the constraint that the
probability of transitioning to either 3 or 4 from 1 is at least 1

4 . Constraints of
this kind that relate to the probability of transitioning to a set of states, cannot
be captured by the interval constraints of an AMC, but can be captured by
upper bounds on appropriate partial orders.

4 Abstracting CTMCs

We now outline how our upper bound construction gives us a way to abstract
CTMC by other CTMCs. We begin with recalling the definitions of CTMCs,
simulation and logical preservation, before presenting our abstraction scheme.
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4.1 Preliminaries

The formulas of CSL are built up over a finite set of atomic propositions AP
and are inductively defined as follows.

ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | P��p(ϕ U t ϕ)

where a ∈ AP, ��∈ {<,≤, >,≥}, p ∈ [0, 1], and t a positive real number.
The 3-valued semantics of CSL is defined over Continuous Time Markov

Chains (CTMC), where in each state every atomic proposition gets a truth
value in B3. Formally, let Q be a finite set of states and let Q = (Q,P(Q))
be a measure space. A (uniform) CTMC 4 M is a tuple (Q,→, L, E), where
→: Q → M=1(Q), L : (Q×AP) → B3 is a labeling function that assigns a value
in B3 to each atomic proposition in each state, and E ∈ R≥0 is the exit rate
from any state. We will say q → μ to mean (q, μ) ∈→. Due to lack of space the
formal semantics of the CTMC is skipped; the reader is referred to [18].

CSL’s 3-valued semantics associates a truth value in B3 for each formula ϕ
in a state q of the CTMC; we denote this by [[q, ϕ]]M. The formal semantics is
skipped and can be found in [13]. The model checking algorithm presented in [1]
for the 2-valued semantics, can be adapted to the 3-valued case.

Simulation for uniform CTMCs, originally presented in [3], has been adapted
to the 3-valued setting in [13] and is defined in exactly the same way as simulation
in a DTMC; since the exit rate is uniform, it does not play a role. Once again,
we say q1 is simulated by q2, denoted as q1 ! q2, iff there is a simulation � such
that q1 � q2. Once again, there is a close correspondence between simulation
and the satisfaction of CSL formulas according to the 3-valued interpretation.

Theorem 6 (Katoen-Klink-Leucker-Wolf [13]). Consider any states q, q′

of CTMC M such that q ! q′. For any formula ϕ, if [[q′, ϕ]]M �=? then [[q, ϕ]]M =
[[q′, ϕ]]M.

4.2 Abstracting Based on Upper Bounds

Abstraction can, once again, be accomplished by collapsing concrete states into
a single abstract state on the basis of an equivalence relation on concrete states.
The transition rates out of a single state can either be approximated by intervals
giving upper and lower bounds, as suggested in [13], or by upper bound measures
as we propose. Here we first present the proposal of Abstract CTMCs, where
transition rates are approximated by intervals, before presenting our proposal.
We conclude with a comparison of the two approaches.

Definition 6. Consider a CTMC M = (QM,→M, LM, EM) with an equiva-
lence relation ≡ on QM. An Abstract CTMC (ACTMC) [13] that abstracts M
is a tuple A = (QA,→�,→u, LA, EA), where

– QA = {[q] | q ∈ QM} is the set of equivalence classes of ≡,
– EA = EM,

4 We only look at uniform CTMCs here; in general, any CTMC can be transformed
in a uniform one that is weakly bisimilar to the original CTMC.
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– If for all q1, q2 ∈ [q], LM(q1, a) = LM(q2, a) then LA([q], a) = LM(q, a).
Otherwise, LA([q], a) =?,

– →�: QA → (QA → [0, 1]) where

[q] →� μ iff ∀[q1] ∈ QA μ([q1]) = min
q′∈[q] ∧ q′→Aν

ν([q1])

– Similarly, →u: QA → (QA → [0, 1]) where

[q] →u μ iff ∀[q1] ∈ QA μ([q1]) = max
q′∈[q] ∧ q′→Aν

ν([q1])

Semantically, at a state [q], the ACTMC can make a transition according to any
transition rates that satisfy the lower and upper bounds defined by →� and →u,
respectively.

Katoen et al. demonstrate that the ACTMC A (defined above) does indeed sim-
ulate M, and using Theorem 6 the model checking results of A can be reflected
to M. The measure of paths reaching a set of states within a time bound t can
be approximated using ideas from [2], and this can be used to answer model
checking question for the ACTMC (actually, the path measures can only be
calculated upto an error).

Like in Section 3.2, we will now show how the upper bound construction
can be used to construct (standard) CTMC models that abstract the concrete
system. Before presenting this construction, it is useful to define how to lift a
measure on a set with an equivalence relation ≡, to a measure on the equivalence
classes of ≡.

Definition 7. Given a measure μ on (Q,P(Q)) and equivalence ≡ on Q, the
lifting of μ (denoted by [μ]) to the set of equivalence classes of Q is defined as
[μ]({[q]}) = μ({q′ | q′ ≡ q}).

Definition 8. Let M = (QM,→M, LM, EM) be a CTMC with an equivalence
relation ≡ on QM. Let (Q,�) be a tree-like partial order with 0, such that
minimal(Q) = {[q] | q ∈ QM}. Let Q = (Q,P(Q),�) be the ordered measurable
space over Q. Define the CTMC C = (QC ,→C , LC , EC), where

– QC = Q,
– EC = EM,
– For q ∈ QC, let Γq = {[μ] | ∃q′ ∈ QA. [q′] � q and q′ →A μ}. Now, q →C
∇(Γq), and

– If for all q1, q2 ∈ QM such that [q1] � q and [q2] � q, LM(q1, a) = LM(q2, a)
then LC(q, a) = LM(q1, a). Otherwise, LC(q, a) =?.

Once again, from the properties of least upper bounds, and definition of simula-
tion, we can state and prove results analogous to Propositions 2 and 3. That is
the CTMC C does indeed abstract M and it is the best possible on a given state
space; the formal statements and proofs are skipped in the interests of space.
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Comparison with Abstract CTMCs. All the points made when comparing the
DTMC abstraction with the AMC abstraction scheme, also apply here. That is,
the size of C is exponentially smaller than the size of the ACTMC A. Moreover,
we can choose the tree-like partial order used in the construction of C through
a process of abstraction refinement. And finally, Example 4 can be modified to
demonstrate that there are situations where the CTMC C gives a more precise
result than the ACTMC A. However, in the context of CTMCs there is one
further advantage. ACTMCs can only be model checked approximately, while
CTMCs can be model checked exactly. While it is not clear how significant this
might be in practice, from a theoretical point of view, it is definitely appealing.

5 Conclusions

Our main technical contribution is the construction of least upper bounds for
probability measures on measure spaces equipped with a partial order. We have
developed an exact characterization of underlying orderings for which the in-
duced ordering on probability measures admits the existence of least upper
bounds, and provided a natural construction for defining them. We showed how
these upper bound constructions can be used to abstract DTMCs, MDPs, and
CTMCs by models that are purely probabilistic. In some situations, our abstract
models yield more precise model checking results than previous proposals for ab-
straction. Finally, we believe that the absence of nondeterminism in the abstract
models we construct might make their model-checking more feasible.

In terms of future work, it would be important to evaluate how these abstrac-
tion techniques perform in practice. In particular, the technique of identifying the
right tree-like state space for the abstract models using abstraction-refinement
needs to be examined further.
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Abstract. This paper proposes a novel abstraction technique based on Erlang’s
method of stages for continuous-time Markov chains (CTMCs). As abstract mod-
els Erlang-k interval processes are proposed where state residence times are gov-
erned by Poisson processes and transition probabilities are specified by intervals.
We provide a three-valued semantics of CSL (Continuous Stochastic Logic) for
Erlang-k interval processes, and show that both affirmative and negative verifica-
tion results are preserved by our abstraction. The feasibility of our technique is
demonstrated by a quantitative analysis of an enzyme-catalyzed substrate conver-
sion, a well-known case study from biochemistry.

1 Introduction

This paper is concerned with a novel abstraction technique for timed probabilistic sys-
tems, in particular continuous-time Markov chains, CTMCs for short. These models are
omnipresent in performance and dependability analysis, as well as in areas such as sys-
tems biology. In recent years, they have been the subject of study in concurrency theory
and model checking. CTMCs are a prominent operational model for stochastic process
algebras [13] and have a rich theory of behavioral (both linear-time and branching-time)
equivalences, see, e.g., [4,26]. Efficient numerical, as well as simulative verification al-
gorithms have been developed [1,3,27] and have become an integral part of dedicated
probabilistic model checkers such as PRISM and act as backend to widely accepted
performance analysis tools like GreatSPN and the PEPA Workbench.

Put in a nutshell, CTMCs are transition systems whose transitions are equipped with
discrete probabilities and state residence times are determined by negative exponen-
tial distributions. Like transition systems, they suffer from the state-space explosion
problem. To overcome this problem, several abstraction-based approaches have recently
been proposed. Symmetry reduction [20], bisimulation minimization [16], and advances
in quotienting algorithms for simulation pre-orders [28] show encouraging experimen-
tal results. Tailored abstraction techniques for regular infinite-state CTMCs have been
reported [22], as well as bounding techniques that approximate CTMCs by ones hav-
ing a special structure allowing closed-form solutions [21]. Predicate abstraction tech-
niques have been extended to (among others) CTMCs [14]. There is a wide range of
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related work on abstraction of discrete-time probabilistic models such as MDPs, see
e.g., [9,8,19]. Due to the special treatment of state residence times, these techniques are
not readily applicable to the continuous-time setting.

This paper generalizes and improves upon our three-valued abstraction technique
for CTMCs [17]. We adopt a three-valued semantics, i.e., an interpretation in which a
logical formula evaluates to either true, false, or indefinite. In this setting, abstraction
preserves a simulation relation on CTMCs and is conservative for both positive and
negative verification results. If the verification of the abstract model yields an indefinite
answer, the validity in the concrete model is unknown. In order to avoid the grouping
of states with distinct residence time distributions, the CTMC is uniformized prior to
abstraction. This yields a weak bisimilar CTMC [4] in which all states have identical
residence time distributions. Transition probabilities of single transitions are abstracted
by intervals, yielding continuous-time variants of interval DTMCs [10,24].

This, however, may yield rather coarse abstractions (see below). This paper sug-
gests to overcome this inaccuracy. The crux of our approach is to collapse transition
sequences of a given fixed length k, say. Our technique in [17] is obtained if k=1. This
paper presents the theory of this abstraction technique, shows its correctness, and shows
its application by a quantitative analysis of an enzyme-catalyzed substrate conversion,

s2

s1s0

u

1 1

1
2

1
2

1

As Au

[34 , 1]
[0, 1

4 ] 1

Fig. 1.

a well-known case study from biochemistry [5].
Let us illustrate the main idea of the abstraction by means

of an example. Consider the CTMC shown on the right
(top). Intuitively, a CTMC can be considered as a transition
system whose transitions are labeled with transition prob-
abilities. Moreover, a CTMC comes with an exit rate iden-
tifying the residence times of the states (one, say), which
is exponentially distributed. The essence of CTMC model
checking is to compute the probability to reach a certain set
of goal states within a given deadline [3].

A rather common approach to abstraction is to partition the state space into classes,
e.g., let us group states s0, s1, and s2 into the abstract state As, and u into Au. The
probability to move from As to Au by a single transition is either 0, 1

2 , or 1, as the
respective (time-abstract) probability to move to u in one transition is 0, 1, and 1

2 . The
approach in [17] yields the interval [0, 1] for the transition from As to Au. This is not
very specific. A more narrow interval is obtained when considering two consecutive
transitions. Then, the probability from As to Au is 1 or 3

4 . Using intervals, this yields
the two-state abstract structure depicted above (bottom).

Put in a nutshell, the abstraction technique proposed in this paper is to generalize this
approach towards considering transition sequences of a given length k > 0, say. State
residence times are, however, then no longer exponentially distributed, but Erlang-k
distributed. Moreover, taking each time k steps at once complicates the exact calculation
of time-bounded reachability probabilities: Let us consider first the case that n is the
number of transitions taken in the concrete system to reach a certain goal state. Let �
and j be such that n = �·k+j and j ∈ {0, . . . , k−1}. Clearly, the number of transitions
in the abstract system corresponds exactly to a multiple of the number of transitions in
the concrete system, only if the remainder j equals 0. As this is generally not the case,
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Fig. 2. Reaching goals in stages of length k

we restrict to computing lower and upper bounds for the probability of reaching a set
of goal states. Let us be more precise: Consider the tree of state sequences as shown
in Fig. 2(a). Let the black nodes denote the set of goal states. Taking the right branch,
5 transitions are needed to reach a goal state. For k = 3, this implies that 2 abstract
transitions lead to a goal state. However, as 2 · 3 = 6, computing with 2 transitions and
Erlang-3 distributed residence times will not give the exact probability for reaching a
goal state, but, as we show, a lower bound. Intuitively, the probability for reaching a goal
state in Fig. 2(b) is computed. For an upper bound, one might first consider all states
from the fourth state on in the right branch as goal states. This would give a rather coarse
upper bound. We follow instead the idea depicted in Fig. 2(c): We consider 2 transitions
for reaching the goal state, however, use the Erlang-3 distribution for assessing the first
transition, but use the Erlang-1 distribution for assessing the last transition of a sequence
of transitions. That is, we compute the reachability probability for the goal states as
depicted in Fig. 2(c). Technically, it is beneficial to understand the situation as depicted
in Fig. 2(d), i.e., to first consider one transition with Erlang-1 distribution and then to
consider a sequence of transitions which are Erlang-k distributed.

Outline of the paper. Section 2 gives some necessary background.We introduce Erlang-
k interval processes in Section 3 which serve as abstract model for CTMCs in Section 4.
In Section 5, we focus on reachability analysis of Erlang-k interval processes and utilize
it for model checking in Section 6. The feasibility of our approach is demonstrated in
Section 7 by a case study from biology and Section 8 concludes the paper. A full version
with detailed proofs can be found in [18].

2 Preliminaries

Let X be a finite set. For Y, Y ′ ⊆ X and function f : X × X → � let f(Y, Y ′) :=∑
y∈Y,y′∈Y ′ f(y, y′) (for singleton sets, brackets may be omitted). The function f(x, ·)

is given by x′ �→ f(x, x′) for all x ∈ X . Function f is a distribution onX iff f : X →
[0, 1] and f(X) :=

∑
x∈X f(x) = 1. The set of all distributions on X is denoted by

distr(X). Let AP be a fixed, finite set of atomic propositions and �2 := {⊥,0} the
two-valued truth domain.
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Continuous-time Markov chains. A (uniform) CTMC C is a tuple (S,P, λ, L, s0) with
a finite non-empty set of states S, a transition probability function P : S × S → [0, 1]
such that P(s, S) = 1 for all s ∈ S, an exit rate λ ∈ �>0, a labeling function L :
S×AP → �2, and an initial state s0 ∈ S. This definition deviates from the literature as
i) we assume a uniform exit rate and ii) we separate the discrete-time behavior specified
by P and the residence times determined by λ. Restriction i) is harmless, as every (non-
uniform) CTMC can be transformed into a weak bisimilar, uniform CTMC by adding
self-loops [25]. For ii), note that P(s, s′)(1−eλt) equals the probability to reach s′ from
s in one step and within time interval [0, t). Thus, the above formulation is equivalent
to the standard one. The expected state residence time is 1/λ. Let Pk(s, s′) denote the
time-abstract probability to enter state s′ after k steps while starting from s, which is
obtained by taking the kth-power of P (understood as a transition probability matrix).

We recall some standard definitions for Markov chains [11,23]. An infinite path σ is
a sequence s0 t0 s1 t1 . . . with si ∈ S, P(si, si+1) > 0 and ti ∈ �>0 for i ∈ �. The
time stamps ti denote the residence time in state si. Let σ@t denote the state of a path σ
occupied at time t, i.e. σ@t = si with i the smallest index such that t <

∑i
j=0 tj . The

set of all (infinite) paths in C is denoted by PathC . Let Pr be the probability measure on
sets of paths that results from the standard cylinder set construction.

Poisson processes. Let (Nt)t≥0 be a counting process and let the corresponding interar-
rival times be independent and identically exponentially distributed with parameter λ >
0. Then (Nt)t≥0 is a Poisson process and the number k of arrivals in time interval [0, t)
is Poisson distributed, i.e., P (Nt = k) = e−λt(λt)k/k!. The time until k arrivals have

occurred is Erlang-k distributed, i.e., Fλ,k(t) := P (Tk ≤ t) = 1 −
∑k−1

i=0 e
−λt (λt)i

i!
where Tk is the time instant of the k-th arrival in (Nt)t≥0. Consequently, the probability
that (Nt)t≥0 is in the range {k, k + 1, . . . , k + �− 1}, � ≥ 1 is given by

ψλ,t(k, �) := P (Tk ≤ t < Tk+�) =
∑k+�−1

i=k e−λt (λt)i

i!
.

A CTMC C = (S,P, λ, L, s0) can be represented as a discrete-time Markov chain with
transition probabilities P where the times are implicitly driven by a Poisson process
with parameter λ, i.e., the probability to reach state s′ from s within [0, t) is:

∑∞
i=0 Pi(s, s′) · e−λt (λt)i

i! .

This relationship can be used for an efficient transient analysis of CTMCs and is known
as uniformization. A truncation point of the infinite sum can be calculated such that the
approximation error is less than an a priori defined error bound [25].

Continuous Stochastic Logic. CSL [1,3] extends PCTL [12] by equipping the until-
operator with a time bound. Its syntax is given by:

ϕ ::= true | a | ϕ ∧ ϕ | ¬ϕ | P �� p(ϕ UIϕ)

where I ∈ {[0, t), [0, t], [0,∞) | t ∈ �>0}, �� ∈ {<,≤,≥, >}, p ∈ [0, 1] and a ∈ AP .
The formal semantics of CSL is given in Table 1. CSL model checking [3] is performed
inductively on the structure of ϕ like for CTL model checking. Checking time-bounded
until-formulas boils down to computing time-bounded reachability probabilities. These
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Table 1. Semantics of CSL

�true�(s) = � �a�(s) = L(s, a)

�ϕ1 ∧ ϕ2�(s) = �ϕ1�(s) � �ϕ2�(s) �¬ϕ�(s) = (�ϕ�(s))c

�P �� p(ϕ1UIϕ2)�(s) = �, iff Pr({σ ∈ PathM
s | �ϕ1UIϕ2�(σ) = �}) 
� p

�ϕ1UIϕ2�(σ) = �, iff ∃ t ∈ I : (�ϕ2�(σ@t) = � ∧ ∀ t′ ∈ [0, t) : �ϕ1�(σ@t′) = �)

probabilities can be obtained by a reduction to transient analysis yielding a time com-
plexity in O(|S|2λt) where t is the time bound.

Three-valued domain. Let �3 := {⊥, ? ,0} be the complete lattice with ordering
⊥ < ? < 0, meet (") and join (#) as expected, and complementation ·c such that 0
and⊥ are complementary to each other and ? c = ? . When a formula evaluates to ⊥ or
0, the result is definitely true or false respectively, otherwise it is indefinite.

3 Erlang-k Interval Processes

Erlang-k interval processes are determined by two ingredients: a discrete probabilistic
process with intervals of transition probabilities (like in [10,24]) and a Poisson process.
The former process determines the probabilistic branching whereas residence times are
governed by the latter. More precisely, the state residence time is the time until j further
arrivals occur according to the Poisson process where j ∈ {1, . . . , k} is nondeterminis-
tically chosen. Thus, the residence times are Erlang-j distributed.

Definition 1 (Erlang-k interval process). An Erlang-k interval process is a tuple E =
(S,Pl,Pu, λ, k, L, s0), with S and s0 ∈ S as before, and Pl,Pu : S × S → [0, 1],
transition probability bounds such that for all s ∈ S: Pl(s, S) ≤ 1 ≤ Pu(s, S), λ ∈
�>0, a parameter of the associated Poisson process, k ∈ �+, and L : S × AP → �3.

An Erlang-1 interval process is an abstract continuous-time Markov chain (ACTMC)
[17]. If additionally all intervals are singletons, the process is equivalent to a CTMC
with Pl = Pu = P. The set of transition probability functions for E is:

TE := {P : S × S → [0, 1] | ∀s ∈ S : P(s, S) = 1,
∀s, s′ ∈ S : Pl(s, s′) ≤ P(s, s′) ≤ Pu(s, s′)}

Let TE (s) := {P(s, ·) | P ∈ TE} be the set of distributions in s.

Paths in Erlang-k interval processes. A path σ in E is an infinite sequence s0t0s1t1 . . .
with si ∈ S, ti ∈ �>0 for which there exists P0,P1, . . . ∈ TE such that Pi(si, si+1) >
0 for all i ∈ �. A path fragment ξ is a prefix of a path that ends in a state denoted ξ↓.
The set of all path fragments ξ (untimed path fragments) in E is denoted by PathfE
(uPathfE , respectively) whereas the set of paths is denoted by PathE .

We depict Erlang-k interval processes by drawing the state-transition graph of the
discrete part, i.e., the associated interval DTMC with transitions labeled by [Pl(s, s′),
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Pu(s, s′)] (see, e.g., Fig. 3). The Poisson process that determines the residence times,
as well as the marking of the initial state are omitted.

Normalization. Erlang-k interval process E is called delimited, if every possible se-
lection of a transition probability in a state can be extended to a distribution [17],
i.e., if for any s, s′ ∈ S and p ∈ [Pl(s, s′),Pu(s, s′)], we have μ(s′) = p for some
μ ∈ TE (s). An Erlang-k interval process E can be normalized into a delimited one
norm(E) such that Tnorm(E) = TE . Formally, norm(E) = (S, P̃l, P̃u, λ, k, L, s0) with
for all s, s′ ∈ S:

P̃l(s, s′) = max{Pl(s, s′), 1−Pu(s, S \ {s′})} and
P̃u(s, s′) = min{Pu(s, s′), 1−Pl(s, S \ {s′})}.

Example 1. The Erlang-k interval process in Fig. 3, left, is delimited. Selecting 1
4 for

the transition from s to u2 yields a non-delimited process (Fig. 3, middle). Applying
normalization results in the Erlang-k interval process shown in Fig. 3, right.
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Fig. 3. Normalization

An Erlang-k interval process
contains two sources of non-
determinism: in each state, (i)
a distribution according to the
transition probability intervals,
and (ii) the number j ∈
{1, . . . , k} of arrivals in the
Poisson process may be cho-
sen. As usual, nondeterminism
is resolved by a scheduler:

Definition 2 (Scheduler). Let E be an Erlang-k interval process. A history-dependent
deterministic scheduler is a function D : uPathfE → distr(S) × {1, . . . , k} such that
D(ξ) ∈ TE(ξ ↓) × {1, . . . , k} for all ξ ∈ uPathfE . The set of all history-dependent
deterministic schedulers of E is denoted as HDE .

Note that a richer class of schedulers is obtained if the scheduler’s choice may also
depend on the residence times of the states visited so far. We show below that the class
of history-dependent deterministic schedulers suffices when Erlang-k interval processes
are used for abstracting CTMCs.

Probability measure. For Erlang-k interval process E , let Ω = PathE be the sample
space and B the Borel field generated by the basic cylinder sets C(s0 I0 . . . In−1 sn)
where si ∈ S, 0 ≤ i ≤ n and I� = [0, x�) ⊆ �≥0 is a non-empty interval for 0 ≤ � <
n. The set C(s0 I0 . . . In−1 sn) contains all paths of E with prefix ŝ0 t0 . . . tn−1 ŝn
such that si = ŝi and t� ∈ I�. A scheduler D ∈ HDE induces a probability space
(Ω,B,PrD) where PrD is uniquely given by PrD(C(s0)) := 1 and for n ≥ 0

PrD(C(s0 I0 . . . In sn+1)) := PrD(C(s0 I0 . . . In−1 sn)) · Fλ,jn(sup In) · μn(sn+1)
=
∏n

i=0 (Fλ,ji(sup Ii) · μi(si+1))
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where (μi, ji) =: D(s0 s1 . . . si). Additionally, we define the time-abstract probability
measure induced by D as PrD

ta (C(s0)) := 1 and

PrD
ta (C(s0 I0 . . . In sn+1)) :=

∏n
i=0 μi(si+1).

We are interested in the supremum/infimum (ranging over all schedulers) of the prob-
ability of measurable sets of paths. Clearly, the choice of ji, the number of steps in
the associated Poisson process in state si, may influence such quantities. For instance,
on increasing ji, time-bounded reachability probabilities will decrease as the expected
state residence time (in si) becomes longer. We discuss the nondeterministic choice in
the Poisson process in subsequent sections, and now focus on the choice of distribution
μi according to the probability intervals.

Definition 3 (Extreme distributions). Let E be an Erlang-k interval process, s ∈ S
and S′ ⊆ S. We define extr(Pl,Pu, S

′, s) ⊆ TE(s) such that μ ∈ extr(Pl,Pu, S
′, s)

iff either S′ = ∅ and μ = Pl(s, ·) = Pu(s, ·) or one of the following conditions holds1:

– ∃s′ ∈ S′ : μ(s′) = Pl(s, s′) and μ ∈ extr(Pl,Pu[(s, s′) �→ μ(s′)], S′ \ {s′}, s)
– ∃s′ ∈ S′ : μ(s′) = Pu(s, s′) and μ ∈ extr(Pl[(s, s′) �→ μ(s′)],Pu, S

′ \ {s′}, s)

We call μ ∈ TE(s) an extreme distribution if μ ∈ extr(Pl,Pu, S, s).

A scheduler D ∈ HDE is called extreme if all choices D(ξ) are extreme distributions.
For a subset D ⊆ HDE let Dextr ⊆ D denote the subset of all extreme schedulers in D.

Theorem 1 (Extrema). Let E be an Erlang-k interval process and D ⊆ HDE . For
every measurable set Q ∈ B of the induced probability space:

infD∈Dextr PrD(Q) = infD∈D PrD(Q), supD∈Dextr
PrD(Q) = supD∈D PrD(Q).

4 Abstraction

This section makes the abstraction by stages as motivated in the introduction precise.
We define an abstraction operator based on the idea of partitioning the concrete states to
form abstract states. This yields an Erlang-k interval process. Moreover, we introduce
a simulation relation relating one transition in the abstract system to a sequence of
k transitions in the concrete system. We show that the abstraction operator yields an
Erlang-k interval process simulating the original CTMC.

Definition 4 (Abstraction). Let abstr(C,A, k) := (A,Pl,Pu, λ, k, L
′, A0) be the ab-

straction of CTMC C = (S,P, λ, L, s0) induced by partitioning A = {A0, . . . , An} of
S and k ∈ �+ such that for all 1 ≤ i, j ≤ n:

– Pl(Ai, Aj) = mins∈Ai Pk(s,Aj), and Pu(Ai, Aj) = maxs∈Ai Pk(s,Aj)

– L′(A, a) =

⎧
⎪⎨

⎪⎩

0 if for all s ∈ A : L(s, a) = 0
⊥ if for all s ∈ A : L(s, a) = ⊥
? otherwise

– A0 ∈ A with s0 ∈ A0.

1 f [y  → x] denotes the function that agrees everywhere with f except at y where it equals x.
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Fig. 4. Concrete vs. abstract behav-
ior over time

Lemma 1. For any CTMC C, any partitioning A of
S and k ∈ �+, abstr(C,A, k) is an Erlang-k inter-
val process.

Example 2. Reconsider the CTMC C from Section 1
(Fig. 1), top, with exit rate λ = 1 and partition-
ing {As, Au} with As = {s0, s1, s2}, Au = {u}.
As remarked above, in the Erlang-1 interval process
abstr(C, {As, Au}, 1) (not shown) the probability in-
terval for a transition from As to Au is [0, 1]. How-
ever, choosing k = 2 yields smaller intervals. The
resulting Erlang-2 interval process is depicted in
Fig. 1, bottom. The plot in Fig. 4 shows the prob-
ability to reach Au = {u} within t time units if the Erlang-2 interval process starts
at time 0 in As and the CTMC in s0, s1 or s2, respectively. For the Erlang-2 interval
process, the infimum over all schedulers is taken and it is obviously smaller than all the
concrete probabilities in the CTMC (the supremum coincides with the probabilities for
s1). A detailed discussion on which schedulers yield the infimum or supremum is given
in the next section.

Definition 5 (k-step forward simulation). Let C = (SC ,P, λ, LC , sC) be a CTMC and
E = (SE ,Pl,Pu, λ, k, LE , sE) an Erlang-k interval process. Relation Rk ⊆ SC × SE
is a k-step forward simulation on C and E iff for all s ∈ SC , s′ ∈ SE , sRks

′ implies:

1. Let μ := Pk(s, ·). Then there exists μ′ ∈ TE(s′) andΔ : SC × SE → [0, 1] s.t.

(a)Δ(u, v) > 0 ⇒ uRkv, (b)Δ(u, SE) = μ(u), (c)Δ(SC , v) = μ′(v).

2. For all a ∈ AP, LE(s′, a) �= ? implies that LE(s′, a) = LC(s, a).

We write s !k s
′ if sRks

′ for some k-step forward simulation Rk, and C !k E if
sCRksE . In the sequel, we often omit subscript k. The main difference with existing
simulation relations is that k steps in C are matched with a single step in E . For k=1,
our definition coincides with the standard notion of forward simulation on CTMCs [4].

Theorem 2 (Abstraction). Let C be a CTMC and let A be a partitioning on the state
space S. Then for all k ∈ �+ we have C ! abstr(C,A, k).

It is important to understand that the k-step forward simulation relates the transition
probabilities of one transition in the abstract system to k-transitions in the concrete sys-
tem. However, it does not say anything about the number j ∈ {1, . . . , k} of arrivals in
the Poisson process, which has to be chosen appropriately to guarantee that the proba-
bility for reaching certain states within a given time bound is related in the concrete and
the abstract system. This issue will be approached in the next section.

5 Reachability

We now show that the abstraction method proposed above can be used to efficiently de-
rive bounds for the probability to reach a set B⊆SC in a CTMC C=(SC ,P, λ, LC , sC).
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For that we consider an Erlang-k interval process E with state space SE and C ! E . For
B′ ⊆ SE , t ≥ 0 let Reach≤t(B′) := {σ ∈ PathE | ∃t′ ∈ [0, t] : σ@t′ ∈ B′}.

Since a CTMC is also an Erlang-k interval process, Reach≤t(B) ⊆ PathC is defined
in the same way. We assume that P(s, s) = 1 for all s ∈ B as the behavior of C after
visiting B can be ignored. We say that B and B′ are compatible iff s ! s′ implies that
s ∈ B iff s′ ∈ B′, for all s ∈ SC , s′ ∈ SE . For example, in Fig. 4, B = {u} and
B′ = {Au}, as well as, B = {s0, s1, s2} and B′ = {As} are compatible.

The k-step forward simulation (cf. Def. 5) is useful for relating transition proba-
bilities in the concrete and the abstract system. However, to relate timed reachability
probabilities of concrete and abstract systems, we have to assess the time abstract tran-
sitions with the right number j of new arrivals in the Poisson process associated with
E . In other words, we have to check for which choice of the number of arrivals, we
obtain lower and upper bounds of the timed reachability probabilities. As motivated in
the introduction (Fig. 2) and stated in Theorem 3 (see below), a tight bound for

– the minimum probability is obtained when the scheduler chooses for number j
always k, and a tight bound for

– the maximum probability is obtained when the scheduler chooses once j = 1 and
for the remaining transitions j = k.

Consequently, we restrict our attention to the following scheduler classes:

HDE
l := {D ∈ HDE | ∀ξ∃μξ : D(ξ) = (μξ, k)}

HDE
u := {D ∈ HDE | ∀ξ∃μξ : D(ξ) = (μξ, 1) if ξ = sE , D(ξ) = (μξ, k) otherwise}

where sE is the initial state of the Erlang-k interval process E .

Theorem 3. Let C be a CTMC and E an Erlang-k interval process with C ! E . For
t ∈ �≥0, compatible sets B and B′, there exist schedulersD ∈ HDE

l ,D′ ∈ HDE
u with

PrD(Reach≤t(B′)) ≤ PrC(Reach≤t(B)) ≤ PrD′
(Reach≤t(B′)).

Let

PrEl (Reach≤t(B′)) := infD∈HDE
l

PrD(Reach≤t(B′))
PrEu(Reach≤t(B′)) := supD∈HDE

u
PrD(Reach≤t(B′)).

The following corollary is a direct result of the theorem above. It states that when com-
paring reachability probabilities of a CTMC with those of a simulating Erlang-k interval
process E , in the worst (best) case E will have a smaller (larger) time-bounded reacha-
bility probability, when restricting to the scheduler class HDE

l (HDE
u).

Corollary 1. Let C be a CTMC and E an Erlang-k interval process with C ! E . Let
t ∈ �≥0 and B be compatible with B′. Then:

PrEl (Reach≤t(B′)) ≤ PrC(Reach≤t(B)) ≤ PrEu(Reach≤t(B′))

Similar to the uniformization method for CTMCs (see Section 2), we can efficiently
calculate time-bounded reachability probabilities in E , using time-abstract reachability
probabilities and the probability for the number of Poisson arrivals in a certain range.
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More specifically, after i transitions in E , the number of arrivals in the associated Poisson
process is among i ·k, i ·k+1, . . . , i ·k+(k−1), ifD ∈ HDE

l , and (i−1) ·k+1, (i−1) ·
k+2, . . . , i·k, ifD ∈ HDE

u. ForB ⊆ SE , i ∈ � let Reach=i(B) := {σ ∈ PathE | σ[i] ∈
B}. Using ψλ,t for the respective Poisson probabilities, we thus obtain:

Lemma 2. Let E be an Erlang-k interval process, t ∈ �≥0 and B ⊆ SE . Then

PrD(Reach≤t(B)) =
∑∞

i=0

(
PrD

ta (Reach=i(B)) · ψλ,t(
∑i−1

h=0 jh, ji)
)

where ji = k for all i ∈ � if D ∈ HDE
l and j0 = 1, ji = k for i ∈ �+ if D ∈ HDE

u.

Similar as in [2], we can approximate the supremum/infimum w.r.t. the scheduler classes
HDE

l and HDE
u by applying a greedy strategy for the optimal choices of distributions

P ∈ TE . A truncated, step-dependent scheduler is sufficient to achieve an accuracy of
1 − ε where the error bound ε > 0 is specified a priori. The decisions of this sched-
uler only depend on the number of transitions performed so far and its first N :=
N(ε) decisions can be represented by a sequence P1, . . . ,PN ∈ TE . As discussed in
Section 3, it suffices if the matrices are such that only extreme distributions are involved.
As the principle for the greedy algorithm is similar for suprema and infima, we focus
on the former. Let iB be the vector of size |SE | with iB(s) = 1 iff s ∈ B. Furthermore,
P0 := I and vi :=

∏i
m=0 Pm · iB . We choose matrices Pi, i ≥ 1 such that

|PrEu(Reach≤t(B)) −
∑N

i=0 vi(sE) · ψλ,t(
∑i−1

h=0 jh, ji)| < ε.

The algorithm is illustrated in Fig. 5 and has polynomial time complexity. Starting in
a backward manner, i.e., with PN , vector qui is maximized by successively assigning
as much proportion as possible to the transition leading to the successor s′ for which
qui+1(s

′) is maximal. For every choice of a value Pi(s, s′) the transition probability
intervals for the remaining choices are normalized (compare Example 1). Note that the
algorithm computes bounds which may be with an error bound ε below the actual value.
Thus, the computed lower bound may be lower than the actual lower bound. To assure
that the upper bound exceeds the actual upper bound, we add ε to qu0 .

The following lemma is an adaptation of [2, Th. 5] and states that the results are
indeed ε-approximations of the supremum/infimum of the reachability probabilities.

Input: Erlang-k interval process E ,
time bound t, set of states B

Output: ε-approx. ql
0 of PrE

l (Reach≤t(B))

Input: Erlang-k interval process E ,
time bound t, set of states B

Output: ε-approx. qu
0 of PrE

u(Reach≤t(B))

Minimize ql
0 where for 1 ≤ i ≤ N Maximize qu

0 where for 1 ≤ i ≤ N

ql
0 = ψλ,t(0, k) iB + ql

1

ql
i = ψλ,t(ik, k)PiiB + Pi ql

i+1

ql
N+1 = 0

qu
0 = ψλ,t(0, 1) iB + qu

1 + ε
qu

i = ψλ,t(1 + (i−1)k, k)PiiB +Pi qu
i+1

qu
N+1 = 0

Fig. 5. Greedy algorithm for infimum (left) and supremum (right) of time-bounded reachability
probabilities
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Table 2. Three-valued semantics of CSL

�true�(s) = � �a�(s) = L(s, a)
�ϕ1 ∧ ϕ2�(s) = �ϕ1�(s) � �ϕ2�(s) �¬ϕ�(s) = (�ϕ�(s))c

�ϕ1UIϕ2�(σ) =

��
�

� if ∃ t ∈ I : (�ϕ2�(σ@t) = � ∧ ∀ t′ ∈ [0, t) : �ϕ1�(σ@t′) = �)
⊥ if ∀ t ∈ I : (�ϕ2�(σ@t) = ⊥ ∨ ∃ t′ ∈ [0, t) : �ϕ1�(σ@t′) = ⊥)
? otherwise

�P�p(ϕ1 UIϕ2)�(s) =

��
�

� if Prl(s, ϕ1 UIϕ2) � p
⊥ if Pru(s,ϕ1 UIϕ2) � p
? otherwise

� ∈ {>,≥}, � =

�
< if � = ≤
≤ if � = <

�P�p(ϕ1 UIϕ2)�(s) =

��
�

� if Pru(s,ϕ1 UIϕ2) � p
⊥ if Prl(s, ϕ1 UIϕ2) 	 p
? otherwise

� ∈ {<,≤}, 	 =

�
> if � = ≥
≥ if � = >

Lemma 3. For an Erlang-k interval process E , B ⊆ SE , t ≥ 0, error margin ε > 0:

PrEl (Reach≤t(B)) ≥ ql0(sE) ≥ PrEl (Reach≤t(B))− ε
PrEu(Reach≤t(B)) ≤ qu0 (sE) ≤ PrEu(Reach≤t(B)) + ε.

We conclude this section with a result that allows us to use the algorithm presented
above to check if a reachability probability is at least (at most) p in the abstract model
and, in case the result is positive, to deduce that the same holds in the concrete model.

Theorem 4. For a CTMC C, an Erlang-k interval process E with C ! E , compatible
sets B ⊆ SC , B′ ⊆ SE , t ≥ 0, ε > 0, the algorithm in Fig. 5 computes ql0 and qu0 with:

PrC(Reach≤t(B)) ≥ PrEl (Reach≤t(B′)) ≥ ql0(sE) ≥ PrEl (Reach≤t(B′))− ε
PrC(Reach≤t(B)) ≤ PrEu(Reach≤t(B′)) ≤ qu0 (sE) ≤ PrEu(Reach≤t(B′)) + ε.

6 Model Checking

The characterizations in Section 5 in terms of minimal and maximal time-bounded
reachability probabilities are now employed for model checking CSL on Erlang-k in-
terval processes. Therefore, we define a three-valued CSL semantics and show that ver-
ification results on Erlang-k interval processes carry over to their underlying CTMCs.

Three-valued semantics. For Erlang-k interval process E = (S,Pl,Pu, λ, k, L, s0),
we define the satisfaction function � · � : CSL → (S ∪ PathE → �3) as in Table 2,
where s ∈ S, Es is defined as E but with initial state s and

Prl(s, ϕ1 UIϕ2) = PrEs

l ({σ ∈ PathEs | �ϕ1 UIϕ2�(σ) = 0}) (1)
Pru(s, ϕ1 UIϕ2) = PrEs

u ({σ ∈ PathEs | �ϕ1 UIϕ2�(σ) �= ⊥}) (2)

For the propositional fragment the semantics is clear. A path σ satisfies until formula
ϕ1 U [0,t]ϕ2 if ϕ1 definitely holds until ϕ2 definitely holds at the latest at time t. The
until-formula is violated, if either before ϕ2 holds, ϕ1 is violated, or if ϕ2 is definitely
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violated up to time t. Otherwise, the result is indefinite. To determine the semantics
of P≤p(ϕ1 U [0,t]ϕ2), we consider the probability of the paths for which ϕ1 U [0,t]ϕ2 is
definitely satisfied or perhaps satisfied, i.e., indefinite. If this probability is at most p
then P≤p(ϕ1 U [0,t]ϕ2) is definitely satisfied. Similarly, P≤p(ϕ1 U [0,t]ϕ2) is definitely
violated if this probability exceeds p for those paths on which ϕ1 U [0,t]ϕ2 evaluates
to 0. The semantics of P�p(ϕ1 U [0,t]ϕ2) for � ∈ {<,>,≥} follows by a similar
argumentation.

Theorem 5 (Preservation). For a CTMC C and an Erlang-k interval process E with
initial states sC and sE , if sC ! sE then for all CSL formulas ϕ:

�ϕ�(sE ) �= ? implies �ϕ�(sE ) = �ϕ�(sC).

Model checking three-valued CSL is, as usual, done bottom-up the parse tree of the
formula. The main task is checking until-subformulas P≤p(a U [0,t]b), which can be
handled as follows: As in [7], the underlying transition system is transformed such that
there is one sink for all states satisfying b and another one for all states neither satisfying
a nor b. Thus, all paths reaching states satisfying b are along paths satisfying a, which
allows to compute the measure for reaching b states. However, before doing so, we
have to account for indefinite states ( ? ): When computing lower bounds we consider
all states labeled by ? as ones labeled ⊥, while we consider them as labeled 0 when
computing upper bounds, following equations (1) and (2).

Example 3. Consider Ex. 2 where state u (and thus Au) are labeled goal, and CSL for-
mula ϕ = P≤0.9(true U≤1.2goal). Then �ϕ�(As) = 0 = �ϕ�(s0) (compare Fig. 4). If
s1 was labeled goal as well then L(As, goal) = ? . Checking ϕ for satisfaction requires
an optimistic relabeling, i.e. we set L(As, goal) = 0. Obviously, then ϕ is not satisfied
for sure. Analyzing the pessimistic instance with L(As, goal) = ⊥ however yields that
ϕ is neither violated for sure (cf. Fig. 4). Therefore �ϕ�(As) = ? implying that either
the partitioning or the choice of k has to be revised in order to get conclusive results.

Theorem 6 (Complexity). Given an Erlang-k interval process E , a CSL formula ϕ,
and an error margin ε, we can approximate �ϕ� in time polynomial in the size of E
and linear in the size of ϕ, the exit rate λ and the highest time bound t occurring in ϕ
(dependency on ε is omitted as ε is linear in λt). In case the approximation yields 0 or
⊥, the result is correct.

7 Case Study: Enzymatic Reaction

Markovian models are well established for the analysis of biochemical reaction net-
works [5,15]. Typically, such networks are described by a set of reaction types and the
involved molecular species, e.g., the different types of molecules. The occurrence of a
reaction changes the species’ populations as molecules are produced and/or consumed.

Enzyme-catalyzed substrate conversion. We focus on an enzymatic reaction network
with four molecular species: enzyme (E), substrate (S), complex (C) and product (P )
molecules. The three reaction types R1, R2, R3 are given by the following rules:

R1 : E + S c1−→ C, R2 : C c2−→ E + S, R3 : C c3−→ E + P
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The species on the left hand of the arrow (also called reactants) describe how many
molecules of a certain type are consumed by the reaction and those on the right hand
describe how many are produced. For instance, one molecule of type E and S is con-
sumed by reaction R1 and one C molecule is produced. The constants c1, c2, c3 ∈ �>0

determine the probability of the reactions as explained below.

Concrete model. The temporal evolution of the system is represented by a CTMC as
follows (cf. [6]): A state corresponds to a population vector x = (xE , xS , xC , xP ) ∈ �4

and transitions are triggered by chemical reactions. The change of the current popula-
tion vector x caused by a reaction of type Rm, m ∈ {1, 2, 3} is expressed as a vector
vm where v1 := (−1,−1, 1, 0), v2 := (1, 1,−1, 0) and v3 := (1, 0,−1, 1). Obviously,
reaction Rm is only possible if vector x + vm contains no negative entries. Given an
initial state s := (sE , sS , 0, 0), it is easy to verify that the set of reachable states equals
S := {(xE , xS , xC , xP ) | xE + xC = sE , xS + xC + xP = sS}.

The probability that a reaction of type Rm occurs within a certain time interval is
determined by the function αm : S → �≥0. The value αm(x) is proportional to the
number of distinct combinations of Rm’s reactants: α1(x) := c1xExS , α2(x) := c2xC

and α3(x) := c3xC . We define the transition matrix P of the CTMC by P(x, x +
vm) := αm(x)/λ with exit rate λ ≥ maxx∈S(α1(x) + α2(x) + α3(x)). Thus, state x

has outgoing transitions x
αm(x)/λ−−−−−−→ x+vm for allmwith x+vm ≥ 0 and the self-loop

probability in x is P(x, x) := 1−
(
α1(x) + α2(x) + α3(x)

)
/λ.

We are interested in the probability that within time t the number of typeP molecules
reaches threshold n := sS , the maximum number of P molecules. We apply labels
AP := {0, 1, . . . , n} and for 0 ≤ a ≤ n let L(x, a) := 0 if x = (xE , xS , xC , xP ) with
xP = a and L(x, a) := ⊥ otherwise. For the initial populations, we fix sE = 20 and
vary sS between 50 and 2000.

Stiffness. In many biological systems, components act on time scales that differ by
several orders of magnitude which leads to stiff models. Traditional numerical analysis
methods perform poorly in the presence of stiffness because a large number of very
small time steps has to be considered. For the enzymatic reaction, stiffness arises if
c2 * c3 and results in a high self-loop probability in most states because λ is large
compared to α1(x) + α2(x) + α3(x). Thus, even in case of a small number |S| of
reachable states, model checking properties like P≤0.9(true U [0,t]n) is extremely time
consuming. We show how our abstraction method can be used to efficiently verify prop-
erties of interest even for stiff parameter sets. We choose a realistic parameter set of
c1 = c2 = 1 and c3 = 0.001. Note that the order of magnitude of the expected time
until threshold n = sS = 300 is reached is 104 for these parameters.

Abstract model. For the CTMC C := (S,P, λ, L, s) described above, we choose par-
titioning A := {A0, . . . , An} with Aa :=

{
x ∈ S | L(x, a) = 0

}
, that is, we group

all states in which the number of molecules of type P is the same. Some important
remarks are necessary at this point. Abstraction techniques rely on the construction of
small abstract models by disregarding details of the concrete model as the latter is too
large to be solved efficiently. In this example, we have the additional problem of stiff-
ness and the abstraction method proposed here can tackle this by choosing high values
for k. Then one step in the Erlang-k interval process happens after a large number of
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arrivals in the underlying Poisson process and the self-loop probability in the abstract
model is much smaller than in the concrete one. We chose k ∈ {210, 211, 212} for the
construction of the Erlang-k interval process abstr(C,A, k) and calculate the transition
probability intervals by taking the k-th matrix power of P. The choice for k is reason-
able, since for a given error bound ε = 10−10, sS = 300 and t = 10000, a transient
analysis of the concrete model via uniformization would require around 6 · 107 steps.
By contrast, our method considers k steps in the concrete model and around (6 · 107)/k
steps in the smaller abstract model. Thus, although the construction of the Erlang-k
interval process is expensive, the total time savings are enormous. We used the MAT-
LAB software for our prototypical implementation and the calculation of Pk could be
performed efficiently because P2j

can be computed using j matrix multiplications. As
for non-stiff models a smaller value is chosen for k, it is obvious that upper and lower
bounds for the k-step transition probabilities can be obtained in a local fashion, i.e. by
computing the k-th matrix power of submatrices of P. Therefore, we expect our method
to perform well even if |S| is large. However, for stiff and large concrete models more
sophisticated techniques for the construction of the abstract model must be applied that
exploit the fact that only upper and lower bounds are needed.

|A| |S| time
50 861 0m 5s
300 6111 37m 36s
500 10311 70m 39s
1000 20811 144m 49s
1500 31311 214m 2s
2000 41811 322m 50s

Fig. 6. Computation times

Experimental results. For sS = 200 we compared
the results of our abstraction method for the probabil-
ity to reach An within time bound t with results for
the concrete model that were obtained using PRISM.
While it took more than one day to generate the plot
for the concrete model in Fig. 7, right, our MATLAB
implementation took less than one hour for all three
pairs of upper and lower probability bounds and dif-
ferent values of t.2 Our method is accurate as the
obtained intervals are small, e.g., for sS = 200,
k = 212, t = 14000 the relative interval width is
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Fig. 7. Time-bounded reachability

2 Both jobs were run on the same desktop computer (Athlon 64 X2 3800+, 2GB RAM).
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10.7%. Fig. 7, left, shows the lower and upper probability bounds using k = 212,
t = 20000 and varying sS . For high values of sS , e.g., sS = 500 the construction
of the Erlang-k interval process took more than 99% of the total computation time
as the size of the transition matrix P is 104 × 104 and sparsity is lost during matrix
multiplication. We conclude this section with the additional experimental details on
computation times3, given in Fig. 6, using k = 212, t = 50000 (and sS = 200).

Note that for this case study exact abstraction techniques such as lumping do not
yield any state-space reduction.

8 Conclusion

We have presented an abstraction technique for model checking of CTMCs, presented
its theoretical underpinnings, as well as an the application of the abstraction technique
to a well-known case study from biochemistry. The main novel aspect of our approach is
that besides the abstraction of transition probabilities by intervals [10,17], sequences of
transitions may be collapsed yielding an approximation of the timing behavior. Abstract
Erlang k-interval processes are shown to provide under- and overapproximations of
time-bounded reachability probabilities. Our case study confirms that these bounds may
be rather accurate. Future work will focus on automatically finding suitable state-space
partitionings, and on guidelines for selecting k appropriately. As shown by our case
study, for stiff CTMCs, a high value of k is appropriate. This is, however, not the case
in general. We anticipate that graph analysis could be helpful to select a “good” value
for k. Moreover, we plan to investigate memory-efficient techniques for computing
k-step transition probabilities and counterexample-guided abstraction refinement.
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Abstract. This paper presents a novel algorithm to compute weak bisim-
ulation quotients for finite acyclic models. It is developed in the setting of
interactive Markov chains, a model overarching both labelled transition
systems and continuous-time Markov chains. This model has lately been
used to give an acyclic compositional semantics to dynamic fault trees, a
reliability modelling formalism.

While the theoretical complexity does not change substantially, the al-
gorithm performs very well in practice, almost linear in the size of the in-
put model. We use a number of case studies to show that it is vastly more
efficient than the standard bisimulation minimisation algorithms. In par-
ticular we show the effectiveness in the analysis of dynamic fault trees.

1 Introduction

Determining the minimum bisimulation quotient of a behavioural model is one of
the principal algorithmic challenges in concurrency theory, with concrete applica-
tions in many areas. Together with substitutivity properties enjoyed by process
algebraic composition operators, bisimulation is at the heart of compositional ag-
gregation, one of the most elegant ways to alleviate the state space explosion prob-
lem: In compositional aggregation, a model is composed out of sub-models. During
generation of its state-space representation, composition and minimisation steps
are intertwined along the structure of the compositional specification. This strat-
egy is central to explicit-state verification tools such as μCRL [1] and CADP [12],
and arguably a central backbone of their successes in industrial settings [7, 18].

Thealgorithmicproblemtominimise a labelled transition systemwith respect to
bisimulation is well studied. For strong bisimulation, a partition refinement based
approach [22] can be used to achieve an algorithm with complexity O(m log n),
wherem and n denote the number of transitions and states of the model. The com-
putationofweakandbranchingbisimulation is theoreticallydominatedby theneed
to compute the transitive closure of internal transitions. This directly determines
the overall complexity to beO(n3) (disregarding some very specialized algorithms
for transitive closure such as [6]). As first noted in [15], the transitive closure com-
putation does not dominate in practical applications, and then the complexity is
O(m∗ log n), wherem∗ is the number of transitions after closure.
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Lately, the growing importance of the minimisation problem has triggered
work in at least three different directions. Orzan and Blom have devised an
efficient distributed algorithm for bisimulation minimisation, based on the no-
tion of signatures [2]. Wimmer et al. [25] have taken up this idea to arrive at
a fully symbolic implementation of the signature-refinement approach, to effec-
tively bridge to BDD-based representations of state spaces. In [9], an algorithm
with O(m) complexity has been proposed for deciding strong bisimulation on di-
rected acyclic graphs. Mateescu [20] developed an O(m) algorithm for checking
modal mu calculus on acyclic LTS, which can be instantiated to checking weak
bisimulation, then requiring O(m2).

Stochastic behavioural models are among the most prominent application
areas for bisimulation minimisation and compositional aggregation techniques
[3, 17]. They are used to model and study ‘quantified uncertainty” in many
areas, such as embedded, networked, randomized, and biological systems. Inter-
active Markov chains (IMCs) [16] constitute a process algebraic formalism to
construct such models. Recently, an extension of IMCs with input and output
(IOIMCs) [4] has been introduced to define a rigorous compositional semantics
for dynamic fault trees (DFTs). Fault trees and DFTs are in daily use in indus-
trial dependability engineering [10, 24]. The analysis of DFTs via their IOIMC
semantics relies heavily on compositional aggregation and weak bisimulation
minimisation [4]. Remarkably, the IOIMC semantics maps on acyclic structures.
This is the main motivation for the work presented in this paper. We show how
to effectively exploit acyclicity of the model in weak bisimulation minimisation.
Since (IO)IMCs are a strict superset of LTSs, our results apply to LTSs as well.

The problem of weak bisimulation minimisation on acyclic models is sub-
stantially different from the strong bisimulation problem. While not directly
developed for LTSs, the rough idea of [9] is to assign to each state a rank which
corresponds to the length of the longest path from the state to one of the absorb-
ing states. Observing that (i) transitions always move from higher rank states
to lower rank states, and (ii) only states on the same rank can be bisimilar.
allows one to arrive at a linear algorithm. Especially condition (ii) is invalid in
the weak setting. To overcome this, we use elaborated rank-based techniques to
partition the state space on-the-fly during the computation of the weak bisimu-
lation quotient. The resulting algorithm is of linear time complexity in m∗, the
size of the weak transition relation. We provide experimental evidence that in
practice, the algorithm runs even in linear time in the size of the original relation
m. The contributions are developed in the setting of IMCs.

Organisation. The paper is organised as follows. After giving preliminary defi-
nitions we discuss in Section 3 how to adapt the strong bisimulation algorithm
for acyclic digraphs in [9] to IMCs. Section 4 is devoted to a novel algorithm
for weak bisimulation on acyclic IMCs. Section 5 discusses two extensions which
allow us to handle the models appearing in DFT analysis. Section 6 presents
experimental results after we which we conclude.

Detailed proofs for the theorems in this paper can be found in [8].
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2 Preliminaries

In this section we introduce the definition of acyclic interactive Markov chains,
strong and weak bisimulations [16].

Definition 1. An interactive Markov chain (IMC) is a tuple 〈S, s0, A,Ri, RM 〉
where: S is a finite set of states, s0 ∈ S is the starting state, A is a finite set of
actions, Ri ⊆ S×A×S is the set of interactive transitions, and RM ⊆ S×R>0×S
is the set of Markovian transitions.

The label τ is a assumed to be contained in A, it denotes the internal, unob-
servable action. For (s, a, t) ∈ Ri we write s a−→it and for (s, λ, t) ∈ RM we write
s

λ−→Mt. Let R = Ri ∪RM . We write s x−→s′ if (s, x, s′) ∈ R. In this case x is either
an action or a Markovian rate. We write s−→it for any interactive transition from
s to t and s−→Mt for any such Markovian transition.

States with outgoing τ -transitions are called unstable. States without outgo-
ing τ -transitions are called stable. We write the reflexive and transitive clo-
sure of all internal transitions s

τ−→is′ as τ=⇒ and say that if s τ=⇒s′ then s
may move internally to state s′. For s τ=⇒s′

a−→is′′
τ=⇒s′′′ we write s a=⇒is′′′. For

s
τ=⇒s′

λ−→Ms′′
τ=⇒s′′′ we write s λ=⇒Ms′′′. For s τ=⇒s′

x−→s′′
τ=⇒s′′′ we write s x=⇒s′′′.

The cumulative rate from a state s to a set of states C, denoted γM(s, C), is
the sum of the rates of all Markovian transitions from s to states in C: γM(s, C) =∑
{|λ | (s, λ, t) ∈ RM ∧ t ∈ C|}, where {| . . . |} denotes a multi-set. The internal

backwards closure of a set of states C, denoted Cτ is the set of all states that
can reach a state in C via zero or more τ -transitions: Cτ = {s | s τ=⇒t ∧ t ∈ C}.

A (finite) path π is a sequence π = s0x0s1x1 . . . sn in (S×(A∪R>0))∗×S such
that si

xi−→si+1 for all i = 0, 1, . . . , n− 1. For a path π we let first(π) denote the
first state s0 of π, last(π) denote the last state of a finite π, π[i] denote the i+1-th
state si of π, πα[i] denote the i+1-th label xi of π, and len(π) denote the length
n of π. Moreover, we let wlen(π) = {|πα[i] | i = 0, . . . , len(π) − 1 ∧ πα[i] �= τ |}
denote the weak length of π, which corresponds to the number of observable
actions of π. We write s π

�s′ if first(π) = s and last(π) = s′. We write the set of
all paths starting from a state s as Paths(s) = {π | ∃s′ ∈ S · s π

�s′}. A path π
such that s π

�s and len(π) > 0 is called a cycle.
The maximal progress assumption is usually employed when working with

IMCs. It states that if an unobservable (τ) transition is possible in a state,
no time may advance prior to taking this (or any other action) transition. In
other words, in an unstable state the chance of taking a Markovian transition
is given by the probability that the delay associated with the transition is less
than or equal to 0. However, this probability is 0, and thus we qualify such
a transition as not plausible. Semantically, their existence is negligible, which
will become apparent in the definition of strong and weak bisimulation. On the
other hand, all interactive transitions and all Markovian transitions from stable
states are plausible. A path π = s0x0 . . . sn is plausible if it holds that: for all
i = 0, . . . , n− 1, if si

xi−→Msi+1 then si is stable. We write the set of all plausible
paths starting from a state s as PathsP (s). A plausible path π from s to t is
denoted s

π
�P t.
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Definition 2. An IMC P = 〈S, s0, A,Ri, RM 〉 is acyclic if it does not contain
any plausible path π with s

π
�Ps and len(π) > 0 for any s ∈ S.

An acyclic IMC only contains finite plausible paths since the set of states is by
definition finite. We recall the definition of strong and weak bisimulations.

Definition 3. Let P = 〈S, s0, A,Ri, RM 〉 be an IMC. An equivalence relation
E on S is a strong bisimulation if and only if sEt implies for all a ∈ A and
all equivalence classes C of E, that s a−→is′ implies t a−→it′ with s′Et′, and s stable
implies γM(s, C) = γM(t, C).

Two states s, t of P are strongly bisimilar, written s ∼ t if there exists a strong
bisimulation E such that sEt.

Definition 4. Let P = 〈S, s0, A,Ri, RM 〉 be an IMC. An equivalence relation E
on S is a weak bisimulation if and only if sEt implies for all a ∈ A (including τ)
and all equivalence classes C of E, that s a=⇒is′ implies t a=⇒it′ with s′Et′, and
s

τ=⇒s′ and s′ stable imply t τ=⇒t′ for some stable t′ and γM(s′, Cτ ) = γM(t′, Cτ ).
Two states s, t of P are weakly bisimilar, written s ≈ t if there exists a weak

bisimulation E such that s ≈ t.

Strong, respectively weak bisimilarity is the largest strong, respectively weak
bisimulation [16]. For an IMC 〈S, s0, A,Ri, ∅〉 the above definitions reduce to
Milner’s standard definitions on labelled transition systems [21].

3 Strong Bisimulation for Acyclic IMCs

To decide strong bisimulation on unlabelled acyclic digraphs, a linear-time al-
gorithm has been developed in [9], which is based on state ranking. To handle
labelled transition systems, the authors encode them into unlabeled graphs, for
which strong bisimulation can then be decided. In this section, we extend their
rank-based algorithm in [9] to decide strong bisimulation directly for IMCs.

We adapt the notion of ranks for acyclic IMCs. The rank of absorbing states
is 0, for other states it is the longest distance to a state on rank 0. So the rank
of a state is the length of the longest path starting in that state.

Definition 5. The rank function R : S → N is defined by: R(s) = max{len(π) |
π ∈ PathsP (s)}.

Since in acyclic IMCs all plausible paths are finite, we have that R(s) < ∞.
If state s has a higher rank than state t, we say also that s is higher than t.
By definition, transitions always go from higher states to lower states. Before
continuing, we state an important observation about the relationship between
strong bisimilarity and ranks.

Theorem 1. If two states of P are strongly bisimilar they are on the same rank:
∀s, t ∈ S · s ∼ t→ R(s) = R(t).
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Algorithm 1. Determining the strong bisimilarity quotient for an acyclic IMC
Require: P = 〈S, s0, A,Ri, RM 〉 is an acyclic IMC.
1: R = ComputeRanks()

2: maxrank = max{n | s ∈ S ∧ R(s) = n}
3: BLOCKS = 〈{{s | s ∈ S ∧ R(s) = n}} | n ← 〈0 . . .maxrank 〉〉
4: matrix = 0; rate = 0
5: for i = 0 to maxrank − 1 do
6: for all (s, a, B) ∈ {(s, a,B) | B ∈ BLOCKS [i] ∧ ∃t ∈ B · (s, a, t) ∈ Ri} do
7: matrix [s][a][B] = 1
8: for all (s, λ, B) ∈ {|(s, λ, B) | B ∈ BLOCKS [i] ∧ ∃t ∈ B · (s, λ, t) ∈ RM |} do
9: if s stable then

10: rate [s][B] = rate [s][B] + λ
11: for j = i + 1 to maxrank do
12: BLOCKS [j] =

S
{{{t | t ∈ B ∧ matrix [t] = matrix [s] ∧ rate [t] = rate [s]} | s ∈

B} | B ∈ BLOCKS [j]}

The above theorem mirrors Proposition 4.2 in [9] and implies that only states
on the same rank can be bisimilar. Since transitions go from higher states to
lower states, whether two states on the same rank are bisimilar depends only
on the states below them. The main idea of the algorithm is to start with the
states on rank 0 and to process states rank by rank in a backward manner.
The algorithm is presented in Algorithm 1. The input is an acyclic IMC. Lists
(and tuples) are written by: 〈...〉. The state ranks are computed in line 1 with
a simple depth first search (time-complexity O(m)). The partition BLOCKS is
initialised such that states with the same rank are grouped together. During the
algorithm, we use BLOCKS [i] to denote the partition of the states with rank
i. The matrices matrix and rate respectively denote the interactive transitions
and the cumulative rates from states to blocks of bisimilar states. The algorithm
starts with the rank 0 states which are all strongly bisimilar. Then, it traverses
the transitions backwards to refine blocks on the higher level according to the
bisimulation definition. Observe that in iteration i all states with ranks lower
than i have been processed. Since each transition is visited at most once, the
algorithm runs in linear time.

Theorem 2. Given an acyclic IMC P, Algorithm 1 computes the strong bisim-
ulation correctly. Moreover, the time-complexity of the algorithm is O(m).

4 Weak Bisimulation Minimisation

Weak bisimulation (or observational equivalence [21]) differs from strong bisim-
ulation in that only visible behavior has to be mimicked (see Definition 4). In
general weak bisimulation can be computed by first computing the reflexive
transitive closure of internal transitions τ=⇒ and then computing the weak tran-
sitions s a=⇒t from s

a=⇒t ↔ s
τ=⇒s′

a−→t′
τ=⇒t. Once we have computed the weak

transition relation we can then compute weak bisimulation simply by computing
strong bisimulation on the weak transition relation.
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If we try this strategy for acyclic models we quickly run into a problem, since
the weak transition relation of an acyclic model is not acyclic, it contains cycles
s

τ=⇒s for each state s. Thus we cannot simply apply Algorithm 1 to the weak
transition relation.

s0

s1 s2

s3 s4

s5

τ τ

τ τ

b
a

b
a

Fig. 1. An acyclic IMC P

Of course it is easy to see that these τ
self-loops will be the only cycles. A naive ap-
proach would then simply remove these self-
loops from the weak transition relation and
apply Algorithm 1 to this modified weak tran-
sition relation. This approach however does
not work. Consider IMC P in Figure 1. It
is obvious that states s1 and s3 are weakly
bisimilar, while the naive approach would de-
cide that they are not, since s1 can do the
weak transition s1

τ=⇒s3, which s3 seemingly
cannot simulate if we do not consider the τ -
loop s3

τ=⇒s3. Even if we would memorize that
each state has a τ -loop, and treat this case separately in the algorithm, this is
not enough, since there is a fundamental difference to the strong case. We find
in fact that Theorem 1 does not hold for weak bisimulation! States s1 and s3
have different ranks (2 and 1 respectively) but they are still weakly bisimilar.
We can however, define a different ranking of states for which a similar theorem
does hold.

4.1 Weak Ranks

Let P = 〈S, s0, A,Ri, RM 〉 be an acyclic IMC. To find the weak rank of a state
we do not look at the longest path starting in that state but we find the longest
path counting only the observable transitions.

Definition 6. We define the notion of weak rank (or the observable rank) RW :
S → N of a state s as the maximum weak length of all plausible paths starting
in s: RW (s) = max{wlen(π) | π ∈ PathsP (s)}.

For weak ranks we can establish a theorem similar to Theorem 1.

Theorem 3. If two states of P are weakly bisimilar they have the same weak
rank: ∀s, t ∈ S · s ≈ t→ RW (s) = RW (t).

For strong bisimulation and ranks we found the property that strong bisimu-
lation for states on a certain rank only depends on the states below this rank.
Unfortunately, this property does not hold for weak ranks. Consider again IMC
P in Figure 1. State s5 has weak rank 0 whereas all other states have weak rank
1. If we consider only weak transitions to the states on rank 0 we are tempted to
conclude that s0, s1, s2 and s3 are all weakly bisimilar, since they can all do the
weak moves a=⇒s5 and b=⇒s5, while state s4 can only do the weak move a=⇒s5.
However state s0 can also do the move s0

τ=⇒s4 which s1, for instance, cannot
simulate and thus s0 and s1 are actually not weakly bisimilar.
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4.2 A Different Way of Partitioning the State Space

To make use of the acyclicity of our models in computing weak bisimulation we
need to order the state space such that (i) weak bisimilarity of states on order
x only depends on the bisimilarity of states of a lower order, and (ii) all states
that are weakly bisimilar have the same order. However, we have seen that the
weak rank does not satisfy the first requirement and the rank does not satisfy
the second.

We introduce the notion of level of a state, which is computed on-the-fly,
to order the state space. A level function L maps states to some ordered well-
founded set W , such that for state s, level L(s) is the smallest value satisfying
the following conditions

1. State s has no outgoing transitions to any other state t on a level higher
than L(s): s a−→t implies L(s) ≥ L(t).

2. State s has no outgoing observable transitions to any state t on level L(s):
s

a−→t ∧ L(s) = L(t) implies a = τ .
3. State s has no outgoing τ -transitions to any state t on level L(s), unless s is

weakly bisimilar to t: s τ−→t ∧ L(s) = L(t) implies s ≈ t.

Notably, partitioning the state space in such levels satisfies the two requirements
(i) and (ii) above: If a state s has a level higher than t they cannot be weakly
bisimilar since s must have a transition to a non-bisimilar state that is at least on
the same level as t. Furthermore the bisimilarity of two states on a level i depends
only on lower levels since weak transitions to bisimilar states can, by definition,
always be simulated. However, if we want to use such a level function to compute
the weak bisimulation for an acyclic IMC P = 〈S, s0, A,Ri, RM 〉, we are in a trap,
because condition 3 relies on knowledge about the weak bisimulation classes.

Our algorithm exploits that we can – for a particular level – obtain the re-
quired bisimulation knowledge by only looking at an IMC that is spanned by
lower levels. This allows us to increment our knowledge about both L and ≈
while ’climbing up’ the transitions, starting with absorbing states. Technically,
we are working with a sequence of partial functions L′

1, . . . , L′
k (L′

i : S → W )
that satisfy (in set notation) L′

i ⊂ L′
i+1 and that must converge towards the

total function L in finitely many steps. For a given partial function L′, and a
fixed level w ∈ W , the IMC spanned by level w is defined by restricting the
transitions of P to only those transitions which are part of the weak transition
relation to states s with level L′(s) ≤ w.

Definition 7. For an acyclic IMC P, a partial function L′ : S → W to an
ordered well-founded set, and an element of the ordered set w ∈ W the IMC
spanned by level w is Pw = 〈S, s0, A,Rw

i , R
w
M 〉, where:

Rw
i = {(s, τ, t) | ∃t′ · t x=⇒t′ ∧ L′(t′) ≤ w ∧ (s, τ, t) ∈ Ri}

∪{(s, a, t) | ∃t′ · t τ=⇒it′ ∧ L′(t′) ≤ w ∧ (s, a, t) ∈ Ri}
Rw

M = {(s, λ, t) | ∃t′ · t τ=⇒it′ ∧ L′(t′) ≤ w ∧ (s, λ, t) ∈ RM}
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Algorithm 2. Determining the weak bisimilarity quotient for an acyclic IMC
Require: P = 〈S, s0, A,Ri, RM 〉 is an acyclic IMC.
1: (RW , #wout) = ComputeRanks(P)
2: maxwrank = max{n | s ∈ S ∧ RW (s) = n}
3: BLOCKS = 〈{{s | s ∈ S ∧ RW (s) = n}} | n ← 〈0 . . .maxwrank〉〉
4: matrix = 0; rate = 0
5: for i = 0 to maxrank do
6: LSTATES = {s | RW (s) = i ∧ #wout(s) = 0}
7: NSTATES = ∅
8: j = 0
9: while LSTATES �= ∅ do

10: ComputeLevel(P ,BLOCKS [i], LSTATES ,NSTATES)
11: LBLOCKS = {{s | s ∈ B ∧ s ∈ LSTATES} | B ∈ BLOCKS [i]}
12: for all (s, a, B) ∈ {(s, a,B) | B ∈ LBLOCKS ∧ ∃t ∈ B · s a

=⇒it} do
13: matrix [s][a][B] = 1
14: for all (s, λ, B) ∈ {(s, λ, B) | B ∈ LBLOCKS ∧ ∃t ∈ S · s

τ
=⇒it ∧ t stable ∧

γM(t, Bτ ) = λ} do
15: rate [s][B] = λ
16: for k = i to maxrank do
17: BLOCKS [k] =

S
{{{t | t ∈ B ∧ matrix [t] = matrix [s] ∧ rate [t] = rate [s]} |

s ∈ B} | B ∈ BLOCKS [k]}
18: LSTATES = {s | s ∈ NSTATES ∧ #wout(s) = 0}
19: NSTATES = ∅
20: j = j + 1

Our intention is to reformulate conditions 2 and 3 above to the following: if a
state s has a level L′(s) = w and w′ is the largest value smaller than w appearing
in the range of L′, then for all transitions s τ−→t we find:

1. State t has a level strictly lower than w, or
2. State t has level w and is weakly bisimilar to s on the IMC spanned by level

w′.

This property holds indeed for our algorithm, because the sequence L′
1, . . . , L′

k

is constructed level-by-level, starting from the bottom level. The algorithm also
implies that if L′(s) is defined, then L′ is defined for all states reachable from s
as well, which is a requirement for the above idea to work.

Algorithm 2 computes the levels while traversing the state space, and while
computing the weak bisimulation relation for an acyclic IMC. Line 1 calculates
the weak rank and the number of outgoing weak transitions for every state.
Notably, the levels (line 10) and the weak bisimulation relation (lines 12 to 17)
are calculated per weak rank. This is justified by Theorem 3. In other words,
we fix W = N × N where the first component is the weak rank, and use the
(lexicographic) order on pairs (x, y) ≥ (x′, y′) ⇐⇒ x > x′ ∨ (x = x′ ∧ y ≥ y′).
For each iteration of the loop 9–20 the set LSTATES then contains exactly those
states which have level (i, j), see Definition 8 below, and the set LBLOCKS
partitions LSTATES into sets of weakly bisimilar states. The set NSTATES
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Algorithm 3. ComputeLevel(P ,BLOCKS ,LSTATES ,NSTATES)
1: for all States s in LSTATES do
2: for all Transitions t

τ−→s ∈ Ri with RW (t) = RW (s) do
3: #wout(t) = #wout(t) − 1
4: if ¬∃B ∈ BLOCKS · s, t ∈ B then
5: NSTATES = NSTATES ∪ {t}
6: else
7: if #wout(t) = 0 ∧ t /∈ NSTATES then
8: LSTATES = LSTATES ∪ {t}

contains all states with weak rank i, level greater than (i, j) and at least one
transition to a state on level (i, j).

Theorem 4. Given an acyclic IMC P, Algorithm 2 computes the weak bisimu-
lation correctly. Moreover, the time-complexity of the algorithm, given the weak
transition relation, is O(n2). The space complexity is O(n2).

4.3 Correctness

We give here an extended sketch of the proof of correctness for Algorithm 2. For
the full proof we refer to [8]. First we define the notion of the level of a state
based on the two conditions given at the end of Subsection 4.2.

Definition 8 (Level (i, j)). Let P = 〈S, s0, A,Ri, RM 〉 be an acyclic IMC. We
define the set of all states in P with level (i, j), written L(i,j) as the largest set
for which the following holds:

s ∈ L(i,j) → RW (s) = i ∧ ¬∃j′ < j · s ∈ L(i,j′) ∧
∀s x−→t · L(t) < (i, j) ∨ (t ∈ L(i,j) ∧ s ≈ t)

We write L(s) = (i, j) if and only if s ∈ L(i,j).

To prove that Algorithm 2 is correct we prove that it computes in each iteration
(i, j) of the loop 9–20, the set of states on level (i, j) LSTATES (line 10) and
weak bisimulation on the IMC spanned by level (i, j) BLOCKS (lines 16–17).
By computing the set of states on level (i, j) we also further refine the partial
function L′ in each iteration, which is initially completely undefined. By iteration
(i, j) we mean that pass of loop 9–20 where variables i and j have those partic-
ular values. Line 1 computes, for each state, its weak rank and the number of
outgoing transitions to states on the same weak rank (#wout(s)). For each weak
rank i the loop 9–20 terminates having computed the weak bisimulation on the
IMC spanned by the maximum possible level for weak rank i, denoted (i,maxi).
The algorithm then terminates after computing weak bisimulation for the IMC
spanned by the maximal level for the maximal weak rank which is equivalent to
the IMC itself.

First we consider the computation of weak bisimulation on IMCs spanned by
the different levels. Line 3 initializes BLOCKS such that all states are partitioned
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according to weak rank, this is justified by Theorem 3. For level (0, 0) weak bisim-
ulation on P(0,0) is computed in lines 12–19. For a level (i, 0) > (0, 0) we compute
weak bisimulation on P(i,0) by refining weak bisimulation on P(i−1,maxi−1). We
do this by considering all the weak transitions to states on level (i, 0) in lines
12–151, note that we compute the set of states on level (i, 0) in that same iter-
ation on line 10. Here it is assumed that the partition of states on level (i, 0),
LBLOCKS , is the partition according to weak bisimilarity on P . This is correct
since the only outgoing weak transitions for states on level (i, 0) we have not yet
considered are those that go to other states on level (i, 0). But, by Definition 8,
such transitions are τ transitions which go to bisimilar states and such transi-
tions can always be simulated. This then means that in line 17 weak bisimulation
on P(i,0) is computed. The same holds for iteration (i, j) with j > 0 where weak
bisimulation on P(i,j−1) is refined to weak bisimulation on P(i,j).

Now we consider the computation of levels. For every weak rank i line 6 ini-
tializes LSTATES to all states on weak rank i with only transitions to states
levels lower than (i, 0). By definition these states must have level (i, 0). Line 7
initializes NSTATES to ∅. The function ComputeLevel then considers all
τ -transitions to states in LSTATES . If a state is found which has a τ -transition
to a non-bisimilar state - with respect to transitions to states on levels below
(i, 0), and note that we have computed this relation in the previous iteration -
on level (i, 0) then we add this state to NSTATES since we are sure it has level
higher than (i, 0). If the condition of line 7 of ComputeLevel is met for a state
t then all outgoing transitions of t must go to lower levels or to bisimilar states
on level (i, 0) which means that t also has level (i, 0). When ComputeLevel

terminates we must have found all states on level (i, 0) because the model is
acyclic. Now NSTATES contains all states with at least one transition to level
(i, 0). For those states s in NSTATES which now have #wout(s) = 0 (line 18
of Algorithm 2) we know that they only have transitions to states lower than
(i, 1) and thus they must have level (i, 1). In this way we compute all the levels
recursively. For each weak rank loop 9–20 must terminate since there are only a
finite number of states on that weak rank. Acyclicity also ensures that we must
encounter and assign a level to all states in the function ComputeLevel.

This shows that in each iteration (i, j) of loop 9–20 the states on level (i, j)
and P(i,j) are computed. Finally then weak bisimulation on P spanned by the
maximum level (im, jm) is computed. Since all states must have a level smaller
than or equal to the maximum we find that P(im,jm) = P .

4.4 Complexity

We first discuss the complexity of the algorithm itself. Afterwards we discuss the
time needed to compute the weak transition relation. In the following n, m and
l are used the denote the number of states (|S|), transitions (|Ri| + |RM |) and
the number of actions (|A|) respectively.
1 We only consider the weak transition relation to states on level (i, 0) while P(i,0) also

contains transitions above this level. However, we will consider these transitions in
later iterations of the algorithm.
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The ranks are computed with a simple depth-first search which can be done in
time O(m). The level computations are also done in time O(m) as each state is
evaluated exactly once in Algorithm 3 and in each such evaluation all incoming
transitions are considered once. For the partitioning of the state space in weakly
bisimilar blocks every state is considered exactly once, since we only consider
states in blocks that we do not have to partition anymore. For each state we
must consider each incoming weak move in the weak transition relation. The
time complexity is then in the order of the size of the weak transition relation
which is O(n2). There can be at most n partitions (in the case that there are no
bisimilar states at all) so we must make at most n partitions which then takes
O(n) time.

There are at most O(ln2) transitions in an acyclic IMC. If we consider the
number of actions to be constant then m will be in O(n2) which proves that
Algorithm 2 computes the weak bisimulation quotient for an acyclic IMC in
time O(n2) given that we know the weak transition relation. For the space
complexity we find that we need to store several attributes of the states, but
most importantly we must store the weak transition relation which is again of
size O(n2).

However computing the weak transition relation theoretically dominates the
rest of the algorithm in the general case as well as the acyclic case. We will see
in Section 6 that this is usually not the case in practice, as also noted in [15].
In the general case the best theoretical complexity for computing the reflexive
transitive closure is O(n2.376) as given by [6]. For acyclic graphs [23] gives an
algorithm which computes the reflexive transitive closure in time O(mk) where
k is the size of the chain decomposition of the model (which is at most n). In our
implementation we have adapted the simple algorithm in [13] which has worst-
case time complexity O(mn). Theoretically the algorithm is then still cubic in
the number of states, but we will discuss why this is often not the case in practice.

For acyclic models m∗, the number of transitions in the weak transition re-
lation is at most O(ln2). For some state s, m∗

s, the number of outgoing weak
transitions of s will be at most nl. As in [13] we compute =⇒ by starting at
the states with rank 0 and then moving up the ranks. This means that for any
state s we will compute out∗(s) (the outgoing weak moves of state s) by merging
out∗(t′) for all transitions s−→t′. This is possible since the state t′ must have a
lower rank than s. We will then find every move s a=⇒t at most once for each
outgoing transition. This means that the complexity is O(nm∗) = O(n3). How-
ever, since we have different action labels, the situation is more nuanced. We
can in fact only find the move s a=⇒t for outgoing τ - or a-transitions. So we will
find every move s a=⇒t exactly ms,τ + ms,a times, where ms,τ is the number of
outgoing τ -transitions of state s and ms,a the number of outgoing a-transitions.
For a state s and an action a we can find the, at most n, a-moves in m∗

s at most
ms,τ +ms,a times. If we now sum over all actions and all states we find:

a∈A\{τ}∑

a

s∈S∑

s

nms,τ + nms,a =
a∈A\{τ}∑

a

nmτ + nma = lnmτ + nmA\{τ}
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In the worst case lnmτ +nmA\{τ} is still cubic in the number of states. How-
ever, we can make an interesting observation about models which are observably
deterministic, i.e. each state has at most one outgoing transition for each visible
action. We then find that mA\{τ} is at most ln and, if we then assume the num-
ber of actions is constant we find complexity O(nmτ + n2). The models used in
the dynamic fault tree domain [4] are all observably deterministic.

5 Extensions to the Algorithm

The algorithm presented in this paper was developed with a particular applica-
tion in mind, namely dynamic fault tree analysis. We have therefore extended the
algorithm to compute the desired equivalence relation, weak Markovian bisimu-
lation, for the desired formalism, IOIMCs.

Weak Markovian bisimulation. Weak Markovian bisimulation for IMCs (intro-
duced as weak bisimulation in [5], refereed to here as weak Markovianbisimulation
to avoid confusion) differs from weak bisimulation in that Markovian transitions
to otherwise bisimilar states are not observable. This bisimulation relation is jus-
tified by the fact that IMCs are memoryless in time [16]. A Markovian transition
from state s to state t means that we may move from s to t after some time. If we
find, however, that the behavior of s and t are the same then this extra time span
does not influence the behavior, since the memoryless property ensures that the
behavior of t does not depend on the time we arrive in state t.

Adapting our algorithm to weak Markovian bisimulation is very simple. All
that needs to be changed is that in the adapted algorithm Markovian transitions
are considered unobservable, like τ transitions. This only has a direct effect on
the definition, and computation, of weak ranks (see Definition 6).

Input/output interactive Markov chains. In compositional dynamic fault tree
(DFT) analysis [4] the components of a DFT are modelled using IOIMCs.
The IOIMC formalism is a variant of the IMC formalism, inspired by I/O au-
tomata [19], in which the actions of a model are divided into input, output and
internal transitions. The difference between weak Markovian bisimulation for
IMCs and for IOIMCs is that for IOIMCs there may be more internal actions,
while IMCs only use τ and the maximal progress assumption is also applied to
output transitions. The first difference is handled by renaming all the different
internal actions of an IOIMC to τ . The second difference is covered by refining
the stability check in Algorithm 2 (line 17).

Of course we can apply our algorithm in DFT analysis only if the models
encountered are acyclic. At first glance this is the case indeed, since a DFT de-
scribes the degradation of a system towards system failure, i.e. how the interplay
of component failures may lead to a (possibly catastrophic) system failure. Since
repairs are not considered, the behaviour is structurally acyclic.

There is a fine point because input-enabledness (typical of I/O automata)
leads to models that may choose to do nothing in response to certain inputs.
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This means that the state does not change, so the models are actually not acyclic.
However, using the fact that the models are input-enabled and observably deter-
ministic (see [4]), allows us to cut input loops without losing any information. To
deal with the fact that two states s a?−→t may be bisimilar we make input-actions
unobservable (just as we did for Markovian transitions). The adapted algorithm
also maintains the information on removed input self-loops in order to properly
build the weak transition relation.

6 Experimental Results

In this section we show, with a number of case studies that for acyclic models
our algorithm is much more efficient than the existing algorithms. We compare
the performance of the acyclic algorithm in minimising IOIMCs in the context
of DFT analysis with the bcg min tool from the CADP toolset [12]. We have
so far been using bcg min in the analysis of DFTs within the Coral tool [4],
which computes branching bisimulation for (IO)IMCs. However a weak bisimu-
lation minimiser fits the theory better. Branching bisimulation is usually faster
to compute than weak bisimulation and will give the same numerical results for
DFT analysis, although intermediate models may be larger when using branch-
ing bisimulation. All experiments were run on a Linux machine with an AMD
Athlon(tm) XP 2600+ processor at 2 GHz equipped with 2GB of RAM. In the
following tables, n, m and m′ stand for the number of states, transitions and
the size of the weak transition relation from states in the input model to states
in the reduced output model. m′ is a lower bound on the size m∗ of the weak
transition relation of the input model. The computation of the latter is avoided
by our algorithm, so we cannot report the sizes.

The first example we consider is a large version of a fault-tolerant parallel
processor case study (FTPP-6) from [4]. It has 6 network elements and 6 groups
of 4 processors. As explained earlier, the state spaces are constructed by compo-
sitional aggregation, where composition and minimisation steps are intertwined.
Using the bcg min tool in this process, leads to an overall time consumption
of 7 hours, 3 minutes and 48 seconds. Using our acyclic minimization algorithm
instead the same process only required 30 minutes and 20 seconds. Some insight
in this 14-fold speed up is provided in the first rows of Table 1, where some
representative intermediate state spaces and their reduction times are listed.

Another case study, an extended version of the cardiac assist system case
study from [4] (CAS-l) is considered below. We found that the overall time for
compositional aggregation decreased from 1 hour 57 minutes, 13 seconds (using
bcg min) to 1 minute 53 seconds using our dedicated algorithm. Again some
intermediate steps are listed in the table.

For a larger version of the multi-processor distributed computing system case
study (MDCS-l), also taken from [4], we found that the acyclic algorithm requires
5 minutes, 41 seconds to do compositional aggregation while bcg min requires
30 minutes and 9 seconds. Table 1 shows the timing results for the minimization
of various intermediate models.
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Table 1. Minimisation times for acyclic IOIMCs in seconds

Case study n m m′
bcg min acyclic

FTPP-6 9237 68419 93214 18.21 0.67
32909 293955 398661 129.09 2.34
79111 1324359 1364850 104.43 9.36

101426 1043520 1402507 630.33 12.52
255397 2920996 3883860 2028.29 83.60
464762 5756020 7553746 4696.40 289.36
464762 6066486 7833720 3742.70 222.15

1180565 22147378 22502816 13631.44 666.28
CAS-l 38396 389714 482657 160.22 5.73

61055 378219 548331 4455.71 6.27
62860 419459 601135 1457.25 6.94
66137 483157 672742 688.83 8.05
57373 675330 1310517 14.05 5.42

MDCS-l 26466 244003 326916 13.37 1.39
55578 645119 856984 41.78 3.3
99242 1395459 1816748 75.21 6.98
97482 1606231 2049696 101.38 9.38

As evident from the table and the reported time savings, the effectiveness of
bisimulation minimization and of compositional aggregation is improved drasti-
cally for acyclic models.

7 Conclusion

This paper has developed bisimulation minimisation algorithms for acyclic IMC
models. While this work is motivated in a very concrete application, namely the
analysis of very large dynamic fault tree specifications, the results equally apply
to acyclic labelled transition systems. We are rather happy with the speedup
achieved over algorithms for possibly cyclic models. One interesting question we
have not yet considered is how the algorithm can be twisted towards branch-
ing bisimulation, possibly also exploring links to normed simulation [14] and the
cones-and-foci method [11]. Another promising avenue of research lies in extend-
ing the algorithm to also minimise cyclic models along the same lines as [9].
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Abstract. Good scheduling policies for distributed embedded applica-
tions are required for meeting hard real time constraints and for op-
timizing the use of computational resources. We study the quasi-static
scheduling problem in which (uncontrollable) control flow branchings can
influence scheduling decisions at run time. Our abstracted task model
consists of a network of sequential processes that communicate via point-
to-point buffers. In each round, the task gets activated by a request from
the environment. When the task has finished computing the required
responses, it reaches a pre-determined configuration and is ready to re-
ceive a new request from the environment. For such systems, we prove
that determining existence of quasi-static scheduling policies is undecid-
able. However, we show that the problem is decidable for the important
sub-class of “data branching” systems in which control flow branchings
are due exclusively to data-dependent internal choices made by the se-
quential components. This decidability result—which is non-trivial to
establish—exploits ideas derived from the Karp and Miller coverability
tree [8] as well as the existential boundedness notion of languages of
message sequence charts [6].

1 Introduction

We consider systems that consist of a finite collection of processes communicat-
ing via point-to-point buffers. Each process is a sequential transition system, in
which non-deterministic branchings may be of two types: (i) a data-dependent
internal choice made by a sequential component; (ii) a process waiting for mes-
sages on different input buffers. In the second case, the waiting process non-
deterministically branches by picking up a message from one of the nonempty
input buffers [3]. The system of processes is triggered by an environment itera-
tively in rounds. We model the system dynamics for just one round. It is easy to
lift our results to multiple rounds. In each round, the environment sends a data
item to one of the processes. This starts the computations done in the round.
When the computation finishes, all the processes are in their final states and the
buffers are empty. In a technical sense, buffers—viewed as counters without zero
tests—are deployed here as over-approximated abstractions of FIFOs. We note
that using FIFOs or zero tests would render the model Turing powerful [1].

In this setting, one is interested in determining a schedule for the processes.
If at a configuration the scheduler picks the process p to execute and p is at a
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state with several outgoing transitions, then the schedule must allow all possi-
ble choices to occur. As a result, such schedules are referred to as quasi-static
schedules. In addition, the schedule should never prevent the system from (even-
tually) reaching the final state. We deem such schedules to be valid. In addition,
a quasi-static schedule is required to be regular in the sense that the system
under schedule should use only a bounded amount of memory to service the re-
quest from the environment. In particular, the schedule should enforce a uniform
bound on the number of items stored in the buffers during the round.

Our first result is that determining whether a valid and regular quasi-static
schedule exists is undecidable. In fact the undecidability result holds even if the
system by itself is valid in that from every reachable global state it is possible
to reach the final global state; the schedule does not need to enforce this. Next
we define data-branching systems in which the only branching allowed is local
(data) branching; simultaneous polling on multiple input buffers is ruled out. We
show that for data-branching systems, one can effectively check whether there
exists a valid and regular quasi-static schedule. This result is obtained using
classical ideas from [8] and by exploiting a special scheduling policy, called the
canonical schedule. The canonical schedule is very similar to a normal form ob-
tained for determining the existential boundedness property of certain languages
of message sequence charts [6]. The crucial point here is that one cannot directly
apply the techniques of [8] because the canonical schedule uses zero tests on
buffers. Whereas, as is well known, it is often the case that zero tests lead to
undecidability.

Before considering related work, it is worth noting that our setting is strongly
oriented towards distributed tasks and their rounds-based executions. Hence it
does not cater for models capturing non-terminating computations such as Kahn
process networks [7]. At present, it is not clear whether our undecidability result
can be extended to such settings. Quasi-static scheduling (QSS) has been studied
before in a number of settings (see [9] for a survey). An early work in [2] studied
dynamic scheduling of boolean-controlled dataflow (BDF) graphs. Being Turing
powerful, the QSS problem for this class of systems is undecidable [2]. Later, [3]
proposed a heuristic to solve QSS on a different model called the YAPI model
by exploring only a subset of the infinite state space. There is however no proof
that the heuristic is complete even on a subset of YAPI models. The work [10]
considered QSS on a restricted class of Petri nets called Equal-Conflict Petri
nets and showed decidability. However the notion of schedulability used in [10]
is much weaker than the one in [3] or ours. Basically, under the scheduling regime
defined in [10], only a finite number of runs can arise, hence in effect, systems
with loops are not schedulable. In comparison, our system model is very close
to (general) Petri Nets. Our scheduling notion is essentially the one presented in
[3], slightly modified to fit our model. Our undecidability result is also harder to
obtain than the one in [2], since reachability is decidable for our model. Indeed,
the decidability of this quasi-static schedulability problem is stated as an open
problem in [3, 9]. The work [12] considered QSS with the setting of [3] and



312 P. Darondeau et al.

proposed a sufficient (but not necessary) condition for non-schedulability based
on the structure of the Petri net system model.

In the next section we present our model and the quasi-static scheduling prob-
lem. Section 3 establishes the undecidability result in the general setting. Section 4
imposes the data-branching restriction and shows the decidability of the quasi-
static scheduling problem under this restriction. The final section summarizes and
discusses our results. Proofs omitted, due to lack of space, can be found in [4].

2 Preliminaries

Through the rest of the paper, we fix a finite set P of process names. Accordingly,
we fix a finite set Ch of buffer names. To each buffer c, we associate a source
process and a destination process, denoted src(c) and dst(c) respectively. We
have src(c) �= dst(c) for each c ∈ Ch. For each p, we set Σ!

p = {!c | c ∈
Ch, src(c) = p} and Σ?

p = {?c | c ∈ Ch, dst(c) = p}. So, !c stands for the action
that deposits one item into the buffer c while ?c is the action that removes one
item from c. For each p, we fix also a finite set Σcho

p of choice actions. We assume
that Σcho

p ∩ Σcho
q = ∅ whenever p �= q. Members of Σcho

p will be used to label
branches arising from abstraction of “if...then...else”, “switch...” and “while...”
statements. For each p, we set Σp = Σ!

p ∪ Σ?
p ∪ Σcho

p . Note that Σp ∩ Σq = ∅
whenever p �= q. Finally, we fix Σ =

⋃
p∈P Σp.

A task system (abbreviated as “system” from now on) is a structure A =
{(Sp, s

in
p ,−→p, s

fi
p )}p∈P , where for each p ∈ P , Sp is a finite set of states, sinp is

the initial state, −→p ⊆ Sp × Σp × Sp is the transition relation, and sfip is the
final state. As usual, if sp ∈ Sp and δ = (ŝp, ap, ŝ

′
p) is in −→p with ŝp = sp, then

we call δ an outgoing transition of sp. We require the following conditions to be
satisfied:

– For each p ∈ P and sp ∈ Sp, if the set of outgoing transitions of sp is not
empty, then exactly one of the following conditions holds:
• Each outgoing transition of sp is in Sp × Σcho × Sp. Call such an sp a

(data-dependent) choice state.
• sp has precisely one outgoing transition (sp, !c, s′p), where c ∈ Ch, s′p ∈
Sp. Such an sp is called a sending state.

• Each outgoing transition of sp is in Sp × Σ?
p × Sp. Call such an sp a

polling state.
– For each process p, its final state sfip either has no outgoing transitions or is

a polling state.

Intuitively, the system works in rounds. A round starts as if a message from
the environment had just been received. At its final state, a process p should stay
watching buffers for messages possibly sent by other processes. If every process
is in its final state, and all buffers are empty, a reset operation triggered by
the environment may be performed to start a new round. This operation puts
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every process in its initial state from which the computation can start again.
Thus, computations belonging to different rounds will not get mixed up. (We do
not explicitly represent this reset operation in the system model.) For technical
convenience, we do not consider multi-rate communications, that is, multiple
items can be deposited to or picked up from a buffer at one time. However, our
results extend to multi-rate task systems easily.

For notational convenience, we shall assume that the system is deterministic,
that is for each p, for each sp ∈ Sp, if (sp, a1, s1p), (sp, a2, s2p) are in −→p,
then a1 = a2 implies s1p = s2p. All our results can be extended easily to non-
deterministic systems. The dynamics of a system A is defined by the transition
system TSA. A configuration is (s, χ) where s ∈

∏
p∈P Sp and χ is a mapping

assigning a non-negative integer to each buffer in Ch. We term members of∏
p∈P Sp as global states. We view a member s of

∏
p∈P Sp as a mapping from P

to
⋃

p∈P Sp such that s(p) ∈ Sp for each p. When no confusion arises, we write
sp for s(p). The initial configuration is (sres , χ0) where sres(p) = sresp for each p.
Further, χ0(c) = 0 for every c ∈ Ch. We define TSA = (RCA, (sres , χ0),=⇒A)
where the (possibly infinite) set RCA of reachable configurations and =⇒A ⊆
RCA ×Σ × RCA are the least sets satisfying the following:

– (sres , χ0) ∈ RCA.
– Suppose configuration (s, χ) is in RCA and (s(p), a, s′p) ∈−→p such that
a = ?c implies χ(c) ≥ 1. Then configuration (s′, χ′) ∈ RCA and
((s, χ), a, (s′, χ′)) ∈ =⇒A, with s′(p) = s′p, s′(q) = s(q) for q �= p, and
• If a =!c, then χ′(c) = χ(c) + 1 and χ′(d) = χ(d) for d �= c.
• If a =?c, then χ′(c) = χ(c)− 1 and χ′(d) = χ(d) for d �= c.
• If a ∈ Σcho

p , then χ′(c) = χ(c) for c ∈ Ch.

We define sfi to be the global state given by sfi(p) = sfip for each p. We term
(sfi , χ0) as the final configuration.

We extend =⇒A to RCA × Σ� × RCA in the obvious way and denote the
extension also by =⇒A. Namely, firstly (s, χ) ε=⇒A (s, χ) for any (s, χ) in RCA.
Secondly, if (s, χ) σ=⇒A (s′, χ′) and (s′, χ′) a=⇒A (s′′, χ′′) where σ ∈ Σ�, a ∈
Σ, then (s, χ) σa=⇒A (s′′, χ′′). A run of A is a sequence σ ∈ Σ∗ such that
(sres , χ0) σ=⇒ (s, χ) for some (s, χ) in RCA. We say that σ ends at configuration
(s, χ), and denote this configuration by (sσ, χσ). We let Run(A) denote the set
of runs of A. The run σ is complete iff (sσ, χσ) = (sfi , χ0), and we denote by
Runcpl(A) the set of complete runs of A.

Through the rest of this section, we fix a system A. We will often omit A
(e.g. write RC ,Runcpl instead of RCA,Runcpl(A)). A configuration (s, χ) in
RC is valid iff there exists σ with (s, χ) σ=⇒ (sfi , χ0). A run σ is valid iff σ
ends at a valid configuration. We say that A is deadend-free iff every member
of RC is valid. Note that one can effectively decide whether a given system is
deadend-free by an easy reduction to the home marking reachability problem of
Petri nets [5].

We show in Fig. 1 a system consisting of two processes P1 and P2 with c and
e being buffers directed from P1 to P2 while o is a buffer directed from P2 to
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P1. The initial states are A and 1 while E and 3 are final states. The sequence
b !e ?e !o ?o is a complete run. The run σ = a !c b !e ?e !o ?o is not complete, even
though sσ = (E, 3). For, we have χσ(c) = 1 �= 0. This system is not deadend-free,
since the run σ cannot be extended to a complete run.

2.1 Schedules

Let (s, χ) ∈ RCA be a reachable configuration. We say a ∈ Σ is enabled at
(s, χ) iff (s, χ) a=⇒ (s′, χ′) for some (s′, χ′) in RC . We say that p ∈ P is enabled
at (s, χ) iff some a ∈ Σp is enabled at (s, χ). A schedule for A is a partial
function Sch from Run to P which satisfies the following condition: Sch(σ) is
defined iff there is some action enabled at (sσ, χσ), and if Sch(σ) = p, then p
is enabled at (sσ, χσ). Notice that if σ is complete, then no action is enabled
at (sσ, χσ) and Sch(σ) = ε. For the schedule Sch, we denote by Run/Sch the
set of runs according to Sch and define it inductively as follows: ε ∈ Run/Sch.
If σ ∈ Run/Sch, Sch(σ) = p, a ∈ Σp and σa is a run, then σa ∈ Run/Sch. In
particular, if Sch(σ) = p and σ can be extended by two actions a, b of process p,
then the schedule must allow both a and b. It is easy to check that this definition
of a schedule corresponds to the one in [3].

We say that the schedule Sch is valid for A iff every run in Run/Sch can
be extended in Run/Sch ∩ Runcpl . Next we define RC/Sch = {(sσ, χσ) | σ ∈
Run/Sch}, the set of configurations reached via runs according to Sch. We say
that Sch is regular if RC/Sch is a finite set and Run/Sch is a regular language
(in particular, the system under schedule can be described with finite memory).
Finally, we say that A is quasi-static schedulable (schedulable for short) iff there
exists a valid and regular schedule for A. The quasi-static scheduling problem is
to determine, given a system A, whether A is schedulable. Again, it is easy to
check that this definition of quasi-static schedulability corresponds to the one
in [3]. In particular, the validity of the schedule corresponds to the fact that
the system can always answer a query of the environment (by reaching the final
configuration).

In the system of Fig. 1, the function Sch1(σ) = P with P = P1 if P1 is enabled
at state (sσ, χσ), P = P2 otherwise, is a schedule. However, it is not regular,
since (a !c)∗ ∈ Run/Sch1 goes through an unbounded number of configurations
(1, A, n, 0, 0). On the other hand, the function Sch2(σ) = P with P = P2 if P2
is enabled at state (sσ, χσ), P = P1 otherwise is a valid and regular schedule.

Fig. 1. A task system with two processes P1, P2
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Fig. 2. RC/Sch2

Fig. 2 shows the finite state space RC/Sch2 which has no deadend. In this figure,
a configuration is of the form XY αβγ, with X (Y ) the state of P2 (P1), and
α, β, γ denote the contents of buffer c, e and o respectively. That is, the system
of Fig. 1 is schedulable. Notice that a schedule does not need to prevent infinite
runs. It just must allow every run to be completed.

3 General Case and Undecidability

In this section and the next we will only present the main constructions and the
proof ideas. Details can be found in [4]. The main result of this section is:

Theorem 1. The quasi-static scheduling problem is undecidable. In fact, it re-
mains undecidable even when restricted to systems that are deadend-free.

Given a deterministic two counter machine M, we shall construct a system A
such that M halts iff A is schedulable. More precisely, the constructed A will
have the following property: if Sch is a valid schedule for A, then under Sch
the execution of A will simulate the execution of M. Further, if the execution
of Sch leads A to its final configuration, then in the corresponding execution
M will reach its halting state. We will show that whenever M halts, A has a
valid schedule Sch. Further, Sch must lead A to its final configuration in a finite
number of steps, hence it is a valid and regular schedule and A turns out to be
schedulable. On the other hand, if M does not halt, it will turn out that A does
not even have a valid schedule.

Let C1, C2 denote the two counters of M. Let halt denote the halting state
of M. We assume that, for each control state i other than halt , the behaviour of
M at i is given by an instruction in one of the following forms with j ∈ {1, 2}:

– (i, Inc(j), k): increment Cj and move to control state k.
– (i,Dec(j), k,m): if Cj > 0, then decrement Cj and move to control state k;

otherwise (Cj = 0), move to control state m.

Thus, M either stops at halt after a finite number of steps, or runs forever
without visiting halt .
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Naturally, we encode counters ofM by buffers of A. Incrementing a counter of
M amounts to sending a data item to the corresponding buffer. And decrement-
ing a counter of M amounts to picking up a data item from the corresponding
buffer. It is clear how the instruction (i, Inc(j), k) of M can be simulated. The
main difficulty is to simulate the instruction (i,Dec(j), k,m). Indeed, in a sys-
tem, a process can not branch to different states according to whether a buffer
is empty or not. Further, when a schedule Sch selects a process p to execute, Sch
has to allow all transitions of p that are enabled at the current state sp of p. How-
ever, the following observation will facilitate the simulation of an (i,Dec(j), k,m)
instruction. Suppose sp is a polling state with two outgoing transitions labelled
?a, ?b, where src(a) �= src(b). If prior to selecting p and assuming both buffers
a and b are currently empty, Sch can make the buffer a nonempty (for example,
by selecting src(a) to send a data item to a) and keep b empty (for example, by
not selecting src(b)), then when Sch selects p, only the ?a transition is enabled
and executed, while the ?b transition is ignored.

Proof Sketch of Theorem 1: Let M be a deterministic two-counter machine as
above with the associated notations. We construct a systemA such that any valid
schedule for A will simulate the execution of M. As discussed above, one can
then argue that M halts iff A is schedulable. To ease the presentation, we shall
allow a final state to be not a polling state and permit the outgoing transitions
of a local state to consist of both receive transitions and choice transitions. It is
tedious but easy to modify the transitions of A so that they strictly adhere to
the definition in section 2.

The system A has five processes A,C(1), C(2),GD ,GZ . Their communication
architecture is illustrated in Fig. 3 where a label ch on an arrow from process
p to process q represents a buffer ch with src(ch) = p and dst(ch) = q. For
j = 1, 2, the number of items stored in buffer c(j) will encode the value of
counter Cj of M. Process A will mimic the instructions of M. For instructions
of the form (i, Inc(j), k), A will need to invoke C(j) to help increment c(j).
For instructions of the form (i,Dec(j), k,m), A will invoke GD (“Guess Dec”),
GZ (“Guess Zero”) so that any valid schedule correctly simulates the emptiness
test of buffer c(j). Figure 4 displays the transition systems of GD , GZ , and
C(j), j = 1, 2, where an initial state is indicated by a pointing arrow, and a
final state is drawn as a double circle. Figure 5 illustrates the transition system

C(1) C(2)

GD GZ

A
c(1),inc−ok(1) c(2),inc−ok(2)

inc(1) inc(2)

gd gz

Fig. 3. The architecture of A
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!gd !gz

!c(j)

!inc−ok(j)
?inc(j)

Process GDProcess C(j) Process GZ

Fig. 4. Description of processes GD, GZ, C(j)

of A. For each (i, Inc(j), k) instruction of M, A contains transitions shown in
Fig. 5(i). For each (i,Dec(j), k,m) instruction of M, A contains transitions
shown in Fig. 5(ii), where the state sink is a distinguished state with no outgoing
transitions. Unlabelled transitions represent those with labels in Σcho. For the
halting state of M, A contains special transitions shown in Fig. 5(iii), whose
purpose is to empty the buffers c(1), c(2) after A reaches halt . The initial state
of A is the initial state of M, and the final state of A is halt .

Let Sch be a valid schedule for A. Suppose that, according to Sch, execution
of A arrives at a configuration in which A is at state i. There are two cases to
consider:

—Case (i): The corresponding instruction of M is (i, Inc(j), k).
It is easy to see that Sch will select A to execute !inc(j), then select C(j) three
times to execute ?inc(j), !c(j), !inc-ok(j), and finally select A to execute ?inc-
ok(j). In doing so, c(j) is incremented and A moves to state k.

—Case (ii): The corresponding instruction of M is (i,Dec(j), k,m).
Note that from state i of A, there are two outgoing transitions labelled ?gd, ?gz
respectively. Consider first the case where c(j) is greater than zero. We argue that
Sch has to guide A to execute only the transition ?gd. That is, Sch should ensure
that the ?gd transition of A is enabled by selecting GD . It must further ensure
that the ?gz transition of A is not enabled which it can do by not scheduling the
process GZ . By doing so, c(j) will be decremented and A will move to state k. If
on the other hand, ?gz is enabled while c(j) is greater than zero, then Sch will

!inc(j)

?inc−ok(j)

?gd ?gz

k m sink

i
halt

?c(2)?c(j)?c(j) ?c(1)

(i)
(ii) (iii)

i

k

Fig. 5. Transitions of process A
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allow A to take the ?gz transition. Consequently, Sch will allow A to reach state
m, as well as state sink . As sink has no outgoing transitions, the run which
leads A to sink is not valid. This however will contradict the hypothesis that
Sch is valid.

Similarly, for the case where c(j) is zero, it is easy to see that Sch has to guide
A to execute only ?gz. Further, after executing the ?gz transition, A will move
to state m only, since the corresponding ?c(j) transition will not be enabled.

We claim that M halts iff A is schedulable. To see this, suppose M halts.
Then from the above argument that M may be simulated by executing A under
a valid schedule, it is easy to construct a valid schedule Sch for A so that Sch
will lead A to the configuration in which each process is at its final state, and all
buffers except possibly c(1), c(2) are empty. From Fig. 5(iii), it follows that Sch
will eventually also empty c(1), c(2). Further, it also follows that Sch is regular
and thus A is schedulable.

Suppose M does not halt. Assume further that Sch is a valid schedule for A.
Then as explained above, Sch simulates the execution of M and thus process A
can never reach its final state halt . Thus Sch can not be valid, a contradiction. "#

4 Data-Branching and Decidability

We have observed that a schedule’s ability to indirectly discriminate between
two receive actions (e.g. ?gd and ?gz) of the same process is crucial to our
undecidability proof. The question arises whether the quasi-static scheduling
problem for systems in which such choices are not available is decidable. We
show here that the answer is indeed yes. In this context, we wish to emphasize
that the definition of quasi static scheduling used in [10] will permit only a finite
collection of runs and hence does not cater for systems with internal loops. Thus,
the problem solved in [10] is simpler than the one addressed here.

The system A is said to be data-branching iff for each p, for each sp ∈ Sp, if
sp is a polling state, then it has exactly one outgoing transition. Thus the only
branching states are those at which internal data-dependent choices take place.

Theorem 2. Given a data-branching system A, one can effectively determine
whether A is schedulable.

The rest of this section is devoted to the proof of theorem 2. We shall assume
throughout that A is data-branching. The proof relies crucially on the notion of
a canonical schedule for A, denoted Schca . The canonical schedule is positional,
that is, Schca(σ) = Schca(σ′) whenever runs σ,σ′ end at the same configuration.
Thus, we shall view Schca as a function from RC to P . Informally, at configura-
tion (s, χ), if there is a p ∈ P such that p is enabled and sp is a polling or choice
state, then Schca picks one such p. If there is no such process, then for each
process p enabled at (s, χ), sp has exactly one outgoing transition (sp, !cp, s′p). In
this case, Schca picks a process p with χ(cp) being minimum. Ties will be bro-
ken by fixing a linear ordering on P . The proof of theorem 2 consists of two steps.
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Firstly, we show that A is schedulable iff Schca is a valid and regular schedule
(Prop. 3). Secondly, we prove that one can effectively decide whether Schca is a
valid and regular schedule (Thm. 9).

4.1 The Canonical Schedule

We fix a total order ≤P on P and define the canonical schedule Schca for A
as follows. For each configuration (s, χ), let P (s,χ)

enable ⊆ P be the set of processes
enabled at (s, χ). We partition P (s,χ)

enable into P (s,χ)
poll , P (s,χ)

choice and P (s,χ)
send as follows.

For p ∈ P (s,χ)
enable , we have:(i) p ∈ P (s,χ)

poll iff sp is a polling state; (ii) p ∈ P (s,χ)
choice

iff sp is a choice state; (iii) p ∈ P (s,χ)
send iff sp is a sending state. We further define

the set P (s,χ)
send-min ⊆ P

(s,χ)
send as follows: for p ∈ P (s,χ)

send , we have p ∈ P (s,χ)
send-min iff

χ(cp) ≤ χ(cq) for each q ∈ P (s,χ)
send , where !cp (respectively, !cq) is the action of p

(respectively, of q) enabled at (s, χ).
The canonical schedule Schca maps each configuration (s, χ) to the process

Schca(s, χ) as follows. If P (s,χ)
poll ∪P (s,χ)

choice �= ∅, then Schca(s, χ) is the least member

of P (s,χ)
poll ∪P (s,χ)

choice with respect to ≤P . Otherwise, Schca(s, χ) is the least member

of P (s,χ)
send-min with respect to ≤P . It is straightforward to verify that Schca adheres

to the definition of schedule.

Proposition 3. A data-branching system A is schedulable iff Schca is a valid
and regular schedule for A.

To facilitate the proof of Prop. 3, we introduce now an equivalence on complete
runs. For σ ∈ Σ� and p ∈ P , let prj p(σ) be the sequence obtained from σ by
erasing letters not in Σp. We define the equivalence relation∼ ⊆ Runcpl×Runcpl

as follows: σ ∼ σ′ iff for every p ∈ P , prj p(σ) = prj p(σ′). We note a useful
relation between ∼ and schedules.

Observation 4. Let σ be a complete run of a data-branching system A. Suppose
that Sch is a schedule of A (not necessarily valid nor regular). Then there exists
a complete run σ′ such that σ′ ∼ σ and σ′ ∈ Run/Sch.

Observation 4 -whose proof can be found in [4]- implies that a run σ of Run/Sch
can be extended to a run in Runcpl/Sch iff it can be extended to a run in Runcpl .
This holds for every schedule Sch (not necessarily valid nor regular), provided
the system is data-branching. Using this observation, we can now prove that if
there exists a valid schedule, then Schca is valid too.

Lemma 5. A data-branching system A admits some valid schedule iff Schca is
valid for A.

The concept of an anchored path or run, that we introduce now will also play a
crucial role in what follows. If χ is a mapping from Ch to the non-negative inte-
gers, let max(χ)=max{χ(c) | c ∈ Ch}. For a run σ, let max(σ)=max{max(χσ′

) |
σ′ is a prefix of σ}. We say that σ is an anchored run iff max(σ) is non-null and
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max(σ) > max(χσ′
) for every strict prefix σ′ of σ. Anchored runs according to

Schca have a special property: every action enabled concurrently with and includ-
ing the last action of an anchored run is a send action on some buffer that holds a
maximum number of items. This property may be stated precisely as follows.

Observation 6. Let σ be an anchored run according to Schca , and let M =
max(σ). Then σ = σ̂!c for some c ∈ Ch and χσ(c) = M . Further, if a ∈ Σ is
enabled at (sσ̂, χσ̂), then a =!d for some d ∈ Ch and moreover χσ̂(d) = M − 1.

We are now ready to prove Prop. 3.

Proof. of Prop. 3
The if part is obvious. As for the only if part, let Sch be a valid and regular
schedule for A. First, it follows from lemma 5 that Schca is valid.

We prove that Schca is regular. We know that RC/Sch contains a finite num-
ber k of configurations. Since each action adds at most one item to one buffer,
for all σ ∈ Run/Sch, max(σ) ≤ k. We will prove that for all σca ∈ Run/Schca ,
max(σca ) ≤ k, which will imply that RC/Schca has a finite number of configu-
rations. Since we know that Schca is valid, it suffices to consider only complete
runs of Run/Schca .

Let σca ∈ Run/Schca be a complete run. Following observation 4, let σ ∈
Run/Sch be a complete run such that σ ∼ σca . Suppose Mca = max(σca) and
M = max(σ). Pick the least prefix τca of σca such that τca = Mca . Thus τca
is anchored. By observation 6, let τca = τ̂ca !c. Consider the sequence τ̂ca . For a
prefix τ of σ, we say τ is covered by τ̂ca iff for every p ∈ P , prj p(τ) is a prefix
of prj p(τ̂ca). Now pick τ to be the least prefix of σ such that τ is not covered
by τ̂ca . Such a τ exists, following the definition of ∼. Let τ = τ̂ a where a ∈ Σ is
the last letter of τ . We consider three cases.

—Case (i): a = !d for some d ∈ Ch .
The choice of τ implies prj pa

(τ̂ ) = prj pa
(τ̂ca). Thus, sτ̂ (pa) = sτ̂ca (pa). And !d is

enabled at configuration (sτ̂ca , χτ̂ca ). It follows from observation 6 that χτ̂ca (d) =
Mca − 1 (whether d = c or not). As dst(d) �= pa, the choice of τ also implies
prj dst(d)(τ̂ ) is a prefix of prj dst(d)(τ̂ca). Hence, we have #!d(τ̂ ) = #!d(τ̂ca) and
#?d(τ̂ ) ≤ #?d(τ̂ca), where #b(ρ) denotes the number of occurrences of letter b in
sequence ρ. It follows that χτ̂ (d) ≥ χτ̂ca (d). Combining these observations with
χτ̂ (d) ≤M − 1 then yields Mca ≤M .

–Case (ii): a = ?d for some d ∈ Ch.
By the same argument as in case (i), we have sτ̂ (pa) = sτ̂ca (pa). Also we
have prj pa

(τ̂) = prj pa
(τ̂ca), and prj src(d)(τ̂) is a prefix of prj src(d)(τ̂ca). Hence,

χτ̂ (d) ≤ χτ̂ca . It follows that ?d is enabled at configuration (sτ̂ca , χτ̂ca ). This con-
tradicts that at configuration (sτ̂ca , χτ̂ca ), the schedule Schca picks process src(c)
with sτ̂ca (src(c)) being a sending state.

—Case (iii): a ∈ Σcho
pa

.
Similar to Case (ii), we obtain a contradiction by noting that a is enabled at
(sτ̂ca , χτ̂ca ). "#
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4.2 Deciding Boundedness of the Canonical Schedule

The decision procedure for boundedness of Schca is similar to the decision pro-
cedure for the boundedness of Petri nets [8], but one cannot directly apply [8]
because RC/Schca cannot be represented as the set of reachable markings of a
Petri net. Indeed, the canonical schedule performs a zero-test when it schedules
a process ready to send, because it must check that all processes ready to re-
ceive have empty input buffers. We show that one can nevertheless build a finite
tree of configurations in RC/Schca that exhibits a witness for unboundedness iff
RC/Schca is not a finite set or Schca is not a valid schedule for A.

Towards this, the following partial order relation on anchored runs will play
a useful role. Let Runan/Schca be the subset of anchored runs of Run/Schca .
We define ≺ca⊆ Runan/Schca ×Runan/Schca as the least (strict) partial order
satisfying the following. For σ, σ′ ∈ Runan/Schca , (σ, σ′) is in ≺ca whenever
σ = σ̂!c, σ′ = σ̂′!c for some c ∈ Ch and:

– σ is a strict prefix of σ′.
– sσ̂(p) = sσ̂

′
(p) for every p ∈ P .

– χσ(d) ≤ χσ′
(d) for each d ∈ Ch.

Notice that, in particular, χσ(c) < χσ′
(c) since σ is a strict prefix of σ′ and

both are anchored. We show now a structural property of ≺ca which will serve
us to produce a finite coverability tree for all runs. An infinite run of A is an
infinite sequence ρ in Σω such that every finite prefix of ρ is in Run(A). We say
that an infinite run ρ is admitted by Schca iff every finite prefix of ρ is admitted
by Schca .

Proposition 7. Suppose ρ ∈ Σω is an infinite run admitted by Schca . Then
there exist two finite prefixes σ,σ′ of ρ such that either σ, σ′ end at the same
configuration, or σ ≺ca σ

′ (in which case σ, σ′ are both anchored).

Next we show that any pair of runs σ, σ′ with σ ≺ca σ
′ witnesses for the un-

boundedness of RC/Schca (or for the non-validity of Schca). This requires an
argument that differs from [8] because, even though σ′ = στ and both σ, σ′ are
according to Schca , στn may be incompatible with Schca for some n (because
of zero-tests). However, we shall argue that if there exist two anchored paths
satisfying σ ≺ca σ

′ then for every n = 1, 2, . . ., there exists a run ρn according
to Schca such that either max(ρn) ≥ n or ρn cannot be extended to reach a final
configuration.

Proposition 8. If there exist two anchored paths σ, σ′ in Runan/Schca such
that σ ≺ca σ

′, then either RC/Schca has an infinite number of configurations or
Schca is not valid.

Proof. Suppose σ′ = στ . Fix an arbitrary integer k > 1 and consider the se-
quence α = σττ . . . τ (k copies of τ). Following the definition of ≺ca , one verifies
that α is a run of A. If α cannot be extended to a complete run, then Schca is
not valid and this ends the proof. Else, by observation 4, there exists a complete
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run ρ ∼ αw which is according to Schca , for some w ∈ Σ�. LetM = max(σ) and
M ′ = max(σ′). Let σ = σ̂!c, σ′ = σ̂′!c, where c ∈ Ch, χσ(c) = M , χσ′

(c) = M ′.
We show below that max(ρ) ≥M + k · (M ′−M) and thus Schca is not regular.

Though στ is according to Schca , we note that α is not necessarily a prefix
of ρ. Let α = α̂!c. Consider the sequence α̂. For a prefix β of ρ, we say that β
is covered by α̂ iff for every p ∈ P , prj p(β) is a prefix of prj p(α̂). Pick β to be
the least prefix of ρ such that β is not covered by α̂. Let β = β̂b where b is the
last letter of β. Let pb ∈ P be the process such that b ∈ Σpb

. The choice of β
implies that prj pb

(β̂) = prj pb
(α̂), and thus sβ̂(pb) = sα̂(pb). Again we consider

three cases.
—Case (i). b = !d for some d ∈ Ch.
Thus, !d is enabled at configuration (sα̂, χα̂). Also, as dst(d) �= pb, we have
that prj dst(d)(β̂) is a prefix of prj dst(d)(α̂). Thus, we have #!d(β̂) = #!d(α̂), and
#?d(β̂) ≤ #?d(α̂), where #a(θ) denotes the number of occurrences of letter a in
sequence θ. It follows that χβ̂(d) ≥ χα̂(d).

Note that χα̂(c) = M + k · (M ′ −M) − 1 and χβ̂(d) ≤ max(ρ) − 1. Thus,
if d = c, then we have max(ρ) ≥ M + k · (M ′ − M). Otherwise, d �= c. By
definition of ≺ca , we conclude that !d is also enabled at both configurations
(sσ̂, χσ̂), (sσ̂

′
, χσ̂′

). Thus, we have χσ̂(d) = M − 1, χσ̂′
(d) = M ′ − 1, due to

observation 6. It follows that χα̂(d) = M − 1 + k · (M ′ −M). Consequently, we
also have max(ρ) =M + k · (M ′ −M).
—Case (ii). b = ?d for some d ∈ Ch.
Following the definition of ≺ca , we have sσ̂(pb) = sσ̂

′
(pb) = sα̂(pb) = sβ̂(pb). At

configuration (sσ̂, χσ̂), Schca picks process src(c) where sσ̂(src(c)) is a sending
state. Hence, pb is not enabled at (sσ̂, χσ̂). That is, χσ̂(d) = 0. Similarly, we have
χσ̂′

(d) = 0. As a result, χα̂(d) = 0.
However, by similar arguments as in case (i), one sees that #?d(β̂) = #?d(α̂)

and #!d(β̂) ≤ #!d(α̂). Thus, χβ̂(d) ≤ χα̂(d). We obtain a contradiction as ?d is
enabled at configuration (sβ̂ , χβ̂).
—Case (iii). b ∈ Σcho

pb
.

Similar to Case (ii), we obtain a contradiction by noting that pb is enabled at
(sσ̂, χσ̂). "#

The set of all runs of a data-branching system under the canonical schedule
Schca forms a possibly infinite tree (any data dependent choice performed by a
scheduled process induces several branches). Following Karp and Miller’s ideas,
one may stop exploring this tree whenever coming again to a configuration al-
ready visited, or obtaining an anchored run σ′ that extends a smaller anchored
run σ, i.e. σ ≺ca σ

′. Based on this construction of a finite coverability tree, we
obtain the following theorem.

Theorem 9. One can effectively determine whether Schca is valid and regular.

Proof. We construct inductivelyW , a tree of valid runs admitted by Schca . First,
ε is in W . Then, suppose that σ is in W and σa is a run admitted by Schca ,
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where a ∈ Σ. If there exists σ′ ∈ W such that σ′ ≺ca σa, then by proposition 8,
we can stop the construction of W and report that either Schca is not regular or
Schca is not valid. Otherwise, we check if there exists τ ∈ W such that τ ends
at the same configuration as σa. If such a τ does not exist, then we add σa to
W (otherwise we just ignore σa).

We first prove that the construction of W stops after a finite number of steps.
Suppose otherwise. Then members ofW form an infinite tree. By König’s lemma,
there exists an infinite sequence ρ of Σω such that every finite prefix of ρ is in
W . Applying proposition 7, we get that there exist two finite prefixes σ,σ′ of ρ
such that σ is a prefix of σ′ and either σ, σ′ end at the same configuration or
σ ≺ca σ

′. In both cases, the construction would not extend σ′, hence ρ is not an
infinite path, a contradiction.

If the above construction ofW terminates without finding σ ≺ca σ
′ (reporting

that Schca is not regular or that Schca is not valid), then {(sσ, χσ) | σ ∈ W} is
exactly the set of configurations of Schca(RC), that is we have the proof that
RC/Schca is a finite set, and we can test easily whether Schca is valid. "#

Thm. 2 is now settled by applying Prop. 3 and Thm. 9.

5 Discussion

In this paper, we have considered quasi-static scheduling as introduced in [3] and
have provided a negative answer to an open question posed in [9]. Specifically we
have shown that for the chosen class of infinite state systems, checking whether
a system is quasi-static schedulable is undecidable. We have then identified the
data-branching restriction, and proved that the quasi-static scheduling problem
is decidable for data-branching systems. Further, our proof constructs both the
schedule and the finite state behaviour of the system under schedule. An im-
portant concept used in the proof is the canonical schedule that draws much
inspiration from the study of existential bounds on channels of communicating
systems [6]. In the language of [6], our result can be rephrased as: it is decid-
able whether a weak FIFO data branching communicating system is existentially
bounded, when all its local final states are polling states. We recall that the same
problem is undecidable [6] for strong FIFO communicating systems, even if they
are deterministic and deadend free. Our abstraction policy is similar to the one
used in [11]. However, we use existential boundedness while [11] checks whether
a communicating system is universally bounded, which is an easier notion to
check. Note that the canonical schedule may be easily realized in any practical
context: it suffices to prevent any process from sending to a buffer that already
contains the maximum number of items determined from that schedule. It is
worth recalling that these bounds are optimal.

Deadends play an important role in the notion of quasi-static schedulability
studied here and previously. However, quasi-static scheduling may stumble on
spurious deadends due to the modelling of the task code by an abstract system.
The algorithm we have sketched for constructing the canonical schedule may
be combined with an iterative removal of spurious deadends. A more ambitious
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extension would be to accommodate non data-branching systems. For this pur-
pose, it would be interesting to formulate a notion of quasi-static schedulabilty
based purely on existential boundedness and to study decidability issues in this
setting.
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Abstract. We consider imperfect-information parity games in which
strategies rely on observations that provide imperfect information about
the history of a play. To solve such games, i.e., to determine the win-
ning regions of players and corresponding winning strategies, one can use
the subset construction to build an equivalent perfect-information game.
Recently, an algorithm that avoids the inefficient subset construction
has been proposed. The algorithm performs a fixed-point computation
in a lattice of antichains, thus maintaining a succinct representation of
state sets. However, this representation does not allow to recover winning
strategies.

In this paper, we build on the antichain approach to develop an algo-
rithm for constructing the winning strategies in parity games of imper-
fect information. We have implemented this algorithm as a prototype. To
our knowledge, this is the first implementation of a procedure for solving
imperfect-information parity games on graphs.

1 Introduction

Parity games capture the algorithmic essence of fundamental problems in state-
based system analysis [11]. They arise as natural evaluation games for the
μ-calculus, an expressive logic that subsumes most specification formalisms for
reactive systems, and they are closely related to alternating ω-automata [7].

In the basic variant, a parity game is played on a finite graph with nodes
labeled by natural numbers denoting priorities. There are two players, Player 1
and Player 2, who take turns in moving a token along the edges of the graph
starting from a designated initial node. In a play, the players thus form an infinite
path, and Player 1 wins if the least priority that is visited infinitely often is even;
otherwise Player 2 wins. These are games of perfect information: during the play
each of the players is informed about the current position of the token. One key
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property of parity games is memoryless determinacy: from every initial node,
either Player 1 or Player 2 has a winning strategy that does not depend on the
history of the play [5]. As a consequence, a winning strategy can be represented
as a subset of the edges of the graph, and the problem of constructing a winning
strategy is in NP ∩ coNP.

The perfect-information setting is often not sufficient in practice. The need
to model uncertainty about the current state of a system arises in many situa-
tions. For instance in controller-synthesis applications, certain parameters of the
plant under control may not be observable by the controller. Likewise in multi-
component design, individual components of a complex system may have private
variables invisible to other components. As a way to handle state-explosion prob-
lems, one may accept a loss of information in a concrete model in order to obtain
a manageable abstract model of imperfect information.

One fundamental question is how to model imperfect information. In the clas-
sical theory of extensive games, this is done by partitioning the game tree into
information sets signifying that a player cannot distinguish between different
decision nodes of the same information set [6]. Technically, this corresponds to
restricting the set of strategies available to a player by requiring a uniform choice
across all nodes of an information set. However, for the algorithmic analysis of
games of infinite duration on graphs, the information sets need to be finitely
represented. Such a model is obtained by restricting to strategies that rely on
observations corresponding to a partitioning of the game graph.

The model of imperfect information games that we consider here was origi-
nally introduced in [10]. Like in the perfect-information case, the game is played
by two opposing players on a finite graph. The nodes of the graph, called loca-
tions, are partitioned into information sets indexed by observations. Intuitively,
the only visible information available to Player 1 during a play is the observation
corresponding to the current location, whereas Player 2 has perfect information
about the current location of the game. The starting location is known to both
players. Following [2], the parity winning condition is defined in terms of priori-
ties assigned to observations.

The basic algorithmic problems about parity games are (1) to determine the
winning region of a player, that is, the set of initial locations from which he has a
winning strategy, and (2) to construct such a winning strategy. One straightfor-
ward way to solve parity games of imperfect information is based on the following
idea [10,2]: after an initial prefix of a play, Player 1 may not know in which pre-
cise location the play currently is but, by keeping track of the history, he can
identify a minimal set of locations that is guaranteed to contain the current
location. Such a set, to which we refer as a cell, reflects the knowledge derived
by a player from past play. Via a subset construction that associates moves in
the game to transitions between cells, the original imperfect-information game
over locations is transformed into an equivalent game of perfect information over
cells. This approach, however, incurs an exponential increase in the number of
states and is therefore inefficient.
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For computing the winning region of a game, an algorithm that avoids the
explicit subset construction has been proposed recently in [2]. The algorithm
exploits a monotonicity property of imperfect-information games: if a cell is
winning for Player 1, that is, if he wins from every location of the cell, then he
also wins from every subset of the cell. Intuitively, the subcell represents more
precise knowledge than the entire cell. It is therefore sufficient to manipulate
sets of cells that are downward-closed in the sense that, if a cell belongs to
the set, then all its subcells also belong to it. As a succinct representation for
downward-closed sets of cells, the algorithm maintains antichains that consist of
maximal elements in the powerset lattice of cells. The winning region can now be
computed symbolically by evaluating its characterization as a μ-calculus formula
over the lattice. One particular effect of this procedure is that the discovery
of winning cells propagates backwards, rather than forwards from the initial
location, and thus avoids the construction and exploration of cells that are not
relevant for solving the game.

On many instances, the antichain algorithm performs significantly better than
the subset construction for computing winning regions. However, in contrast to
the latter, the antichain algorithm does not construct winning strategies. In-
deed, we argue that there is no direct way to extract a winning strategy from
the symbolic fixed-point computation. In terms of logic, the algorithm evaluates
a μ-calculus formula describing the winning region, which corresponds to eval-
uating a monadic expression with second-order quantifiers that range over (sets
of) nodes in the game graph. On the other hand, strategies are not monadic ob-
jects; already memoryless location- or observation-based strategies are composed
of binary objects, namely, edges of the graph or pairs of cells. In particular, we
show that already in parity games of perfect information knowing the winning
region of a game does not make the problem of constructing a winning strategy
easier. In imperfect-information games there are additional sources of complex-
ity: the size of a winning strategy may be exponentially larger than the winning
region, already for reachability objectives. Nevertheless, the construction of win-
ning strategies is crucial for many applications such as controller synthesis or
counterexample-guided abstraction-refinement [8].

In this paper, we present an algorithm for constructing winning strategies
in parity games of imperfect information. One main concern is to avoid the
subset construction. To accomplish this, our algorithm works with symbolic rep-
resentations of set of cells and builds on the antichain technique. It is based on
an elementary algorithm proposed by McNaughton [9] and presented for parity
games by Zielonka [13]. This algorithm works recursively: from the viewpoint
of Player 1, in each stage a smaller game is obtained by removing the attractor
region from which Player 2 can ensure to reach the minimal odd priority. This
operation of removal marks the main difficulty in adapting the algorithm to an-
tichains, as the residual subgame is in general not downward-closed. Intuitively,
switching between the sides of the two players breaks the succinct representa-
tion. We overcome this difficulty by letting, in a certain sense, Player 1 simulate
Player 2. Technically, this amounts to replacing two alternating reachability



328 D. Berwanger et al.

computations by the computation of a strategy that simultaneously satisfies a
reachability and a safety objective.

We have implemented the algorithm as a prototype. To our knowledge, this
is the first automatic tool for solving imperfect-information parity games on
graphs. A full version of this paper with detailed proofs is available in [1].

2 Definitions

Let Σ be a finite alphabet of actions and let Γ be a finite alphabet of obser-
vations. A game structure of imperfect information over Σ and Γ is a tuple
G = (L, l0, Δ, γ), where L is a finite set of locations (or states), l0 ∈ L is the ini-
tial location, Δ ⊆ L×Σ×L is a set of labelled transitions, and γ : Γ → 2L \∅ is
an observability function that maps each observation to a set of locations. Abus-
ing notation, we usually identify the set γ(o) with the observation symbol o. We
require the following two conditions on G: (i) for all � ∈ L and all σ ∈ Σ, there
exists �′ ∈ L such that (�, σ, �′) ∈ Δ, i.e., the transition relation is total, and (ii)
the set {γ(o) | o ∈ Γ} partitions L. For each � ∈ L, let obs(�) = o be the unique
observation such that � ∈ γ(o). In the special case where Γ = L and obs(�) = �,
for all � ∈ L, we say that G is a game structure of perfect information over Σ. For
infinite sequences of locations π = �1�2 . . . , we define obs(π) = o1o2 . . . where
obs(�i) = oi for all i ≥ 1, and similarly for finite sequences of locations. For
σ ∈ Σ and s ⊆ L, we define postσ(s) = {�′ ∈ L | ∃� ∈ s : (�, σ, �′) ∈ Δ} as the
set of σ-successors of locations in s.

The game on G is played in rounds. In each round, Player 1 chooses an
action σ ∈ Σ, and Player 2 chooses a successor �′ of the current location � such
that (�, σ, �′) ∈ Δ. A play in G is an infinite sequence π = �1�2 . . . of locations
such that (i) �1 = l0, and (ii) for all i ≥ 0, there exists σi ∈ Σ such that
(�i, σi, �i+1) ∈ Δ.

A strategy for Player 1 in G is a function α : Γ+ → Σ. The set of possible
outcomes of α in G is the set Outcome(G,α) of plays π = �1�2 . . . such that
(�i, α(obs(�1 . . . �i)), �i+1) ∈ Δ for all i ≥ 1. We say that a strategy α is mem-
oryless if α(ρ · o) = α(ρ′ · o) for all ρ, ρ′ ∈ Γ ∗. We say that a strategy uses
finite memory if it can be represented by a finite-state deterministic transducer
(M,m0, λ, δ) with finite set of states M (the memory of the strategy), initial
state m0 ∈M , where λ : M → Σ labels states with actions, and δ : M ×Γ →M
is a transition function labeled by observations. In state m, the strategy rec-
ommends the action λ(m), and when Player 2 chooses a location with observa-
tion o, it updates the internal state to δ(m, o). Formally, (M,m0, λ, δ) defines
the strategy α such that α(ρ) = λ(δ̂(m0, ρ)) for all ρ ∈ Γ+, where δ̂ extends δ
to sequences of observations in the usual way. The size of a finite-state strategy
is the number |M | of states of its transducer.

An objective for a game structure G = (L, l0, Δ, γ) is a set φ ⊆ Γω of infinite
sequences of observations. A strategy α for Player 1 is winning for an objective φ
if obs(π) ∈ φ for all π ∈ Outcome(G,α). We say that set of locations s ⊆ L is
winning for φ if there exists a strategy α for Player 1 such that α is winning
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for φ in G� := (L, �,Δ, γ) for all � ∈ s. A game is a pair (G,φ) consisting of a
game structure and a matching objective. We say that Player 1 wins the game,
if he has a winning strategy for the objective φ.

We consider the following classical objectives. Given a set T ⊆ Γ of target
observations, the safety objective Safe(T ) requires that the play remains within
the set T , that is, Safe(T ) = {o1o2 . . . | ∀k ≥ 1 : ok ∈ T }. Dually, the reachability
objective Reach(T ) requires that the play visits the set T at least once, that is,
Reach(T ) = {o1o2 . . . | ∃k ≥ 1 : ok ∈ T }. The Büchi objective Buchi(T ) requires
that an observation in T occurs infinitely often, that is, Buchi(T ) = {o1o2 . . . |
∀N · ∃k ≥ N : ok ∈ T }. Dually, the coBüchi objective coBuchi(T ) requires that
only observations in T occur infinitely often. Formally, coBuchi(T ) = {o1o2 . . . |
∃N · ∀k ≥ N : ok ∈ T }. Finally, given a priority function p : Γ → N that
maps each observation to a non-negative integer priority, the parity objective
Parity(p) requires that the minimum priority that appears infinitely often is even.
Formally, Parity(p) = {o1o2 . . . | min{p(o) | ∀N · ∃k ≥ N : o = ok} is even}. We
denote by coParity(p) the complement objective of Parity(p), i.e., coParity(p) =
{o1o2 . . . | min{p(o) | ∀N · ∃k ≥ N : o = ok} is odd}. Parity objectives are
a canonical form to express all ω-regular objectives [12]. In particular, they
subsume safety, reachability, Büchi and coBüchi objectives.

Notice that objectives are defined as sets of sequences of observations, and
they are therefore visible to Player 1. A game with a safety (resp. reachability)
objective defined as a set of plays can be transformed into an equivalent game
with a visible safety (resp. reachability) objective in polynomial time.

3 Antichain Algorithm

Let Σ be an alphabet of actions and let Γ be an alphabet of observations. We
consider the problem of deciding, given a game structure G = (L, l0, Δ, γ) and
a parity objective φ, whether Player 1 has a winning strategy for φ in G. If
the answer is Yes, we ask to construct such a winning strategy. This prob-
lem is known to be Exptime-complete already for reachability objectives [10,2].
The basic algorithm proposed in [10] constructs a game (GK, φ′) such that (i)
GK = (S, s0, Δ′, γ′) is a game structure of perfect information over the action
alphabet Σ, and (ii) Player 1 has a winning strategy for φ in G if and only if
Player 1 has a winning strategy for φ′ in GK. The game structure GK is obtained
by a subset construction where S = 2L \ {∅} and (s1, σ, s2) ∈ Δ′ if and only if
there exists an observation o ∈ Γ such that s2 = postσ(s1)∩ γ(o) and s2 �= ∅. In
the sequel, we call a set s ⊆ L a cell. A cell summarizes the current knowledge
of Player 1, i.e., the set of possible locations in which the game G can be after
the sequence of observations seen by Player 1. Notice that every cell reachable
in GK is a subset of some observation, and so the parity objective φ′ is defined
by extending to cells in the natural way the priority function p that defines φ.
Notice that an objective for GK is a set of infinite sequences of cells, since lo-
cations and observations coincide in games of perfect information. In (GK, φ′),
memoryless winning strategies always exist. Hence, they can be converted into
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winning strategies in (G,φ) that depend only on the current cell in GK. Due to
the explicit construction of GK, this approach involves an exponential blow-up
of the original game structure.

In [2], an alternative algorithm is proposed to solve games of imperfect in-
formation. Winning cells are computed symbolically, avoiding the exponential
subset construction. The algorithm is based on the controllable predecessor op-
erator CPre : 2S → 2S which, given a set of cells q, computes the set of cells q′

from which Player 1 can force the game into a cell of q in one round. Formally,

CPre(q) = {s ∈ S | ∃σ ∈ Σ · ∀s′ : if (s, σ, s′) ∈ Δ′ then s′ ∈ q}.

The key of the algorithm is that CPre(·) preserves downward-closedness, which
intuitively means that if Player 1 has a strategy from s to force the game to be
in q in the next round, then he also has such a strategy from all s′ ⊆ s because
then Player 1 has a more precise knowledge in s′ than in s. Formally, a set q of
cells is downward-closed if s ∈ q implies s′ ∈ q for all s′ ⊆ s. If q is downward-
closed, then so is CPre(q). Since parity games can be solved by evaluating a
μ-calculus formula over the powerset lattice (S,⊆,∪,∩), and
since CPre(·), ∩ and ∪ preserve downward-closedness, it follows that a
symbolic algorithm maintains only downward-closed sets q of cells, and
can therefore use a compact representation, namely their maximal elements
9q: = {s ∈ q | s �= ∅ and ∀s′ ∈ q : s �⊂ s′}, forming antichains of cells, i.e., sets
of ⊆-incomparable cells. The set A of antichains is partially ordered as follows:
for q, q′ ∈ A, let q � q′ iff ∀s ∈ q · ∃s′ ∈ q′ : s ⊆ s′. The least upper bound
of q, q′ ∈ A is q # q′ = 9{s | s ∈ q or s ∈ q′}:, and their greatest lower bound
is q " q′ = 9{s ∩ s′ | s ∈ q and s′ ∈ q′}:. The partially ordered set (A,�,#,")
forms a complete lattice. We view antichains of location sets as a symbolic
representation of ⊆-downward-closed sets of cells.

The advantage of the symbolic antichain approach over the explicit subset
construction has been established in practice for different applications in model-
checking (e.g. [3,4]). The next lemma shows that the antichain algorithm may
be exponentially faster than the subset construction.

Lemma 1 (See also [3]). There exists a family (Gk)k≥2 of reachability games
of imperfect information with k locations such that, on input Gk the subset-
construction algorithm runs in time exponential in k whereas the antichain al-
gorithm runs in time polynomial in k.

The antichain algorithm computes a compact representation of the set of win-
ning cells. However, it does not produce a winning strategy. We point out that,
already for parity games with perfect information, if there exists a polynomial-
time algorithm that, given a game and the set of winning locations for Player 1,
constructs a memoryless winning strategy, then parity games can be solved in
polynomial time.

Proposition 2. The following two problems on parity games with perfect infor-
mation in which Player 1 wins are polynomial-time equivalent.
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�0 �1 �2

b a

a b

Fig. 1. A reachability game G

(i) Given a game, construct a memoryless winning strategy.
(ii) Given a game and the set of winning locations for Player 1, construct a

memoryless winning strategy.

Proof. For any instance of problem (i), that is, a game G where Player 1 wins
from the initial location l0, we construct an instance (G′,W ) of problem (ii)
in such a way that every memoryless winning strategy in G′ corresponds to a
winning strategy for G. (The converse is trivial.)

Without loss, we assume that no priorities in G are less than 2. The game G′

is obtained by adding to G a “reset” location z of priority 1, with transitions that
allow Player 1 to reach z from any location ofGwhere he moves, and with one tran-
sition from z back to l0. In the new game, Player 1 wins from any location by first
moving via z to l0 and then following the winning strategy he has in G. Thus, G′

together with the set of all locations is an instance of problem (ii). Obviously this
can be constructed in polynomial time. Let now α be a memoryless winning strat-
egy in G′. No play starting from l0 that follows α can reach z, otherwise Player 1
loses. Thus, α is readily a winning strategy in the original game G. �
We also argue that, in games with imperfect information, even for simple
reachability objectives the antichain representation of the set of winning cells
may not be sufficient to construct a winning strategy. Consider the game G
depicted in Fig. 1, with reachability objective Reach({�2}). The observations
are {�0, �1} and {�2}. Since CPre({{�2}}) = {{�1}} (by playing action b) and
CPre({{�1}, {�2}}) = {{�0, �1}} (by playing action a), the fixed-point computed
by the antichain algorithm is {{�2}, {�0, �1}}. However, from {�0, �1}, after play-
ing a, Player 1 reaches the cell {�1} which is not in the fixed-point (however, it is
subsumed by the cell {�0, �1}). Intuitively, the antichain algorithm has forgotten
which action is to be played next. Notice that playing a again, and thus forever,
is not winning. The next lemma formalizes this intuition.

Lemma 3. There exists a family of games Gk with O(p(k)) many locations for
a polynomial p, and a reachability objective φ, such that the fixed point computed
by the antichain algorithm for (Gk, φ) is of polynomial size in k, whereas any
finite-memory winning strategy for (Gk, φ) is of exponential size in k.

We first present the ingredients of the proof informally. Let p1, p2, . . . be the list
of prime numbers in increasing order. For k ≥ 1, let Σk = {1, . . . , k}. The action
alphabet of the game Gk is Σk ∪ {#,⊥}. The game is composed of subgames
Hi, each consisting of a loop over pi many locations �1, . . . , �pi . From a location
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Goal

H1 H2

⊥ ⊥

Σ2 Σ2

Σ2 Σ2\{1}
Σ2

Σ2

Σ2\{2}

# #

#

Fig. 2. The game G2

�j all actions in Σk lead to �j+1 and from the last location �pi Player 1 can
return to the initial location �1 with any action in Σk except i. Formally, for
all 1 ≤ i ≤ k, we define the subgame Hi with location space Li = {�1, . . . , �pi},
initial location �1, and transition relation Ei = {(�j , σ, �j+1) | 1 ≤ j ≤ pi−1∧σ ∈
Σk} ∪ {(�pi , σ, �1) | σ ∈ Σk \ {i}}. In the sequel, we assume that the location
spaces of all Hi are disjoint, e.g. by adding a superscript i to the locations of Li

(Li = {�i1, . . . , �ipi
}).

Fig. 2 shows the game Gk for k = 2. In general, in Gk, there is a unique trivial
observation, so it is a blind game. We also assume that playing a particular action
in a location where it is not allowed leads to a sink location from which Goal is
not reachable. The plays start in location �0 where every move in Σk is allowed.
The next location can be any of the initial locations of the subgames Hi. Thus,
Player 1 can henceforth play any action σ ∈ Σk, except in the last location �pi

where playing σ = i would lead to the sink. As he does not know in which of the
Hi the play currently is, he should avoid playing σ = iwhenever his knowledge set
contains qi

pi
. However, after a certain number of steps (namely p∗k =

∏k
i=1 pi), the

current location of the game will be one of the �ipi
. Then, taking a transition labeled

by # necessarily leads to Goal. The # is not allowed in any other location, so that
Player 1 needs to count the first p∗k steps before playing that move. Notice that
after the first round, Player 1 could play⊥, but this would not reduce the amount
of memory needed to win. However, it shows that he is winning uniformly from all
locations of the subgames Hi. Since the size p∗k of the strategy is exponential in
the size

∑k
i=1 pi of the game, the theorem follows.

Proof of Lemma 3. The location space of Gk is the disjoint union of L1, . . . , Lk

and {q0,Goal,Bad}. The initial location is q0, the target observation consists of
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Goal, and the sink location is Bad. The transition relation contains each set Ei,
the transitions (�ij ,⊥, �0), and the transitions (�0, σ, �i1) and (�ipi

,#,Bad) for all
1 ≤ i ≤ k, 1 ≤ j ≤ pi and σ ∈ Σk. The transition relation is made total by
adding the transitions (q, σ,Bad) for each location � of Gn and σ ∈ Σk ∪ {#}
such that there is no transition of the form (q, σ, q′) for q′ �= Bad. There is only
one trivial observation, i.e., the observation alphabet Γ is a singleton.

First we show that Player 1 wins Gk. As there is exactly one observation, a
strategy for Player 1 is a function λ : N≥0 → Σk ∪{#,⊥}. We define the sets Sj

such that any strategy λ such that λ(j) ∈ Sj for all j ≥ 1 is winning for Player
0. We take S1 = Σk, Sj = {i ∈ Σk | j − 1 mod pi �= 0} for 2 ≤ j ≤ p∗k. Notice
that Sj �= ∅ because the least common multiple of p1, . . . , pk is p∗k. Finally, for
j > p∗k we take Sj = {#}. It is easy to show that any strategy defined by these
sets is winning for Player 1.

For the second part of the theorem assume, towards a contradiction, that
there exists a finite-state winning strategy λ̂ with less than p∗k states. Clearly,
when playing any winning strategy, the (p∗k + 1)-th location of the play in Gk

must be �ipi
for some i ∈ {1, . . . , k}. Moreover, each of the states �ipi

could be
the current one, depending on the initial choice of Player 2 (after the first move
of Player 1). Therefore, after p∗k steps, any winning strategy must play #. In the
case of λ̂, the state of the automaton for λ̂ after p∗k steps has necessarily been
visited in one of the previous steps. This means that # has been played before
and thus λ̂ is not a winning strategy as for all j < p∗k, one of the subgames Hi

is not in location �ipi
after j steps of play, and thus playing # leads to a loss for

Player 1. �

Finally, we show that it is not trivial to efficiently compute CPre(·). In the
antichain representation, the controllable predecessor operator is defined as

CPre(q) =
⌈
{s ⊆ L | ∃σ ∈ Σ · ∀o ∈ Γ · ∃s′ ∈ q : postσ(s) ∩ γ(o) ⊆ s′}

⌉
,

or equivalently as

CPre(q) =
⊔

σ∈Σ

�
o∈Γ

⊔

s′∈q

{p̃reσ(s′ ∪ γ(o))}, (1)

where p̃reσ(s) = {s′ ∈ S | postσ({s′}) ⊆ s} and γ(o) = L \ γ(o).
Notice that the least upper bound of a set {�1, . . . , �k} of antichains can be

computed in polynomial time, whereas a naive algorithm for the greatest lower
bound is exponential. The next lemma shows that, as long as we use a reasonable
representation of antichains which allows to decide in polynomial time whether
an antichain contains a set larger than n, it is unlikely that CPre(·) is computable
in polynomial time.

Lemma 4. The following problem is NP-hard: given a game of imperfect in-
formation G, an antichain q and an integer n, decide whether there exists a set
B ∈ CPre(q) with |B| ≥ n.



334 D. Berwanger et al.

4 Strategy Construction with Antichains

We present a procedure to construct a winning strategy for a parity game of im-
perfect information G = (L, l0, Δ, γ) over the alphabets Σ and Γ . It is sometimes
convenient to reason in terms of the equivalent perfect-information game GK ob-
tained via the subset construction in Section 3. Let C denote the set of all cells s
such that s ⊆ γ(o) for some o ∈ Γ . Thus, C contains all locations of GK. For
R ⊆ C, a cell strategy on R is a memoryless strategy α : R → Σ for Player 1
in GK. Given an objective φ ⊆ Cω in GK, we define

WinR(φ) := { s ∈ R | there exists a cell strategy α such that

Outcome(GK
s , α) ⊆ φ ∩ Safe(R) }.

In words, WinR(φ) consists of cells s such that given the initial cell is s there
exists a winning cell strategy for Player 1 to ensure φ while maintaining the
game GK in R.

In Algorithm 1, we present a procedure to construct a winning cell strategy
in GK for objectives of the form

Reach(T ) ∪ (Parity(p) ∩ Safe(F)),

where T ,F ⊆ C are downward-closed sets of cells and p : Γ → N is a pri-
ority function over observations. As p can be naturally extended to cells, the
set Parity(p) contains the sequence of cells such that the minimal priority cell
appearing infinitely often is even. The parity objective Parity(p) corresponds to
the special case where F = C and T = ∅. Note that a winning strategy need
not be defined on T since Reach(T ) is satisfied for all cells in T . Memoryless
strategies are sufficient for this kind of objective in games of perfect information.
Thus, we can restrict our attention without loss to memoryless cell strategies.

Informal description. The algorithm is based on two procedures ReachOrSafe
(T ,F) and ReachAndSafe(T ,F) that use antichains to compute the set of win-
ning cells and a winning strategy for the objectives Reach(T ) ∪ Safe(F) and
Reach(T )∩Safe(F), respectively, given downward-closed sets of cells T ⊆ C and
F ⊆ C. For perfect-information games, it is known that memoryless winning
strategies exist for such combinations of safety and reachability objectives.

The procedure is called recursively, reducing the number of priorities. Given
a parity function p we denote by p−2 the parity function such that for all o ∈ Γ
we have (p − 2)(o) = p(o) if p(o) ≤ 1, and (p − 2)(o) = p(o) − 2 otherwise.
For i ≥ 0, we denote by Cp(i) = { s ∈ C | s ⊆ γ(o), o ∈ Γ, p(o) = i } the set of
cells with priority i. Let W1 and W2 be disjoint sets of cells, and let α1 be a cell
strategy on W1 and α2 be a cell strategy on W2. We denote by α1 ∪ α2 the cell
strategy on W1∪W2 such that for all s ∈W1∪W2, we have (α1∪α2)(s) = α1(s)
if s ∈W1, and (α1 ∪ α2)(s) = α2(s) otherwise.

Without loss of generality we assume that the cells in the target set T are
absorbing (i.e., have self-loops only). In line 1 of Algorithm 1, we compute W =
WinC(φ) using the antichain algorithm of [2]. Since we assume that cells in T are



Strategy Construction for Parity Games with Imperfect Information 335

Algorithm 1. Imperfect-Information Game Solver - Solve(G, T , F , p)
Input : A game structure G with target T ⊆ C, safe set F ⊆ C and parity

function p on Γ .

Output : W = WinC(φ) where φ := Reach(T ) ∪ (Parity(p) ∩ Safe(F)), and a
winning cell strategy α on W \ T for φ.

begin

1 W ← WinC(φ)
2 (W ∗, α∗) ← ReachAndSafe(T , W )
3 (W0, α0) ← ReachAndSafe(W ∗ ∪ (Cp(0) ∩ W ),W ))
4 Let α′

0 be a cell strategy on (Cp(0) ∩ W ) \ W ∗ such that
5 postα′

0(s)(s) ∩ γ(o) ∈ W for all o ∈ Γ and s ∈ (Cp(0) ∩ W ) \ W ∗

6 α0 ← α0 ∪ α′
0 ∪ α∗

7 i ← 0
8 repeat

9 Ai ← W \ Wi

10 if W ⊆ Cp(0) ∪ Cp(1) ∪ Cp(2) then

11 (Wi+1, αi+1) ← ReachOrSafe(Wi, Ai ∩ Cp(2))

12 else
(Wi+1, αi+1) ← Solve(G, Wi, Ai \ Cp(1), p − 2)

13 αi+1 ← αi ∪ αi+1

14 i ← i + 1

until Wi = Wi−1

15 return (Wi, αi)

end

absorbing, a winning cell strategy for the objective φ ensures that the set W is
never left. In the rest of the algorithm and in the arguments below, we consider
the sub-game induced by W . In line 2, the set W ∗ of winning cells and a winning
cell strategy α∗ on W ∗ \ T for the objective Reach(T ) is computed by invoking
the procedure ReachOrSafe with target T and safe set W . Then the set W0 of
cells is obtained along with a cell strategy α0 that ensures that either W ∗ is
reached or the set of priority 0 cells in W is reached. After this, the algorithm
iterates a loop as follows: at iteration i + 1, let Wi be the set of cells already
obtained by the previous iteration and let Ai = W \ Wi. The algorithm is
invoked recursively with Wi as target set, Ai \ Cp(1) as the safe set, and p − 2
as the priority function to obtain a set Wi+1 as a result. In the base case,
where W consists of priorities 0, 1 and 2 only, since Ai has no priority 0 cells,
the objective Reach(Wi) ∪ (Parity(p − 2) ∩ Safe(Ai \ Cp(1)) can be equivalently
written as Reach(Wi)∪Safe(Ai∩Cp(2)). Therefore, in the base case, the recursive
call is replaced by ReachOrSafe(Wi, Ai ∩ Cp(2)). Notice that Wi ⊆ Wi+1. The
algorithm proceeds until a fixpoint of Wi = Wi+1 is reached.

Correctness of the iteration. First, we have W \ W ∗ ⊆ F which essen-
tially follows from the fact that from W \W ∗ Player 1 cannot reach T . More
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precisely, if a cell s ∈ W \W ∗ does not belong to F , then against every cell
strategy for Player 1, there is a Player 2 strategy to ensure that the set T
is not reached from s. Hence from s, against every cell strategy for Player 1,
there is a Player 2 strategy to ensure that Reach(T ) ∪ Safe(F) is violated,
and thus φ = Reach(T ) ∪ (Parity(p) ∩ Safe(F)) is violated. This contradicts
s ∈ W = WinC(φ). The significance of the claim is that if W ∗ is reached, then
Player 1 can ensure that T is reached, and since W \W ∗ ⊆ F it follows that
if W ∗ is not reached then the game stays safe in F .

To establish the correctness of the iterative step, we claim that from the
set Wi+1 the cell strategy αi+1 on Wi+1 \Wi which ensures

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
,

also ensures that

Reach(Wi) ∪
(
Parity(p) ∩ Safe(F \ Cp(1))

)
.

Notice that in Ai \ Cp(1), there is no cell with priority 0 or priority 1 for the
priority function p since Cp(0) ∩W ⊆W0 ⊆Wi. Hence, we have

Parity(p− 2) ∩ Safe(Ai \ Cp(1)) = Parity(p) ∩ Safe(Ai \ Cp(1)).

Since Ai ⊆ W \ W0 ⊆ W \ W ∗ ⊆ F , it follows that the cell strategy αi+1

on Wi+1 \Wi to ensure

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
,

also ensures that

Reach(Wi) ∪
(
Parity(p) ∩ Safe(F \ Cp(1))

)
.

holds from all cells in Wi+1. By induction on i, composing the cell strategies
(i.e., by taking the union of strategies obtained in the iteration) we obtain that
from Wi+1, the cell strategy αi+1 on Wi+1 \ T for Player 1 ensures Reach(W0)∪(
Parity(p)∩Safe(F)∩ coBuchi(F \Cp(1))

)
. Note that to apply the induction step

for i times, one may visit cells in Cp(1), but only finitely many times.

Termination. We claim that upon termination, we have Wi = W . As-
sume towards a contradiction that the algorithm terminates with Wi = Wi+1

and Wi+1 �= W . Then the following assertions hold. The set Ai = W \Wi is
nonempty and

Wi+1 = Wi = WinW
(
Reach(Wi) ∪

(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

))
,

that is, in the whole set Ai against all Player 1 cell strategies, Player 2 can ensure
the complementary objective, i.e.,

Safe(Ai) ∩
(
coParity(p− 2) ∪ Reach(Ai ∩ Cp(1))

)
.
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Now, we show that satisfying the above objective also implies satisfying
Safe(Ai) ∩ coParity(p). Consider a cell strategy for Player 1, and consider the
counter-strategy for Player 2 that ensures that the game stays in Ai, and also
ensures that coParity(p − 2) ∪ Reach(Ai ∩ Cp(1)) is satisfied. If a play visits
Ai ∩Cp(1) only finitely many times, then from some point onwards it only visits
cells in Ai that do not have priority 1 or priority 0 for the priority function p,
and then coParity(p − 2) = coParity(p). Otherwise, the set Ai ∩ Cp(1) is vis-
ited infinitely often and Ai is never left. Since Ai has no 0 priority cells for
the priority function p, it means that Player 2 satisfies the coParity(p) objec-
tive. It follows that in Ai against all Player 1 cell strategies, Player 2 can ensure
Safe(Ai)∩coParity(p). This is a contradiction to the fact that Ai ⊆W = WinW (φ)
and Safe(Ai) ∩ coParity(p) ⊆ Γω \ φ. This leads to the following theorem.

Theorem 5. Given an imperfect-information game G with target T ⊆ C, safe
set F ⊆ C and a parity function p on Γ , Algorithm 1 computes W = WinC(φ),
where φ = Reach(T ) ∪ (Parity(p) ∩ Safe(F)), and a winning cell strategy α on
W \ T for φ.

Proof. This follows from the correctness of the iteration, and the fact W = Wi

for some i, it follows that from all locations in W , the obtained cell strategy
ensures

Reach(W0) ∪ (Parity(p) ∩ Safe(F) ∩ coBuchi(F \ Cp(1)).

We now complete the argument by showing that the cell strategy is winning
for φ. The cell strategy on W0 ensures that T is reached from cells in W ∗, from
cells in Cp(0) ∩W it ensures to stay in W , and in all remaining cells in W0 it
ensures to reach W ∗ ∪ (Cp(0) ∩W ). The following case analysis completes the
proof.

1. If the set W0 is visited infinitely often, then (a) if W ∗ is reached, then T is
reached; (b) otherwise Cp(0) ∩W is visited infinitely often and the game always
stays safe in W \W ∗ ⊆ F . This ensures that Parity(p) is also satisfied.

2. IfW0 is visited only finitely often, then the play never reachesW ∗, otherwise
it would reach T and stay in T forever, and hence Safe(F) is satisfied, such that
the objective Parity(p) ∩ Safe(F) ∩ coBuchi(F \ Cp(1)) is attained. Overall, it
follows the objective φ is satisfied. �

Antichain algorithm. To turn Algorithm 1 into an antichain algorithm, all
set operations must preserve the downward-closed property. The union and in-
tersection operations on sets preserve the downward-closed property of sets, but
the complementation operation does not. Observe that Algorithm 1 performs
complementation in line 9 (Ai ←W \Wi) and uses the set Ai in lines 11 and 12.
This was done for the ease of correctness proof of the algorithm. To see that the
complementation step is not necessary, observe that

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(Ai \ Cp(1))

)
=

Reach(Wi) ∪
(
Parity(p− 2) ∩ Safe(W \ Cp(1))

)
.
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Indeed, if a play never visits Wi, then the play is in Safe(Ai \ Cp(1)) if, and
only if, it is in Safe(W \ Cp(1)). Also note that the expression Parity(p − 2) ∩
Safe(W \Cp(1)) can be equivalently written as Parity(p−2)∩Safe(W∩

⋃
i≥2 Cp(i)).

It follows that every set operation in Algorithm 1 preserves downward-closed
property. This demonstrates the following statement.

Theorem 6. Algorithm 1 is compatible with the antichain representation.

We remark that the explicit construction of the strategies takes place only in
few steps of the algorithm: at line 2 and 3 of each recursive call where cell
strategies are computed for reachability objectives, and in the base case (parity
games with priorities 0, 1 and 2) in line 11 where cell strategies are computed
for union of safety and reachability objectives. Also note that we never need to
compute strategies for the target set T , and therefore in line 10, we would obtain
strategies for the set Wi+1 \Wi. Hence, once the strategy is computed for a set,
then it is never modified in any subsequent iteration.

5 Implementation

We have implemented Algorithm 1 in a prototype written in C. The input is a
text-file description of the game structure, transitions and observations. Inter-
nally, transitions and sets of locations are represented as arrays of integers.

The building blocks of the algorithm are the computation of CPre(·), and the
two procedures ReachOrSafe and ReachAndSafe. The implementation for CPre(q)
follows Equation (1) using three nested loops over the sets Σ, Γ and q. In the
worst case it may therefore be exponential in |Γ | which is not avoidable in
view of Lemma 4. To compute ReachOrSafe(T ,F), we evaluate the following
fixpoint formula in the lattice of antichains: ϕ1 ≡ νX.(F "CPre(X))#T ∗ where
T ∗ = μX.CPre(X) # T . To compute ReachAndSafe(T ,F), we use ϕ2 ≡ μX.F "
(CPre(X) # T ).

When computing q′ = CPre(q), we associate with each cell in the antichain q′

the action to be played in order to ensure reaching a set in q. For ϕ1, this infor-
mation is sufficient to extract a winning strategy from the fixpoint: the action
associated with each winning cell ensures to reach an element of the fixpoint,
thus either confining the game inside F forever, or eventually reaching T ∗. On
the other hand, for T ∗ and ϕ2 (which has the flavor of reachability), we have
seen in Section 3 that the final fixpoint is not sufficient to recover the winning
strategy. Therefore, we have to construct on the fly the winning strategy while
computing the fixpoint. We output a reachability strategy as a tree structure
whose nodes are the sets in the successive antichains computed in the least-
fixpoint iterations together with their associated action σ ∈ Σ. If q′ = CPre(q)
and σ is the action to be played in cell s ∈ q′, then for each observation o (given
by Player 2) we know that there exists a cell so ∈ q such that post(s)∩γ(o) ⊆ so.
Correspondingly, each node for the sets in q′ has |Γ | outgoing edges to some sets
in q.To evaluate the scalability of our algorithm, we have generated game struc-
tures and objectives randomly. We fixed the alphabet Σ = {0, 1} and we used
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the following parameters to generate game instances: the size |L| of the game,
the transition density r = |Δ|

|L|·|Σ| , i.e., the average branching degree of the game

graph, and the density f = |Γ |
|L| of observations. For each σ ∈ Σ, we generate r·|L|

pairs (�, �′) ∈ L×L uniformly at random; each location is randomly assigned one
of the f · |L| observations. We have tested reachability and Büchi objectives for
games with transition density varying from 0.5 to 4 and density of observation
varying from 0.1 to 0.9. We have limited the execution time to 10s for each in-
stance. The size of the generated instances ranges from 50 to 500. For all values
of the parameters, our prototype solved half of the instances of size 100 for both
reachability and Büchi objectives. When the transition density is below 1.5, the
instances are much easier to solve and the maximal size is 350 for reachability
and 200 for Büchi objectives. Finally, we did not observe significant influence of
the number of observations on the performance of the prototype. It seems that
the exponential cost of computing CPre(·) is compensated by the fact that for
large number of observations, the games are closer to perfect-information games.
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Abstract. We consider asynchronous networks of finite-state systems
communicating via a combination of reliable and lossy fifo channels. De-
pending on the topology, the reachability problem for such networks may
be decidable. We provide a complete classification of network topologies
according to whether they lead to a decidable reachability problem. Fur-
thermore, this classification can be decided in polynomial-time.

1 Introduction

Fifo channels. Channel systems, aka “communicating finite-state machines”, are
a classical model for protocols where components communicate asynchronously
via fifo channels [8]. When the fifo channels are unbounded, the model is Turing-
powerful since channels can easily be used to simulate the tape of a Turing
machine.

It came as quite a surprise when Abdulla and Jonsson [3, 4], and independently
Finkel et al. [13], showed that lossy channel systems (LCS’s), i.e., channel sys-
tems where one assumes that the channels are unreliable so that messages can be
lost nondeterministically, are amenable to algorithmic verification (see also [20]).
The model has since been extended in several directions: message losses obeying
probability laws [1, 2, 6, 21], channels with other kinds of unreliability [7, 9], etc.

How this unreliability leads to decidability is paradoxical, and hard to explain
in high-level, non-technical terms. It certainly does not make the model trivial:
we recently proved that LCS verification is exactly at level Fωω in the extended
Grzegorczyk Hierarchy, hence it is not primitive-recursive, or even multiply-
recursive [12].

An ubiquitous model. In recent years, lossy channels have shown up in unex-
pected places. They have been used in reductions showing hardness (or less
frequently decidability) for apparently unrelated problems in modal logics [16],
in temporal logics [19], in timed automata [17], in data-extended models [15],
etc. More and more, LCS’s appear to be a pivotal model whose range goes far
beyond asynchronous protocols.
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Fueling this line of investigation, we recently discovered that the “Regular
Post Embedding Problem”, a new decidable variant of Post’s Correspondence
Problem, is equivalent (in a non-trivial way) to LCS reachability [10, 11]. This
discovery was instigated by a study of unidirectional channel systems (UCS),
where a Sender can send messages to a Receiver via two fifo channels, one reliable
and one lossy, but where there is no communication in the other direction (see
also topology T d

2 in Fig. 1 below). As far as we know, this simple arrangement
had never been studied before.

Our contribution. This paper considers the general case of mixed channel sys-
tems, where some channels are reliable and some are lossy. These systems can be
Turing-powerful (one process using one reliable fifo buffer is enough) but not all
network topologies allow this (e.g., systems with only lossy channels, or systems
where communication is arranged in a tree pattern with no feedback, or UCS’s
as above). Our contribution is a complete classification of network topologies ac-
cording to whether they lead to undecidable reachability problems, or not. This
relies on original and non-trivial transformation techniques for reducing large
topologies to smaller ones while preserving decidability.

Beyond providing a complete classification, the present contribution has sev-
eral interesting outcomes. First, we discovered new decidable configurations of
channel systems, as well as new undecidable ones, and these new results are
often surprising. They enlarge the existing toolkit currently used when transfer-
ring results from channel systems to other areas, according to the “ubiquitous
model” slogan. Secondly, the transformation techniques we develop may even-
tually prove useful for reducing/delaying the combinatorial explosion one faces
when verifying asynchronous protocols.

Outline of the paper. We describe mixed channel systems and their topologies
in Section 2 and provide in Section 3 a few original results classifying the basic
topologies to which we reduce larger networks. Section 4 shows that “fusing
essential channels” preserves decidability. An additional “splitting” technique
is described in Section 5. After these three sections, we have enough technical
tools at hand to describe our main result, the complete classification method,
and prove its correctness in Sections 6 and 7.

2 Systems with Reliable and Lossy Channels

We classify channel systems according to their network topology, which is a graph
describing who are the participant processes and what channels they are con-
nected to.

2.1 Network Topologies

Formally, a network topology, or shortly a topology, is a tuple T = 〈N,R,L, s, d〉
where N , R and L are three mutually disjoint finite sets of, respectively, nodes,
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reliable channels, and lossy channels, and where, writing C def= R ∪ L for the
set of channels, s, d : C → N are two mappings that associate a source and a
destination node to each channel. For a node n ∈ N , out(n) = {c ∈ C | s(c) = n}
is the set of output channels for n, while in(n) = {c ∈ C | d(c) = n} is the set
of its input channels.

Graphical examples of simple topologies can be found below, where we use
dashed arrows to single out the lossy channels (reliable channels are depicted
with full arrows). We do not distinguish between isomorphic topologies since N ,
R and L simply contain “names” for nodes and channels: these are irrelevant
here and only the directed graph structure with two types of edges matters.

2.2 Mixed Channel Systems and Their Operational Semantics

Assume T = 〈N,R,L, s, d〉 is a topology with n nodes, i.e., with N = {P1, P2, ...,
Pn}. Write C = R ∪ L for the set of channels. A mixed channel system (MCS)
having topology T is a tuple S = 〈T, M, Q1, Δ1, ..., Qn, Δn〉 where M = {a, b, ...} is
a finite message alphabet and where, for i = 1, ..., n,Qi is the finite set of (control)
states of a process (also denoted Pi) that will be located at node Pi ∈ N , and Δi

is the finite set of transition rules, or shortly “rules”, governing the behaviour of
Pi. A rule δ ∈ Δi is either a writing rule of the form (q, c, !, a, q′) with q, q′ ∈ Qi,
c ∈ out(Pi) and a ∈ M (usually denoted “qc!a−→q′”), or it is a reading rule (q, c, ?, a, q′)
(usually denoted “qc?a−→q′”) with this time c ∈ in(Pi). Hence the way a topologyT is
respected by a channel system is via restrictions upon the set of channels to which
a given participant may read from, or write to.

Our terminology “mixed channel system” is meant to emphasize the fact that
we allow systems where lossy channels coexist with reliable channels.

The behaviour of some S = 〈T, M, Q1, Δ1, ..., Qn, Δn〉 is given under the form of
a transition system. Assume C = {c1, ..., ck} contains k channels. A configuration
ofS is a tuple σ = 〈q1, ..., qn, ui, ..., uk〉where, for i = 1, ..., n, qi ∈ Qi is the current
state of Pi, and where, for i = 1, ..., k, ui ∈ M∗ is the current contents of channel ci.

Assume σ = 〈q1, ..., qn, ui, ..., uk〉 and σ′ = 〈q′1, ..., q′n, u′i, ..., u′k〉 are two con-
figurations of some system S as above, and δ ∈ Δi is a rule of participant Pi.
Then δ witnesses a transition between σ and σ′, also called a step, and denoted
σ

δ−→σ′, if and only if

– the control states agree with, and are modified according to δ, i.e., qi = q,
q′i = q′, qj = q′j for all j �= i;

– the channel contents agree with, and are modified according to δ, i.e., either
• δ = (q, cl, ?, a, q′) is a reading rule, and ul = a.u′l, or
• δ = (q, cl, !, a, q′) is a writing rule, and u′l = ul.a, or cl ∈ L is a lossy

channel and u′l = ul;
in both cases, the other channels are untouched: u′j = uj for all j �= l.

Such a step is called “a step by Pi” and we say that its effect is “reading a on c”,
or “writing a to c”, or “losing a”. A run (from σ0 to σn) is a sequence of steps
of the form r = σ0

δ1−→σ1
δ2−→σ2 · · ·

δn−→σn. A run is perfect if none of its steps loses a
message.
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Remark 2.1. With this operational semantics for lossy channels, messages can
only be lost when a rule writes them to a channel. Once inside the channels,
messages can only be removed by reading rules. This definition is called the write-
lossy semantics for lossy channels: it differs from the more classical definition
where messages in lossy channels can be lost at any time. We use it because it is
the most convenient one for our current concerns, and because this choice does
not impact the reachability questions we consider (see [12, Appendix A] for a
formal comparison). "#

2.3 The Reachability Problem for Network Topologies

The reachability problem for mixed channel systems asks, for a given S and two
configurations σinit = 〈q1, . . . , qn, ε, . . . , ε〉 and σfinal = 〈q′1, . . . , q′n, ε, . . . , ε〉 in
which the channels are empty, whether S has a run from σinit to σfinal. That we
restrict reachability questions to configurations with empty channels is techni-
cally convenient, but it is no real loss of generality.

The reachability problem for a topology T is the restriction of the reachability
problem to mixed systems having topology T . Hence if reachability is decidable
for T , it is decidable for all MCS’s having topology T . If reachability is not
decidable for T , it may be decidable or not for MCS’s having topology T (but
it must be undecidable for one of them). Finally, if T ′ is a subgraph of T and
reachability is decidable for T , then it is for T ′ too.

T ring
1

P1

P2

P3

P4

P5

P6

c1

c3 c4

c5

c6

c2
(lossy)

Our goal is to determine for which topologies
reachability is decidable. Let us illustrate the ques-
tions and outline some of our results. T ring

1 is a
topology describing a directed ring of processes,
where each participant sends to its right-hand
neighbour, and receives from its left-hand neigh-
bour. One of the channels is lossy. A folk claim is
that such cyclic networks have decidable reachabil-
ity as soon as one channel is lossy. The proof ideas
behind this claim have not been formally published
and they do not easily adapt to related questions
like “what about T ring

2 ?”, where a lossy channel in the other direction is added,
or about T ring

3 where we start with more lossy channels in the ring.

T ring
2

P1

P2

P3

P4

P5

P6

c1

c3 c4

c5

c6

c2 (lossy)
c′2 (lossy)

T ring
3

P1

P2

P3

P4

P5

P6

c1

c3 c4

c6

c2 (lossy)
c′2 (lossy) c5 (lossy)
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Our techniques answer all three questions uniformly. One of our results states
that all channels along the path c3 to c4 to c5 to c6 to c1 can be fused into a single
channel going from P3 to P2 without affecting the decidability of reachability.
The transformations are modular (we fuse one channel at a time). Depending on
the starting topology, we end up with different two-node topologies, from which
we deduce that T ring

1 and T ring
3 have decidable reachability, while T ring

2 does not
(see Corollary 4.6 below).

3 Reachability for Basic Topologies

This section is concerned with the basic topologies to which we will later reduce
all larger cases.

Theorem 3.1 (Basic topologies). Reachability is decidable for the network
topologies T d

1 and T d
2 (see Fig. 1). It is not decidable for the topologies T u

1 , T u
2 ,

T u
3 , T u

4 , T u
5 , and T u

6 (see Fig. 2).

We start with the decidable cases:

P1T d
1 : c1 (lossy)

P1 P2T d
2 :

c1 (reliable)

c2 (lossy)

Fig. 1. Basic decidable topologies

That T d
1 , and more generally all topolo-

gies with only lossy channels (aka LCS’s),
leads to decidable problems is the classic re-
sult from [4].

Regarding T d
2 , we recently proved it has

decidable reachability in [10], where T d
2 -

systems are called “unidirectional channel
systems”, or UCS’s. Our reason for investi-
gating UCS’s was indeed that this appeared
as a necessary preparation for the classification of mixed topologies. Showing
that T d

2 has decidable reachability is quite involved, going through the intro-
duction of the “Regular Post Embedding Problem”. In addition, [10, 11] exhibit
non-trivial reductions between reachability for UCS’s and reachability for LCS’s:
the two problems are equivalent.

Now to the undecidable cases:
It is well-known that T u

1 may lead to undecidable problems [8], and this is also
known, though less well, for T u

2 (restated, e.g., as the non-emptiness problem for
the intersection of two rational transductions). The other four results mix lossy
and reliable channels and are new. We actually prove all six cases in a uniform
framework, by reduction from Post’s Correspondence Problem, aka PCP, or its
directed variant, PCPdir.

Recall that an instance of PCP is a family x1, y1, x2, y2, . . . , xn, yn of 2n words
over some alphabet. The question is whether there is a non-empty sequence (a
solution) i1, . . . , ik of indexes such that xi1xi2 . . . xik

= yi1yi2 . . . yik
. PCPdir

asks whether there is a directed solution i1, . . . , ik, i.e., a solution such that, in
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P1T u
1 :

c1 (reliable)
P1 P2T u

2 :
c1 (reliable)

c2 (reliable)
P1 P2T u

3 :
c1 (reliable)

c2 (lossy)
c3 (lossy)

P1 P2T u
4 :

c1 (reliable)

c2 (lossy)
c3 (lossy)

P1 P2T u
5 :

c1 (reliable)

c2 (lossy)

c3 (lossy)

P1 P2T u
6 :

c1 (reliable)

c2 (lossy)

c3 (lossy)

Fig. 2. Basic topologies with undecidable reachability

addition, yi1yi2 . . . yih
is a prefix of xi1xi2 . . . xih

for all h = 1, . . . , k. It is well-
known that PCP and PCPdir are undecidable, and more precisely Σ1

0 -complete.

Reducing PCP to T u
2 -networks. With a PCP instance (xi, yi)i=1,...,n, we associate

a process P1 having a single state p1 and n loops1 p1
c1!xi c2!yi−−−−−−→p1, one for each in-

dex i = 1, ..., n. Process P1 guesses a solution i1i2i3 . . . and sends the concatena-
tions xi1xi2xi3 . . . and yi1yi2yi3 . . . on, respectively, c1 and c2. Process P2 checks
that the two channels c1 and c2 have the same contents, using reading loops
p2

c1?a c2?a−−−−−→p2, one for each symbol a, b, . . . in the alphabet. An extra control state,
for example p′1 with rules p′1

c1!xi c2!yi−−−−−−→p1, is required to check that P1 picks a non-
empty solution. Then, in the resulting T u

2 -network, 〈p′1, p2, ε, ε〉
∗−→〈p1, p2, ε, ε〉 if

and only if the PCP instance has a solution.

Reducing PCP toT u
3 -networks. ForT u

3 , the same idea is adapted to a situation with

three channels, two of which are lossy. Here P1 has rules p1
c2!xi c3!yi c1!1|xiyi|

−−−−−−−−−−−−−→p1.
Thus P1 sends xi and yi on lossy channels and simultaneously sends the number of
letters in unary (1 is a special tally symbol) on c1, the perfect channel. P2 matches
these with reading loops of the form p2

c1?11 c2?a c3?a−−−−−−−−−→p2 for each letter a. If P2 can
consume all 1’s out of c1, this means that no message has been lost on the lossy
channels, and then P2 really witnessed a solution to the PCP instance.

Reducing PCPdir to T u
1 -networks. For T u

1 , we consider the directed PCPdir. P1

has n loops p1
c1!xi c1?yi−−−−−−→p1 where the guessing and the matching is done by a

single process. Since at any step h = 1, ..., k the concatenation xi1xi2 ...xih
is

(partly) consumed while matching for yi1yi2 ...yih
, only directed solutions will be

accepted.

1 Transition rules like “p1
c1!xi c2!yi−−−−−−→p1” above, where several reads and writes are com-

bined in a same rule, and where one writes or reads words rather than just one
message at a time, are standard short-hand notations for sequences of rules using
intermediary states that are left implicit. We avoid using this notation in situations
where the specific ordering of the combined actions is important as, e.g., in (∗) below.
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Reducing PCPdir to T u
5 -networks. For T u

5 too, we start from PCPdir and use a
variant of the previous counting mechanism to detect whether some messages

have been lost. P1 has rules of the form p1
c3!1

|xi| c1!xi c3?1
|yi| c2!yi−−−−−−−−−−−−−−−−−→p1, i.e., it

sends xi on c1 (the reliable channel) and yi on c2 (unreliable) while P2 checks
the match with loops p2

c1?a c2?a−−−−−→p2. In addition, P1 also maintains in c3 a count
of the number of symbols written to c1 minus the number of symbols written
to c2, or #h

def= |xi1 . . . xih
| − |yi1 . . . yih

|. The counting scheme forbids partial
sequences yi1 . . . yih

that would be longer than the corresponding xi1 . . . xih
, but

this is right since we look for directed solutions. If tally symbols on c3 are lost, or
if part of the yi’s on c2 are lost, then it will never be possible for P2 to consume
all messages from c1. Finally a run from 〈p′1, p2, ε, ε, ε〉 to 〈p1, p2, ε, ε, ε〉 must be
perfect and witnesses a directed solution.

Reducing PCPdir to T u
6 -networks. For T u

6 , we adapt the same idea, this time

having P2 monitoring the count #h on c3. P1 has loops p1
c1!xi1

|yi| c2!yi1
|xi|

−−−−−−−−−−−−→p1
where a guessed solution is sent on c1 and c2 with interspersed tally symbols.
The guessed solution is checked with the usual loops p2

c1?a c2?a−−−−−→p2. The 1’s on c2
are stored to c3 and matched (later) with the 1’s on c1 via two loops: p2

c2?1 c3!1−−−−−→p2
and p2

c3?1 c1?1−−−−−→p2. In a reliable run, there is always as many messages on c1 as
there are on c2 and c3 together, and strictly more if a message is lost. Hence a
run from 〈p′1, p2, ε, ε, ε〉 to 〈p1, p2, ε, ε, ε〉 must be perfect and witness a solution.
Only direct solutions can be accepted since the tally symbols in c3 count #h

that cannot be negative.

Reducing PCPdir to T u
4 -networks. For T u

4 , we further adapt the idea, again with
the count #h stored on c3 but now sent from P2 to P1. The loops in P1 now are

p1
c1!xi c2!yi1

|xi|

−−−−−−−−−→qi
c3?1

|yi|
−−−−→p1. (∗)

The 1’s on c2 are sent back via c3 to be matched later by P1, thanks to a loop
p2

c2?1 c3!1−−−−−→p2. Again a message loss will leave strictly more messages in c1 than
in c2 and c3 together, and cannot be recovered from. Only direct solutions can
be accepted since the tally symbols in c3 count #h.

4 Fusion for Essential Channels

This section and the following develop techniques for “simplifying” topologies
while preserving the decidability status of reachability problems.

We start with a reduction called “fusion”.
Let T = 〈N,R,L, s, d〉 be a network topology. For any channel c ∈ C, T − c

denotes the topology obtained from T by deleting c. For any two distinct nodes
P1, P2 ∈ N , T [P1 = P2] denotes the topology obtained from T by merging P1

and P2 in the obvious way: channel extremities are redirected accordingly.
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Clearly, any MCS with topology T − c can be seen as having topology T .
Thus T − c has decidable reachability when T has, but the converse is not true
in general.

Similarly, any MCS having topology T can be transformed into an equivalent
MCS having topology T [P1 = P2] (using the asynchronous product of two control
automata). Thus T has decidable reachability when T [P1 = P2] has, but the
converse is not true in general.

For any channel c such that s(c) �= d(c), we let T/c denote T [s(c) = d(c)]− c
and say that T/c is “obtained from T by contracting c”. Hence T/c is obtained
by merging c’s source and destination, and then removing c.

Since T/c is obtained via a combination of merging and channel removal, there
is, in general, no connection between the decidability of reachability for T and
for T/c. However, there is a strong connection for so-called “essential” channels,
as stated in Theorem 4.5 below.

Before we can get to that point, we need to explain what is an essential channel
and how they can be used.

4.1 Essential Channels Are Existentially 1-Bounded

In this section, we assume a given MCS S = 〈T, M, Q1, Δ1, ..., Qn, Δn〉 is a MCS
with T = 〈N,R,L, s, d〉.

Definition 4.1. A channel c ∈ C is essential if s(c) �= d(c) and all directed
paths from s(c) to d(c) in T go through c.

In other words, removing c modifies the connectivity of the directed graph un-
derlying T .

The crucial feature of an essential channel c is that causality between the
actions of s(c) and the actions of d(c) is constrained. As a consequence, it is
always possible to reorder the actions in a run so that reading from c occurs
immediately after the corresponding writing to c. As a consequence, bounding
the number of messages that can be stored in c does not really restrict the system
behaviour.

Formally, for b ∈ N, we say a channel c is b-bounded along a run π =
σ0

δ1−→ . . .
δn−→σn if |σi(c)| ≤ b for i = 0, . . . , n. We say c is synchronous in π if

it is 1-bounded and at least of σi(c) and σi+1(c) = ε for all 0 ≤ i < n. Hence a
synchronous channel only stores at most one message at a time, and the message
is read immediately after it has been written to c.

Proposition 4.2. If c is essential and π = σ0
δ1−→ . . .

δn−→σn is a run with σ0(c) =
σn(c) = ε, then S has a run π′ from σ0 to σn in which c is synchronous.

This notion is similar to the existentially-bounded systems of [18] but is applies
to a single channel, not to the whole system.

We prove Proposition 4.2 using techniques and concepts from true concurrency
theory and message flow graphs (see, e.g., [14]). With a run π = σ0

δ1−→ . . .
δn−→σn as

above, we associate a set E = {1, . . . , n} of n events, that can be thought of the
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actions performed by the n steps of π: firing a transition and reading or writing
or losing a message. Observe that different occurrences of a same transition with
same effect are two different events. We simply identify the events with indexes
from 1 to n. We write e, e′, . . . to denote events, and also use r and w for reading
and writing events.

Any e ∈ E is an event of some process N(e) ∈ N and we write E =
⋃

P∈N EP

the corresponding partition. There exist several (standard) causality relations
between events. For every process P ∈ n, the events of P are linearly ordered
by <P : i <P j iff i, j ∈ EP and i < j. For every channel c ∈ C, the events
that write to or read from c are related by <c with i <c j iff i is an event that
writes some m to c, and j is the event that reads that (occurrence of) m. (Here,
events that lose messages are considered as internal actions where no channel
is involved.) We let ≺ (and �) denote the transitive (resp. reflexive-transitive)
closure of

⋃
P∈N <P ∪

⋃
c∈C <c. (E,�) is then a poset, and � is called the

visual order (also causality order, or dependency order) in the literature. For
e ∈ E, we let ↑ e denote the past of e, i.e., the set {e′ ∈ E | e′ � e}.

It is well-known that any linear extension e1, . . . , en of (E,�) is causally
consistent and can be transformed into a run π′ = σ0

e1−→e2−→ · · · starting from σ0.
This run ends in σn like π, though it may go through different intermediary
configurations. All the runs obtained by considering different linear extensions
are causally equivalent to π, denoted π ≈ π′, and they all give rise to the same
poset (E,�).

We now state properties enjoyed by (E,�) in our context that are useful for
proving Proposition 4.2. First, observe that, since the channels are fifo, and since
only one process, namely d(c) (resp. s(c)), is allowed to read from (resp. write
to) a channel c:

(w1 <c r1 and w2 <c r2) imply (w1 <s(c) w2 iff r1 <d(c) r2). (†)

Another important observation is the following: assume e � e′. Then, and since
� is defined as a reflexive-transitive closure, there must be a chain of the form

e = e0 ≤P0 e
′
0 <c1 e1 ≤P1 e

′
1 <c2 . . . <cl

el ≤Pl
e′l = e′

where, for 1 ≤ i ≤ l, s(ci) = Pi−1 and d(ci) = Pi. Hence T has a path c1, . . . , cl
going from P0 to Pl.

Lemma 4.3. If e1 ≺ e2 ≺ e3 and c is essential, then e1 �<c e3.

Proof. By contradiction. Assume e1 ≺ e2 ≺ e3 and e1 <c e3 for an essential c.
Then e1 ∈ EP , e3 ∈ EP ′ and, since all paths from P to P ′ go through c (by
essentiality of c), there must exist a pair w, r ∈ E with e1 � w <c r � e2 or,
symmetrically, e2 � w <c r � e3, depending on whether the w <c r pair occurs
before or after e2 in the chain from e1 to e2 to e3. If e1 � w <c r � e2 ≺ e3, then
r <P ′ e3, hence w <P e1 using (†). If e1 ≺ e2 � w <c r � e3, then e1 <P w,
hence e3 <P ′ r using (†). In both cases we obtain a contradiction. "#
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We now assume that c is essential and that π has σ0(c) = σn(c) = ε (hence E
has the same number, say m, of events reading from c and writing to it). Write
P for s(c) and P ′ for d(c). Let w1 <P w2 . . . <P wm be the m events that write
to c, listed in causal order. Let r1 <P ′ e2 . . . <P ′ rm be the m events that read
from c listed in causal order.

Lemma 4.4. There exists a linear extension of (E,�) where, for i = 1, . . . ,m,
wi occurs just before ri.

Proof. The linear extension is constructed incrementally. Formally, for i =
1, . . . ,m, letEi

def=↑ ri andE′
i

def= Ei �{ri, wi}. Observe thatF1⊂E1 ⊆ F2 · · ·Fi ⊂
Ei ⊆ Fi+1, with the convention thatFm+1 = E. EveryEi is a �-closed subset ofE,
also called a down-cut of (E,�). Furthermore,Fi is a down-cut ofEi by Lemma 4.3.
Hence a linear extension of Fi followed by wi.ri gives a linear extension of Ei, and
following it with a linear extension of Fi+1 � Ei gives a linear extension of Fi+1.
Any linear extension of Fi+1 �Ei can be chosen since this subset does not contain
reads from, or writes to c. "#

The linear extension we just built gives rise to a run π′ in which c is synchronous,
which concludes the proof of Proposition 4.2.

Observe that when several channels are essential in T , it is in general not
possible to replace a run π with an equivalent π′ where all essential channels are
simultaneously synchronous.

4.2 Decidability by Fusion

We call “fusion” the transformation of T to T/c where c is essential, and “reliable
fusion” the special case where c is also a reliable channel.

Theorem 4.5 (Decidability by fusion). Let c be an essential channel in T :

1. T has decidable reachability when T/c has.
2. If c is a reliable channel, then T/c has decidable reachability when T has.

Proof. 1. Let S be a T -MCS. We replace it by a system S′ where c has been
removed and where the processes at nodes P1 = s(c) and P2 = d(c) have been
replaced by a larger process that simulate both P1 and P2 and where communi-
cation along c is replaced by synchronizing the sends in P1 with the reads in P2

(message losses are simulated even more simply by the P1 part). S′ has topology
T/c and simulates S restricted to runs where c is synchronous. By Proposi-
tion 4.2, this is sufficient to reach any reachable configuration. Since reachability
in S′ is decidable, we conclude that reachability in S is decidable.

2. We now also assume that c is reliable and consider a (T/c)-MCS S. With
S we associate a T -MCS S′ that simulates S. S′ has two nodes P1 and P2 where
S only had a merged P node.

The construction is illustrated in Fig. 3. Informally, P1 inherits states from
P and all rules that read from channels c1 with d(c1) = P1 in T , or write to
channels c2 with s(c2) = P1. Regarding the other rules, the communication
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P

c1

c2

c3

c4

P =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p1
c1?a1−−→p′1

p2
c2!a2−−→p′2

p3
c3?a3−−→p′3

p4
c4!a4−−→p′4
· · ·

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⇒

P1 P2
c

c1

c2

c3

c4

P1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p1
c1?a1−−→p′1

p2
c2!a2−−→p′2

p3
c!〈c3,?,a3〉
−−−−−→p′3

p4
c!〈c4,!,a4〉
−−−−−→p′4

· · ·

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

P2 =

⎧
⎪⎨

⎪⎩

∗
c?〈c3,?,a3〉 c3?a3
−−−−−−−−−→∗

∗
c?〈c4,?,a4〉 c4?a4
−−−−−−−−−→∗

·· ·

⎫
⎪⎬

⎪⎭

Fig. 3. Associating a T -MCS with a T/c-MCS

action (reading from some c3 or writing to some c4) is sent to P2 via c. S′

uses an extended alphabet M′ that extends the message alphabet M from S via
M′

def= M∪ (C ×{?, !}× M). P2 only has simple loops around a central state ∗ that
read communication instructions from P1 via c and carry them out.
S′ simulates S in a strong way. Any step in S can be simulated in S′, perhaps

by two consecutive steps if a communication operation has to transit from P1

to P2 via c. In the other direction, there are some runs in S′ that cannot be
simulated directly by S, e.g., when P2 does not carry out the instructions sent by
P1 (or carries them out with a delay). But all runs in S′ in which c is synchronous
are simulated by S.

Since runs in which c is synchronous are sufficient to reach any configuration
reachable in S′ (Proposition 4.2), the two-way simulation reduces reachability
in S to reachability in S′, which is decidable if T has decidable reachability. "#

The usefulness of Theorem 4.5 is illustrated by the following two corollaries.

Corollary 4.6. T ring
1 and T ring

3 (from Section 2.1) have decidable reachability.
T ring

2 does not.

Proof. Building T ring
1 /c3/c4/c5/c6/c1 only fuses essential channels and ends up

with a decidable topology (only lossy channels).
Starting with T ring

2 , we can build T = T ring
2 /c3/c4/c5/c6 but have to stop

there since c1 is not essential in the resulting T : there now is another path
using c′2. The resulting T , isomorphic to T u

4 from Fig. 2, does not have decidable
reachability. Hence T ring

2 does not have decidable reachability since we fused
reliable channels only.

With T ring
3 , it is better to build T ring

3 /c3/c4/c6/c1. Here too we cannot fuse
any more because of c′2, but the end result is a topology with decidable reacha-
bility since c5 is lossy. Hence T ring

3 has decidable reachability. "#
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Corollary 4.7. A topology in the form of a forest has decidable reachability.

Proof (Sketch). If T is a forest, every channel c is essential, and every T/c is
still a forest. Hence T reduces to a topology with no channels (i.e., a collection
of disconnected nodes) where reachability is clear. "#

5 Splitting Along Lossy Channels

P1 P2
c1 (reliable)

c2 (lossy)
P3 P4

c3 (reliable)

c4 (lossy)

P5 P6
c5 (reliable)

c6 (lossy)

c7 (lossy)

c8 (lossy)

c9 (lossy)

Fig. 4. A topology that splits in three

Let T1 = 〈N1, R1, L1, s1, d1〉
and T2 = 〈N2, R2, L2, s2, d2〉
be two disjoint topologies. We
say that T = 〈N,R,L, s, d〉 is
a (lossy) gluing of T1 on T2

if T is a juxtaposition of T1

and T2 (hence N = N1 ∪ N2,
. . . ) with an additional set L3

of lossy channels (hence R =
R1 ∪ R2 and L = L1 ∪ L2 ∪
L3) connecting from T1 to T2 in a unidirectional way: s(L3) ⊆ N1 and
d(L3) ⊆ N2.

This situation is written informally “T = T1	T2”, omitting details on L3 and
its connections. In practice this notion is used to split a large T into subparts
rather than build larger topologies out of T1 and T2.

Theorem 5.1 (Decidability by splitting). Reachability is decidable for T1 	
T 2 if, and only if, it is for both T1 and T2.

The proof of Theorem 5.1 (omitted here, see full version of this paper) uses
techniques that are standard for LCS’s but that have to be adapted to the more
general setting of MCS’s.

We can apply Theorem 5.1 to prove that the topology in Fig. 4 has decidable
reachability. Indeed, this topology can be split along lossy channels, namely along
c7, c8 and c9, giving rise to two copies of T d

2 (from Fig. 1) and a two-node ring
that can be reduced to T d

1 by fusion.

6 A Complete Classification

In this section, we prove that the results from the previous sections provide a
complete classification.

Theorem 6.1 (Completeness). A network topology T has decidable reacha-
bility if, and only if, it can be reduced to T d

2 (from Fig. 1) and LCS’s using fusion
and splitting only.2

2 As is well-known, it is possible to further reduce any LCS into T d
1 . However, we

preferred a statement for Theorem 6.1 where only our two main transformations are
involved.
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Note that, via splitting, the reduction above usually transforms T into several
topologies. All of them must be T d

2 or LCS’s for T to have decidable reachability.
The “⇐” direction is immediate in view of Theorems 4.5.1 and 5.1,
For the “⇒” direction, we can assume w.l.o.g. that T is reduced, i.e., it cannot

be split as some T1 	 T2, and it does not contain any reliable essential channel
(that could be fused).

We now assume, by way of contradiction, that T cannot be transformed, via
general fusions, to T d

2 or to a LCS. From this we show that reachability is not
decidable for T . When showing this, we sometimes use three additional transfor-
mations (“simplification”, “doubling of loops” and “non-essential fusion”) that
are described in the full version of this paper. We now start an involved case
analysis.

1. Since T cannot be transformed to a LCS, it contains a reliable channel cr,
linking node A = s(cr) to node B = d(cr). We can assume A �= B, otherwise T
contains T u

1 (from Fig. 2) and we conclude immediately with undecidability.
2. T must contain a path p of the form A = P0, c1, P1, c2, . . . , cn, Pn = B that

links A to B without using cr, otherwise cr would be essential, contradicting
the assumption that T is reduced. We pick the shortest such p (it is a simple
path) and we call T ′ the subgraph of T that only contains p, cr, and the nodes
to which they connect.

3. If all ci’s along p are reliable, T ′ can be transformed to T u
2 (from Fig. 2)

by reliable fusions, hence T ′, and then T itself, have undecidable reachability.
Therefore we can assume that at least one ci along p is lossy.

4. Assume that there exist two nodes Pi, Pj along p that are connected via
a third path p′ disjoint from cr and p. We put no restrictions on the relative
positions of Pi and Pj but we assume that p′ is not a trivial empty path if
i = j. In that case, let T ′′ be the subgraph of T that contains cr, p, and p′,
and where all channels except cr are downgraded to lossy if they were reliable.
Using simplification and doubling of lossy loops, T ′′ can be transformed to an
undecidable topology among {T u

3 , T
u
4 , T

u
5 , T

u
6 }. Hence T ′′ does not have decidable

reachability. Neither has T since taking subgraphs and downgrading channels can
only improve decidability.

5. If we are not in case 4, the nodes along p do not admit a third path like
p′. Therefore all channels along p must be lossy, since we assumed T is reduced.
Thus T ′ can be transformed to T d

2 by general fusion. Since we assumed T cannot
be transformed to T d

2 , T must contain extra nodes or channels beyond those of
T ′. In particular, this must include extra nodes since we just assumed that T
has no third path p′ between the T ′ nodes. Furthermore these extra nodes must
be connected to the T ′ part otherwise splitting T would be possible. There are
now several cases.

6. We first consider the case of an extra node C with a reliable channel c from
C to T ′. Since T is reduced, c is not essential and there must be a second path
p′ from C to T ′. Call T ′′ the subgraph of T that only contains T ′, C, c and p′.
Applying non-essential fusion on c, p′ becomes a path between some Pi, Pj and
we are back to case 4. Hence undecidability.
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7. Next is the case of an extra node C with a reliable channel c from T ′ to
C. Again, since c is not essential, there must be a second path p′ from T ′ to C.
Again, the induced subgraph T ′′ can be shown undecidable as in case 6, reducing
to case 4.

8. If there is no extra node linked to T ′ via a reliable c, the extra nodes
must be linked to T ′ via lossy channels. Now the connection must go both ways,
otherwise splitting would be possible. The simplest case is an extra node C with
a lossy c from C to T ′ and a lossy c′ from T ′ to C. But this would have been
covered in case 4.

9. Finally there must be at least two extra nodes C and C′, with a lossy
channel c from C to T ′ and a lossy c′ from T ′ to C′. We can assume that all
paths between T ′ and C,C′ go through c and c′, otherwise we would be in one
of the cases we already considered. Furthermore C and C′ must be connected
otherwise T could be split. There are several possibilities here.

10. If there is a path from C′ to C we are back to case 4. Hence undecidability.
11. Thus all paths connecting C and C′ go from C to C′. If one such path

is made of reliable channels only, reliable fusion can be applied on the induced
subgraph, merging C and C′ and leading to case 8 where undecidability has been
shown. If they all contain one lossy channel, T can be split, contradicting our
assumption. that it is reduced.

We have now covered all possibilities when T is reduced but cannot be trans-
formed to a LCS or to T d

2 . In all cases is has been shown that reachability is not
decidable for T . This concludes the proof of Theorem 6.1.

7 A Classification Algorithm

Theorem 7.1 (Polynomial-time classification). There exists a polynomial-
time algorithm that classifies topologies according to whether they have decidable
reachability.

The algorithm relies on Theorem 6.1:

Stage 1: Starting from a topology T , apply splitting and reliable fusion as much
as possible. When several transformations are possible, pick any of them
nondeterministically. At any step, the transformation reduces the size of the
topologies at hand, hence termination is guaranteed in a linear number of
steps. At this stage we preserved decidability in both directions, hence T has
decidability iff all the reduced topologies T1, . . . , Tn have.

Stage 2: Each Ti is now simplified using general fusion (not just reliable fusion).
If this ends with a LCS or with T d

2 , decidability for Ti has been proved. When
fusion can be applied in several ways, we pick one nondeterministically: a
consequence of Theorem 6.1’s proof is that these choices lead to the same
conclusion when starting from a system that cannot be reduced with splitting
or reliable fusion. Thus stage 2 terminates in a linear number of steps. When
it terminates, either every Ti has been transformed into a LCS or T d

2 , and we
conclude that reachability is decidable for T , or one Ti remains unsimplified
and we conclude that reachability is not decidable for T .
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We observe that when stage 1 finishes, there will never be any new opportunity
for reliable fusion or for splitting since stage 2, i.e., general fusion, does not
create or destroy any path between nodes.

8 Concluding Remarks

Summary. We introduced mixed channel systems, i.e., fifo channel systems where
both lossy and reliable channels can be combined in arbitrary topologies. These
systems are a generalization of the lossy channel system model (where all chan-
nels are lossy and where reachability is decidable) and of the standard model
(with unbounded reliable fifo channels, where reachability is undecidable).

For mixed systems, we provide a complete classification of the network topolo-
gies according to whether they lead to decidable reachability problems or not.
The main tool are reductions methods that transform a topology into simpler
topologies with an equivalent decidability status. These reductions end with sim-
ple basic topologies for which the decidability status is established in Section 3.

Directions for future work. At the moment our classification is given implic-
itly, via a simplification procedure. A more satisfactory classification would be a
higher-level description, in the form of a structural criterion, preferably express-
ible in logical form (or via excluded minors, . . . ). Obtaining such a description
is our more pressing objective.

Beyond this issue, the two main avenues for future work are extending the
MCS model (e.g., by considering other kinds of unreliability in the style of [9],
or by allowing guards in the style of [5], etc.) and considering questions beyond
just reachability and safety (e.g., termination and liveness).
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Abstract. We address the reachability problem in acyclic networks of pushdown
systems. We consider communication based either on shared memory or on mes-
sage passing through unbounded lossy channels. We prove mainly that the reach-
ability problem between recognizable sets of configurations (i.e., definable by a
finite union of products of finite-state automata) is decidable for such networks,
and that for lossy channel pushdown networks, the channel language is effectively
recognizable. This fact holds although the set of reachable configurations (includ-
ing stack contents) for a network of depth (at least) 2 is not rational in general
(i.e., not definable by a multi-tape finite automaton). Moreover, we prove that for
a network of depth 1, the reachability set is rational and effectively constructible
(under an additional condition on the topology for lossy channel networks).

1 Introduction

The verification of concurrent programs is an important and highly challenging prob-
lem. It is well known that basic analysis problems (e.g., control point reachability) on
concurrent programs with (recursive) procedure calls are undecidable in general (even
for programs with boolean data). A lot of efforts have been nevertheless devoted re-
cently to the development of (1) precise analysis algorithms for some particular pro-
gram models [8, 9, 10, 12, 16, 18, 21, 22, 27], and of (2) generic analysis techniques
based on computing approximations of the set of program behaviors [6, 7, 13, 24, 28].

In this paper we address the issue of analyzing concurrent programs with asynchro-
nous acyclic communication, i.e., programs where the communication relation between
parallel processes has a directed acyclic graph (i.e., the information flows only in one
direction between any two processes, but it can follow several paths). We consider
two kinds of communication mechanisms: communication using a shared memory, and
communication through unreliable fifo channels. We define models of such concurrent
programs, and we investigate the decidability of their reachability problem, as well as
the issue of constructing a finite representation of their sets of reachable configurations.

The program models we define are based on networks of communicating pushdown
systems. It is indeed well admitted that pushdown systems are adequate models for
sequential programs with recursive procedure calls [15, 26], and therefore, its is natural
to model concurrent programs as parallel communicating pushdown processes.

We start by considering asynchronous communication with shared memory. We de-
fine a model, called APNobs, which consists in a finite collection of pushdown processes
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F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 356–371, 2008.
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communicating according to an acyclic observation relation R: a process P can observe
(i.e., read and test) the control state of a process Q if (P,Q) ∈ R. Intuitively, the con-
trol state of a process Q represents the content of the variables owned (accessible in
read/write modes) by Q, and (P,Q) ∈ R means that P can read the variables owned by
Q. (Considering cyclic observation relations leads to Turing powerful models).

The configurations of an APNobs with n processes P1, . . . ,Pn are n-dim vectors of
words of the form piwi, where pi (resp. wi) represents the control state (resp. the stack
content) of the process Pi. Therefore, sets of configurations are n-dim languages (i.e.,
sets of n-dim vectors of words), and we need to consider finite representations for such
languages. Two natural and well-known classes of n-dim languages are (1) the class of
rational languages definable by multi-tape finite automata, and (2) the class of recogniz-
able languages which are finite unions of products of regular (1-dim) word languages.
(Every recognizable language is a rational one, but the converse is not true in general.
For instance, the set {(an,bn) : n≥ 0} is rational but not recognizable).

Then, we are interested in the problem of deciding whether, given two sets of con-
figurations S1 and S2, supposed to be recognizable or rational (effectively represented,
respectively, either by a multi-tape automaton, or by a finite collection of vectors of
finite automata), it is possible to reach a configuration in S2 from a configuration in S1.
We are also interested in the nature of the sets of reachable configurations in the sense
that we want to determine whether these sets are recognizable or rational and effectively
constructible, or they are outside these classes.

We show that the set of reachable configurations in an APNobs from a single config-
uration is not rational in general, and this fact holds as soon as the graph of the obser-
vation relation is of depth 2. We also prove that the reachability problem from a single
configuration to a rational set of configurations is undecidable for such networks. On
the other hand, we establish several positive results when the source and target sets in
the reachability problem are recognizable. First, we prove that for networks of depth 1,
the set of reachable configurations from a recognizable set (which is not recognizable
in general) is always rational and constructible. (From this result follows the decid-
ability of the reachability problem between recognizable sets for networks of depth 1.)
Furthermore, we show that for the general case (i.e., networks of any depth), the reach-
ability problem between recognizable sets of configurations is decidable, although the
reachability sets for these models are not always rational as mentioned above.

Then, we pursue our study by considering message-passing communication. We in-
troduce the model APNlc which is an acyclic network of pushdown processes commu-
nicating through unbounded lossy FIFO channels. A configuration of an APNlc consists
in a vector of local configurations of each of the processes in the network (i.e., the vec-
tor of their control states and stack contents), and a vector of words corresponding to
the contents of the channels. APNlc’s are actually more general than APNobs’s: every
APNobs can be simulated by an APNlc, whereas the converse holds (only) for a linear
topology. (Cyclic lossy channel pushdown networks are Turing powerful).

We address for the APNlc’s the same questions (reachability problem, characteriza-
tion of the reachability sets) as for the APNobs’s. Clearly, negative results stating unde-
cidability or non recognizability/rationality for APNobs’s can be transfered to APNlc’s.
Moreover, we show that, contrary to the case of APNlc’s, even for networks of depth 1
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the set of reachable configurations is not rational in general. However, we prove that
for networks of depth 1, the set of reachable configurations is rational and constructible
when the undirected graph of the communication relation is a forest. Moreover, we
prove that the reachability problem between recognizable sets is actually decidable for
the whole class of APNlc’s. We also prove that the channel language of APNlc’s, i.e., the
projection of the set of their reachable configurations on control states and on channel
contents, is an effectively constructible recognizable set.

For lack of space, detailed proofs are omitted here. They can be found in [4].

Related work: Several models for concurrent programs have been proposed recently,
and their verification problems have been investigated. Decidability results in this con-
text appear for instance in [8, 9, 10, 11, 19, 22, 27, 28]. These results do not cover the
class of models we consider in this paper.

A form of acyclic observation between pushdown systems was introduced in [8]:
a process can observe the states of the processes it has created (dynamic creation is
allowed in [8]); however, the process cannot distinguish between different states in a
control loop of any observed process. This restriction guarantees that the set of (back-
ward) reachable configurations (of the models defined in [8]) is definable using a finite
tree automaton. In the context of our present work, we can show that a similar restriction
guarantees the recognizability of the set of reachable configurations.

In [28], the decidability of the reachability problem is established for a finite number
of computation phases in multi-stack systems, where in each phase the system can pop
from one distinguished stack, and push on some number of stacks. Thus, for each pair of
stacks s1 and s2, the alternation between phases where s1 is popped while s2 is pushed,
and phases where the converse holds, is bounded. In our models, it is possible to have
an unbounded number of such alternations. On the other hand, since the communication
relation in our models is fixed, our models cannot simulate phase switches in the sense
of [28]. Actually, we can prove that in our APNobs models, switching between different
communication relations leads to an undecidable model, even for one single switch.
(The proof is by a simple reduction of PCP [4]).

Many works have addressed the verification problem of lossy FIFO channel systems
with a finite control structure (see, e.g., [2,3]). For this case, the reachability problem is
decidable (for any network topology) and the proof uses the theory of monotonic sys-
tems w.r.t. a well-quasi ordering on the configuration space [1,17]. Arguments based on
this theory are not applicable to our models (due to the stacks). Moreover, the channel
language of finite-control lossy channel systems is recognizable but non constructible
in general [23]. We prove here that the channel language is constructible for acyclic
network with a pushdown-definable control. Also, the complexity of the reachability
problem for finite-control lossy channel systems is nonprimitive recursive [25]. In our
case, we have established a primitive recursive upper-bound.

Acyclic networks of FIFO channel systems have been considered in [14] where the
authors prove that for two finite-control processes communicating with one perfect
channel and one lossy channel the reachability problem is decidable.

In [12], the authors consider unidirectional lossy channel pushdown systems. They
prove the decidability of the reachability problem under the restriction that each process
can read a message from a channel only when its stack is empty.
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Networks of pushdown systems communicating through perfect FIFO-channel sys-
tems have been considered in [20]. The reachability problem is decidable for a finite
number of phases where in each phase only one process is allowed to run, and this
process can read from one single input channel, but only if its stack is empty (like in
[12]), and to send to output channels different from the input channel. Actually, the au-
thors show that these models can be simulated by the ones they have considered in [28].
Again, these models are not comparable with our APNlc models. In particular, we do
not require that a message reception can occur only if the stack is empty. Moreover, in
the framework of [20], since the channels are perfect, allowing a process to receive mes-
sages from two different channels leads to a Turing powerful model, whereas reception
from several channels is allowed in our case.

2 Preliminaries

2.1 Languages and Finite Automata

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all words (resp. non
empty words) over Σ, and by ε the empty word. A language is a (possibly infinite) set of
words. Let w = a1 . . .an be a word in Σ∗, then the reverse of w is the word wR = an . . .a1.
Let Σ1, . . . ,Σn be n finite alphabets. A n-dim word over Σ1, . . . ,Σn is an element of
Σ∗1×·· ·×Σ∗n. A n-dim language is a (possibly infinite) set of n-dim words.

Given two n-dim words u = (u1, . . . ,un) and v = (v1, . . . ,vn), their concatenation is
defined by uv = (u1v1, . . . ,unvn). Let Σε = Σ1∪{ε}× ·· ·×Σn∪{ε}. It easy to see that
every n-dim word is a concatenation of elements of Σε.

Given an alphabet Σ, we denote by !⊆ Σ∗ × Σ∗ the subword relation defined as
follows: for every u = a1 · · ·an ∈ Σ∗, and every v = b1 · · ·bm ∈ Σ∗, u! v iff ∃i1, . . . , in ∈
{1, . . . ,m} such that i1 < i2 < .. . < in and ∀ j ∈ {1, . . . ,n},a j = bi j . The relation ! is
generalized in a pointwise manner to n-dim words as follows: Let u = (u1, . . . ,un) and
v = (v1, . . . ,vn) be two n-dim words, u ! v iff for every i, 1 ≤ i ≤ n, ui ! vi. ≺ is the
strict subword relation: u≺ v iff u! v and u �= v.

Given a (n-dim) language L ⊆ Σ∗1 × ·· · ×Σ∗n, the upward closure (resp. downward
closure) of L (w.r.t. !) is the set L↑ (resp. L↓) = {u ∈ Σ∗1× ·· · ×Σ∗n : ∃v ∈ L. v ! u
(resp. u ! v) }. A (n-dim) language L is upward closed (resp. downward closed) iff
L↑= L (resp. L↓= L).

A n-tape automaton over Σ1, . . . ,Σn is a tuple T = (Q,Σ1, . . . ,Σn,δ, I,F) where
Q is a finite set of states, δ ⊆ Q × Σε × Q is a labeled transition relation, I ∈ Q
is a set of initial states, and F ⊆ Q is a set of final states. Given a n-tape au-
tomaton T = (Q,Σ1, . . . ,Σn,δ, I,F) and a state q ∈ Q, let T q denote the n-tape au-
tomaton (Q,Σ1, . . . ,Σn,δ,{q},F). A run of T over w ∈ Σ∗1 × ·· · × Σ∗n is a states
sequence q0q1 · · ·qm ∈Q+ such that (1) q0 ∈ I, (2) ∃u0, . . . ,um−1 ∈ Σε. ∀i∈ {0, . . . ,m−
1}. (qi,ui,qi+1) ∈ δ and u0 · · ·um−1 = w. The run is accepting if qm ∈ F . The language
of T , denoted L(T ), is the set of n-dim words for which there is an accepting run of T .

A n-dim language is rational if it is definable as the language of some n-tape automa-
ton. Note that 1-tape automata are the usual finite-state word automata. Their languages
are commonly known to be regular. A n-dim language L is recognizable if it is a finite
union of products of n regular languages (i.e. L =

Sm
j=1 L(A j

1)× ·· · ×L(A j
n) for some
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m ∈ N, where A j
i is an automaton over Σi). The class of rational languages subsumes

strictly the class of recognizable languages. For instance, the set {(an,bn) : n ≥ 0}
is rational but not recognizable, whereas {(an,bm) : n,m ≥ 0} is recognizable, and
{(an,bncn) : n≥ 0} is not rational.

Let us recall some well known facts about these classes of languages (see, e.g., [5]),
and fix some notations. First, the class of recognizable languages, for any dimension
n≥ 1, is closed under boolean operations. On the other hand, for every n≥ 2, the class
of n-dim rational languages is closed under union, but not under complementation, nor
under intersection. However, the intersection of a rational language with a recognizable
language is rational. The emptiness problem of n-tape automata is decidable, and the
same holds for the inclusion problem of recognizable languages. However, the inclusion
problem is undecidable for rational languages (for n≥ 2).

Rational languages are also closed under projection, defined as follows: Given a n-
tape automaton T over Σ1, . . . ,Σn, and a set of indices ι ⊂ {1, . . . ,n}, the projection of
T on ι, denoted Πι(T ), is the automaton obtained by erasing all the tapes which are not
in ι (if ι has k indices, then Πι(T ) is a k-tape automaton). Rational languages are also
closed under composition: Let T and T ′ be two multi-tape automata on, respectively,
the alphabets Σ1, . . . ,Σn and Σ′1, . . . ,Σ′m, and let i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m} be
two indices s.t. Σ′j = Σi. Then, it is possible to construct a (n + m−1)-tape automaton
T ◦(i, j)T ′ which accepts (w1, . . . ,wn,w′1, . . . ,w

′
j−1,w

′
j+1, . . . ,w

′
m) iff (w1, . . . ,wn)∈L(T )

and (w′1, . . . ,wj−1,wi,wj+1, . . . ,w′m) ∈ L(T ′), i.e. the composition corresponding to the
synchronization of the ith tape of T with the jth tape of T ′.

We also define a composition operator ;(i, j) such that, given two multi-tape automata
T and T ′, if the content of the jth tape of T ′ (say w′j) is a prefix of the one of the ith

tape of T (say wi), then the ith tape of T ;(i, j) T ′ contains the word w s.t. wi = w′jw.
Formally, assume that T and T ′ are defined on the alphabets Σ1, . . . ,Σn and Σ′1, . . . ,Σ′m
respectively, and let i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m} such that Σ′j = Σi. Then, it is
possible to construct a (n + m− 1)-tape automaton T ;(i, j) T ′ that accepts the set of
vectors (w1, . . . ,wi−1,w,wi+1, . . . ,wn,w′1, . . . ,w

′
j−1,w

′
j+1, . . . ,w

′
m) if ∃wi,w′j ∈ Σ∗i such

that: (1) (w1, . . . ,wn) ∈ L(T ), (2) (w′1, . . . ,w
′
m) ∈ L(T ′), and (3) wi = w′jw .

Proposition 1. Let T = (Q,Σ1, . . . ,Σn,δ, I,F) be a n-tape automaton. Then, L(T )↓ and
L(T )↑ are recognizable and effectively definable by the union of ((|Σ1|+ 1)× ·· · ×
(|Σn|+ 1))|Q| products of n finite state automata with at most |Q| states.

2.2 Labeled Pushdown Systems

A Labeled Pushdown System (LPDS) is defined by a tuple P = (P,Σ,Γ,Δ) where P is
a finite set of states, Σ is the input alphabet (actions), Γ is the stack alphabet, and Δ
is a finite set of transition rules of the form 〈p,u〉 a

↪→ 〈p′,u′〉; where: (1) p, p′ ∈ P, (2)
a ∈ Σ∪{ε}, and (3) u,u′ ∈ Γ∗ s.t. either (i) |u|= 1 and u′ = ε (pop operation), (ii) u = ε
and |u′|= 1 (push operation), or (iii) u = u′ = ε (no operation on the stack).

A configuration of an LPDS is a word pw ∈ PΓ∗ where p is a state and w is a
stack content. In particular, configurations of the form pε are simply denoted by p.
We define a transition relation

a=⇒P between configurations as follows: pw
a=⇒P p′w′
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if ∃ (〈p,u〉 a
↪→ 〈p′,u′〉) ∈ Δ and ∃v ∈ Γ∗ s.t. w = uv and w′ = u′v. We generalize the

transition relation
a=⇒P to sequences of actions in the usual way: pw

ε=⇒P pw for every
pw ∈ PΓ∗, and given a word σ = a0 · · ·an−1 ∈ Σ+, pw

σ=⇒P p′w′ iff ∃p0w0, . . . , pnwn ∈
PΓ∗ s.t. pw = p0w0, p′w′ = pnwn, and piwi

ai=⇒P pi+1wi+1 for every i ∈ {0, . . . ,n−1}.
A set of configurations C ⊆ PΓ∗ is recognizable iff it is recognized by some finite

state automaton (i.e., there exists an automaton A such that C = L(A)).
Given an LPDS P and two recognizable sets of configurations C,C′ ⊆ PΓ∗, let

TracesP (C,C′) = {σ ∈ Σ∗ : ∃(c,c′) ∈ C×C′,c
σ=⇒P c′} be the set of sequences that

lead P from C to C′. Clearly, TracesP (C,C′) is a context-free language, and conversely,
every context-free language can be defined as a trace language of some LPDS.

Proposition 2. Let P = (P,Σ,Γ,Δ) be an LPDS and p, p′ ∈ PΓ∗ be two configurations.
It is possible to construct, in exponential (resp. double exponential) time in (|P|+ |Σ|+
|Γ|), a finite state automaton A = (Q,Σ,δ, I,F) such that L(A) = TracesP (p, p′)↓ (resp.
L(A) = TracesP (p, p′)↑), where in the worst case, |Q| is exponential (resp. doubly ex-
ponential) in (|P|+ |Σ|+ |Γ|) .

3 Relating Reachable Configurations with Traces in LPDS

We establish hereafter a result that is a key ingredient for the construction of Section 5.
More precisely, let P = (P,Σ,Γ,Δ) be a LPDS, and let p ∈ P. We show hereafter that
the sets U(P , p) and D(P , p) defined below are rational and effectively constructible:

U(P , p) = {(p′w,σ) ∈ PΓ∗ ×Σ∗ : σR ∈ TracesP (p, p′w)↑} (1)

D(P , p) = {(p′w,σ) ∈ PΓ∗ ×Σ∗ : σR ∈ TracesP (p, p′w)↓} (2)

Theorem 1. It is possible to construct a 2-tape automaton T̃ (P , p) (resp. T̂ (P , p)),
with a number of states that is at most exponential (resp. doubly exponential) in (|P|+
|Σ|+ |Γ|), such that L(T̃ (P , p)) = D(P , p) (resp. T̂ (P , p) = U(P , p)).

We sketch hereafter the construction of a 2-tape automaton T̃ (P , p) that accepts
the set D(P , p) (the one for U(P , p) is similar). We define of a 2-tape automa-
ton T = (Q,Γ,Σ,δ, I,F) with I = P, such that (w,σ) is accepted by T from the
state p′ iff (p′w,σ) ∈ L(T̃ (P , p)), i.e., L(T̃ (P , p)) =

S
p′∈P(p′,ε)L(T p′). The con-

struction of T is as follows: Consider a computation p
σ′=⇒P p′γm · · ·γ1 of P with

p, p′ ∈ P, σ′ ∈ Σ∗, and γ1, . . . ,γm ∈ Γ. This computation can be decomposed as fol-
lows: ∃p0, p′0, p1, p′1, . . . , pm ∈ P, ∃σ′0, . . . ,σ

′
m ∈ Σ∗, and ∃a′0, . . . ,a

′
m−1 ∈ (Σ∪{ε}) such

that: (1) p0 = p, (2) σ′ = σ′0a′0σ′1a′1 · · ·σ′m−1a′m−1σ′m, (3) ∀i ∈ {0, . . . ,m−1}, pi
σ′i=⇒P p′i

(i.e. σ′i ∈ TracesP (pi, p′i)) and (〈p′i,ε〉
a′i
↪→ 〈pi+1,γi+1〉) ∈ Δ, and (4) pm

σ′m=⇒P p′.
Now, let σ be a word over Σ such that σ ! σ′. Then, ∃σ0, . . . ,σm ∈ Σ∗

and ∃a0, . . . ,am−1 ∈ (Σ ∪ {ε}) such that: (1) ∀i ∈ {0, . . . ,m}, σi ! σ′i (i.e. σi ∈
TracesP (pi, p′i)↓), and (2) ∀i ∈ {0, . . . ,m− 1}, ai ! a′i (i.e., ai is either a′i or ε). Then,
we have: (γm · · ·γ1,σR) = (ε,σR

m)(γm,am−1)(ε,σR
m−1)(γm−1,am−2) · · · (γ1,a0)(ε,σR

0 ).
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The 2-tape automaton T must recognize such pairs (γm · · ·γ1,σR). Therefore to con-
struct T we proceed as follows: (1) For each pair (q,q′) ∈ P×P, we construct the au-
tomaton A(q,q′) that recognizes the set TracesP (q,q′)↓ such that q (resp. q′) is its unique
initial (resp. final) state. This automaton is effectively constructible due to Proposition 2.
(2) We consider automata recognizing the mirror (reverse) language of the automata
A(q,q′) and extend them to 2-tape words by adding ε on the first tape on all transitions.
(3) We connect these automata using transitions of the forms (pi+1,(γi+1,a′i), p

′
i) and

(pi+1,(γi+1,ε), p′i), for every rule 〈p′i,ε〉
a′i
↪→〈pi+1,γi+1〉 in Δ (note that pi+1 is the initial

state of A(pi+1,p
′
i+1)

, and p′i the final state of A(pi,p′i)
).

4 Acyclic Networks of Pushdown Systems

An Acyclic Observation Relation Pushdown Network (APNobs for short) is defined by
a tuple N = (P1, . . . ,Pn,R) where R ⊆ {(i, j) : 1 ≤ i < j ≤ n} is an antisymmetric
binary relation (R defines an acyclic directed graph whose nodes are 1, . . . ,n), and ∀i ∈
{1, . . . ,n}, Pi = (Pi,Γi,Δi) is a (constrained) pushdown system where Pi is a finite set of
control states, Γi is a finite stack alphabet, and Δi is a finite set of transition rules of the
form φ : 〈p,u〉 ↪→ 〈p′,u′〉 where (1) φ⊆ S

(i, j)∈R Pj, (2) p, p′ ∈ Pi, and (3) u,u′ ∈ Γ∗i
such that either (i) |u|= 1 and u′ = ε, (ii) u = ε and |u′|= 1, or (iii) u = u′ = ε.

An APNobs is linear if the relation R is of the form R = {(i, i+ 1) : 1 ≤ i < n}. An
APNobs N consisting of a single process P , i.e. N = (P , /0), will be denoted by P .

The depth of Pi in N, denoted d(i), is the length of the longest path starting from i in
the graph of the relation R. The depth of N is the maximal depth of its processes.

Our models are networks of pushdown systems where each process can observe other
processes according to the relation R: A process Pi can observe any process P j s.t.
(i, j) ∈ R. In this case, the execution of a rule of Pi can be conditioned by the fact that
P j is at some particular state (specified in the constraint φ of the rule).

A local configuration of a process in the network, say Pi, is a word piwi ∈ PiΓ∗i
where pi is a state and wi is a stack content. A configuration of the network N is a vector
(p1w1, . . . , pnwn)∈∏n

i=1 PiΓ∗i , where piwi is the local configuration of Pi. (Notice that a
vector (p1, . . . , pn) ∈∏n

i=1 Pi is a configuration where all processes have empty stacks).
We define a transition relation =⇒N between configurations as follows:

(p1w1, . . . , pnwn) =⇒N (p′1w′1, . . . , p
′
nw′n) if ∃i ∈ {1, . . . ,n}, and ∃(φ : 〈p,u〉 ↪→

〈p′,u′〉) ∈ Δi such that (1) p = pi and p′ = p′i, (2) wi = uv and w′i = u′v for some
v ∈ Γ∗i , (3) ∀ j > i, if (i, j) ∈ R, then p j ∈ φ, and (4) ∀ j �= i. p j = p′j and wj = w′j. Given
a configuration c ∈∏n

i=1 PiΓ∗i , the set of immediate successors of c is postN(c) = {c′ ∈
∏n

i=1 PiΓ∗i : c =⇒N c′}. This definition is generalized to sets of configurations in the
usual manner. post∗N denotes the reflexive-transitive closure of postN .

Proposition 3. The reachability problem for APNobs’s can be reduced to the reachabil-
ity problem for linear APNobs’s.

Remark 1. The extension of APNobs by allowing cycles in communication relation
leads to Turing powerful models.



On the Reachability Analysis of Acyclic Networks of Pushdown Systems 363

Remark 2. APNobs of depth zero are collections of independent pushdown systems.
Their analysis boils down to the analysis of each of the processes separately. Therefore,
we consider in the sequel only networks of depth ≥ 1.

5 Computing post∗ Images for APNobs

5.1 Limits of Recognizability and Rationality

Consider a network of depth 2 with three processes P1 observing P2 which observes
P3. Assume that P3 cycles on two different states and pushes in its stack an a at each
cycle, and then moves to a termination state. During such a computation, P2 mimics P3

by pushing in its stack a b after each (observable) cycle of P3, and in the same time, P1

mimics P2 by pushing a c after each (observable) cycle of P2. At the end of this phase,
P2 moves to another state where it starts cycling (on two different states) and popping
at each cycle a symbol from its stack. During this new phase, P1 pushes a d at each
observable cycle of P2. Then, the set of reachable configurations when P2 has emptied
its stack is {(d�cm,ε,an) : �≤ n,m≤ n}, which is not a rational set. A similar example,
with two cyclic pushing processes where one of them imitates the other one, shows that
the reachability set for networks depth 1 is not recognizable in general.

Proposition 4. Given an APNobs N of depth ≥ 1 (resp. ≥ 2), and a configuration c of
N, the set post∗N(c) is not recognizable (resp. not rational) in general.

5.2 Reachability Analysis for APNobs of Depth 1

We prove that for every APNobs of depth 1, the post∗ image of any recognizable set
of configurations C is a rational set. For proving that we can assume w.l.o.g. that C is
reduced to a configuration of the form (p1, . . . , pn) where all the stacks are empty.

The case of two processes: We first present the proof for the special case of a network
with two processes P1 and P2 such that P1 observes P2, i.e., N = (P1,P2,{(1,2)}),
where Pi = (Pi,Γi,Δi) and C = {(p1, p2)}. We consider later the general case.

To show that post∗N(C) is effectively rational, we proceed as follows: First, we com-
pute a 2-tape automaton T1 that accepts the set U1 consisting of pairs (pw,σR) ∈
P1Γ∗1 ×P∗2 s.t. P1 can reach the configuration pw from p1 provided that the observed
sequence of states of P2 is σ. Second, we construct a 2-tape automaton T2 that accepts
the set U2 of pairs (p′w′,σR) ∈ P2Γ∗2 ×P∗2 such that σ is a sequence of P2 states that
can be observed by P1 during a computation of P2 from p2 to p′w′. Then, we have
(pw, p′w′) ∈ post∗N(C) iff ∃σ ∈ P∗2 such that (pw,σR) ∈U1 and (p′w′,σR) ∈U2. Hence,
a 2-tape automaton T such that L(T ) = post∗N(C) can be obtained by a synchronization
operation between T1 and T2 on their second tape.

Let P̂1 = (P1,P2,Γ1,Δ′1) be the LPDS such that 〈p,u〉
p2
↪→ 〈p′,u′〉 ∈ Δ′1 iff ∃(φ :

〈p,u〉 ↪→〈p′,u′〉) ∈ Δ1 such that p2 ∈ φ. We prove that U1 = U(P̂1, p1): Clearly, if there
is a run p1

σ=⇒P̂1
pw, then (pw,σR) ∈U1. Moreover, U1 is upward closed in the sense

that if σ ∈ P∗2 enables a sequence of transition rules of P1 that reaches pw from p1 (i.e.
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(pw,σR) ∈U1), then for every σ′ ∈ P∗2 such that σ! σ′, P1 can fire the same sequence

of transition rules to reach pw from p1 (i.e. (pw,σ′R) ∈ U1). Hence, U(P̂1, p1) ⊆U1.
Conversely, every minimal pair (pw,σR) ∈U1 (i.e. �σ′ ≺ σ. (pw,σ′R)∈U1) is such that
each state of σ enables the firing of a transition of P1 in a run from p1 to pw. Therefore
p1

σ=⇒P̂1
pw, which implies that U1 ⊆U(P̂1, p1).

Now, let P̃2 = (P2,P2,Γ2,Δ′2) be the LPDS such that 〈p,u〉
p′
↪→ 〈p′,u′〉 is in Δ′2 iff: (i)

〈p,u〉 ↪→ 〈p′,u′〉 ∈ Δ2 or (ii) p = p′ and u = u′ = ε. We prove that U2 = D(P̃2, p2): Let
q0w0 =⇒P2 q1w1 · · ·=⇒P2 qmwm be a computation of P2 with q0w0 = p2 and qmwm =
p′w′. Then, for every qi (1) either qi is observed several times by P1 (i.e., it is used
to enable the firing of several transitions of P1), (2) or qi is not observed at all by P1.
Hence, the set of sequences of states that can be observed by P1 during this computation
is (q+

0 q+
1 · · ·q+

m)↓. The sequences in q∗0q+
1 · · ·q+

m are traces of P̃2, where the stuttering
property is ensured by the rules (ii) that add loops on every state. Taking the downward
closure gives the set we are looking for, i.e., U2 = D(P̃2, p2).

Then, the 2-tape automaton T can be computed as follows: (1) We construct a 2-tape
automaton T1 (resp. T2 ) accepting U(P̂1, p1) (resp. D(P̃2, p2)). T1 and T2 are constructed
following the proof of Theorem 1, (2) we compose T1 and T2 according to their second
tape, and (3) we abstract away the second tape in the composed automaton. Formally,
T = Π(1,3)(T1 ◦(2,2) T2). We prove that L(T ) = post∗(C) [4].

The general case: Consider an APNobs N = (P1, . . . ,Pn,R) of depth 1. The construction
above can be extended to the general case as follows: Suppose that processes Pk, . . . ,Pn

are of depth 0 and P1, . . . ,Pk−1 are of depth 1. Assume also w.l.o.g. that the processes
of depth 1 can observe all the processes of depth 0 (if Pi does not observe P j, we add
to the constraints of its rules all the states of P j. For each P j of depth 1, we compute a

2-tape automaton that recognizes U(P̂ j, p j) such that the first tape contains a reachable
configuration p jwj of P j, and the second one contains the sequence σ∈ (Pk×·· ·×Pn)∗

of vectors of control states of the processes Pk, . . . ,Pn that are needed by P j to reach
p jwj. Then, we compose all these automata by synchronizing them on their second
tape to get a k-tape automaton T̂ that recognizes a vector (p1w1, . . . , pk−1wk−1,σ) iff
for ∀ j ∈ {1, . . . ,k−1}, (p jwj,σ) ∈U(P̂ j, p j).

Let σ = (q1
k , . . . ,q

1
n) · · · (qm

k , . . . ,q
m
n ), and let si = q1

i · · ·qm
i for every i ∈ {k, . . . ,n}.

For the next step, we transform T̂ as a n-tape automaton by considering each vector
(p1w1, . . . , pk−1wk−1,σ) as (p1w1, . . . , pk−1wk−1,sk, . . . ,sn).

Then, we compute for every Pi of depth 0 a 2-tape automaton T̃i that recognizes
D(P̃i, pi). We synchronise all these automata with T̂ (the second tape of T̃i gets synchro-
nized with the component of T̂ that corresponds to the states of Pi). Then, we project
on the components corresponding to the configurations. The obtained n-tape automaton
accepts (p1w1, . . . , pnwn) iff it is in the reachability set of N.

Theorem 2. Let N = (P1, . . . ,Pn,R) be a APNobs of depth 1, and let C = {(p1, . . . , pn)}
be a configuration. It is possible to construct a n-tape automaton T such that L(T ) =
post∗N(C). The number of states of T is doubly exponential in ∑n

i=1 |Pi|+ |Γi|.
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6 Solving the Reachability Problem for APNobs

We consider in this section the reachability problem between two sets of configu-
rations C1 and C2 for a linear APNobs N = (P1, . . . ,Pn,R), i.e., checking whether
∃c2 ∈ C2,∃c1 ∈ C1 s.t. c1 =⇒∗

N c2. Notice that, by Proposition 3, linearity is not a re-
striction. We prove the following fact by a reduction of PCP [4].

Theorem 3. Given a rational set C and a configuration c, the problem of checking
whether C is reachable from c is undecidable for APNobs.

We show hereafter that the reachability problem between two recognizable sets is de-
cidable. W.l.o.g., we consider the problem for a pair of source and target configurations
where all the stacks are empty.

Theorem 4. The configuration reachability problem for a linear APNobs N =
(P1, . . . ,Pn,R) is decidable in 2(n−1)-exponential time in ∑n

i=0 |Pi|+ |Γi|.

Intuitively, to check whether the configuration (p′1, . . . , p
′
n) is reachable from (p1, . . . ,

pn), we proceed inductively as follows: We start from index 1, and let A1 be an automa-
ton recognizing P∗1 . For every i ∈ {1, . . . ,n− 1}, we construct an automaton Ai+1 that
recognizes the set of state sequences σ ∈ P∗i+1 such that, if Pi+1 has a run generating
σ (modulo stuttering), then Pi has a computation from pi to p′i generating a sequence
(modulo stuttering) in L(Ai). We consider stuttering since Pi (resp. Pi−1) can observe
several times Pi+1 (resp. Pi ) in the same state. The set L(Ai+1) is upward closed since
if Pi requires observing the sequence σ of Pi+1 for its computation, then Pi can perform
the same computation if Pi+1 generates (modulo stuttering) a sequence σ′ such that
σ! σ′. We consider an LPDS P̂i such that TracesP̂i

(pi, p′i) is the set of observation se-

quences required by Pi. Let P̂i⊗Ai be the restriction of P̂i to runs generating sequences
in L(Ai) modulo stuttering. The automaton Ai+1 can be obtained by constructing the
upward closure of TracesP̂i⊗Ai

(pi, p′i). Then, if Pn has a computation from pn to p′n
generating a sequence in L(An), then (p′1, . . . , p

′
n) is reachable from (p1, . . . , pn) in N.

Let us give the formal description of the decision procedure.

Definition 1. For any i ∈ {1, . . . ,n− 1}, let P̂i = (Pi,Pi+1,Γi,Δ′i) be the LPDS s.t.

〈p,u〉 s
↪→ 〈p′,u′〉 ∈ Δ′i iff ∃(φ : 〈p,u〉 ↪→ 〈p′,u′〉) ∈ Δi such that s ∈ φ, and let P̂n =

(Pn,Pn,Γn,Δ′n) be the LPDS s.t. 〈p,u〉 ε
↪→ 〈p′,u′〉 ∈ Δ′n iff 〈p,u〉 ↪→ 〈p′,u′〉 ∈ Δn.

Definition 2. Given an LPDS P = (P,Σ,Γ,Δ) and an automaton A = (A,P,δ, I,F), let
P ⊗A = (P×A,Σ,Γ,Δ′) be the LPDS where Δ′ is the set of transition rules such that:

(1) 〈(p,s),ε〉 ε
↪→ 〈(p,s′),ε〉 ∈ Δ′ iff (s, p,s′) ∈ δ, and (2) 〈(p,s),u〉 a

↪→ 〈(p′,s′),u′〉 ∈ Δ′

iff 〈p,u〉 a
↪→ 〈p′,u′〉 ∈ Δ and (s, p′,s′) ∈ δ.

Then, to solve the reachability problem between two configurations (p1, . . . , pn) and
(p′1, . . . , p

′
n), we compute a sequence of automata Ai = (Ai,Pi,δi,si, fi), in the increasing

ordering of their indices, where si is the initial state and fi is the final state, defined
as follows: (1) A1 recognizes P∗1 (since there is no constraint on P1), and (2) ∀i ∈
{1, . . . ,n−1}, Ai+1 recognizes the regular language TracesP̂i⊗Ai

((pi,si),(p′i, fi))↑.
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Lemma 1. (p1, . . . , pn) =⇒∗
N (p′1, . . . , p

′
n) iff TracesP̂n⊗An

((pn,sn),(p′n, fn)) �= /0.

Remark 3. The above algorithm is top-down: it starts from process P1 down to process
Pn. We can also use a bottom-up algorithm that starts from process Pn up to process P1

as follows: For every index i, we compute the set A ′
i of state sequences that Pi+1 can

perform to go from pi+1 to p′i+1. Then, we compute an LPDS that performs the same
transitions as Pi when the sequences of states performed by Pi+1 are in A ′

i (remember
that Pi observes Pi+1). This LPDS is computed by a kind of product between A ′

i and Pi.
A ′

i−1 can be computed as the downward closure of the language of the product between
Pi and A ′

i . We start by computing A ′
n−1. Then (p′1, . . . , p

′
n) is reachable from (p1, . . . , pn)

iff the pushdown process corresponding to the restriction of P1 can go from p1 to p′1.
This bottom-up procedure is in (n−1)-exponential time in ∑n

i=0 |Pi|+ |Γi|.

7 Acyclic Lossy Channel Pushdown Networks

An Acyclic Lossy Channel Pushdown Network (APNlc for short) is a tuple H =
(P1, . . . ,Pn,C,M) where: (1) C ⊆ {( j, i) : 1 ≤ i < j ≤ n} is a finite set of unidirec-
tional channels defining an acyclic graph, (2) M is a finite set of messages, and (3) ∀i ∈
{1, . . . ,n}, Pi = (Pi,Σi,Γi,Δi) is a communicating pushdown system, where Pi a finite
set of states, Σi = ({!}×M×{ j : (i, j) ∈C})∪({?}×M×{ j : ( j, i) ∈C})∪({nop})
is a finite set of transition labels, Γi is a finite stack alphabet, and Δi is a finite set of

transition rules of the form: 〈p,u〉 a
↪→〈p′,u′〉where a∈ Σi, p, p′ ∈ Pi, and u,u′ ∈ Γ∗i such

that either (i) |u|= 1 and u′ = ε, (ii) u = ε and |u′|= 1, or (iii) u = u′ = ε.
A transition of Pi labeled by (!,m, j) means “ Pi sends message m via the channel

(i, j) ∈C to P j”, whereas a transition labeled by (?,m, j) means “Pi receives message
m from the channel ( j, i) ∈C sent by P j”. A nop corresponds to an internal action.

An APNlc is said to be linear if C is of the form {(i+1, i) : i ∈ {1, . . . ,n−1}}. The
depth d(i) of Pi is its depth in graph of the binary relation R = {(i, j) : ( j, i) ∈C}. The
depth of H, d(H) is max{d(i) : 1≤ i≤ n}.

A configuration of H is a vector 〈p1w1, . . . , pnwn,V 〉 where piwi ∈ PiΓ∗i is a local
configuration of Pi and V : C→M∗ such that V (i, j) is the content of the channel (i, j).
Let E be the mapping s.t. E(c) = ε for every c ∈C.

We define a transition relation =⇒H between configurations as follows:

〈p1w1, . . . , pnwn,V 〉 =⇒H 〈p′1w′1, . . . , p
′
nw′n,V ′〉 iff ∃i ∈ {1, . . . ,n} and ∃(〈p,u〉 a

↪→
〈p′,u′〉) ∈ Δi such that: (1) p = pi and p′ = p′i, (2) wi = uv and w′i = u′v for some
v ∈ Γ∗i , (3) ∀ j �= i. p j = p′j and wj = w′j , and (4) either (i) a = (?,m,k) is a receive op-
eration; mV ′(k, i)! V (k, i) and V ′( j, l)! V ( j, l) for every ( j, l) ∈C s.t. ( j, l) �= (k, i)
(message m is read from the channel (k, i), and the contents of all the channels can lose
some messages). Or (ii) a = (!,m,k) is a send operation, and V ′(i,k) ! V (i,k)m and
V ′( j, l)! V ( j, l) for every ( j, l) ∈C s.t. ( j, l) �= (i,k) (m is added to the channel (i,k)
that receives the message and all the channels can lose messages). Or (iii) a = nop, and
V ′( j, l) ! V ( j, l) for every ( j, l) ∈C (to express the loss of messages). Let =⇒∗

H and
post∗H denote respectively the reflexive-transitive closure of =⇒H and postH .
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Proposition 5. The reachability problem for APNobs’s can be reduced to the same
problem for APNlc’s. Conversely, the configuration reachability problem for linear
APNlc’s can be reduced to the same problem for linear APNobs’s.

8 Computing post∗ Images for APNlc

Consider the network H1 = (P1, . . . ,P4, {(4,1),(3,1),(4,2),(3,2)},{m3,m4}) given in
the figure below with an initial configuration 〈t1,s1,q1, p1,E〉.

P2 P1

P4 P3

〈t1,ε〉
(?,m3 ,3)
↪→ 〈t1,e〉

〈q2,ε〉
(!,m3 ,2)
↪→ 〈q1,ε〉

〈q1,ε〉
(!,m3 ,1)
↪→ 〈q2,b〉

〈t1,ε〉
nop
↪→ 〈t2,ε〉

〈p1,ε〉
(!,m4 ,1)
↪→ 〈p2,a〉

〈p2,ε〉
(!,m4 ,2)
↪→ 〈p1,ε〉

〈s1,ε〉
(?,m4 ,4)
↪→ 〈s1,c〉

〈s1,ε〉
nop
↪→ 〈s2,ε〉

〈s2,ε〉
(?,m3 ,3)
↪→ 〈s2,d〉 〈t2,ε〉

(?,m4 ,4)
↪→ 〈t2, f 〉

Process P4 (resp. P3) loops on pushing an a (resp. b) in its stack while sending
the same message m4 (resp. m3 ) to P1 and P2. During the execution of P3 and P4,
P2 (resp. P1) cycles on pushing a c (resp. e) in its stack and removing a message
m4 (resp. m3) from the channel (4,2) (resp. (3,1)), then, it cycles on pushing a d
(resp. f ) in its stack while removing a message m3 (resp. m4) from the channel (3,2)
(resp. (4,1)). Hence, the set of reachable configurations when all channels are empty is
{〈t2 f iel ,s2d jck,q1bm, p1an,E〉 : i,k ≤ n and l, j ≤ m} which is not rational.

Proposition 6. Given an APNlc H of depth 1, and a configuration c of H, the set
post∗H(c) is not rational in general.

We consider now the class of networks of depth 1 such that the undirected graph of the
binary relation C is a forest (examples of such networks are given below).

P3 P2

P6 P5

P1

P4

P3 P2

P6 P5

P1

P4

Theorem 5. Let H = (P1, . . . ,Pn,C,M) be an APNlc of depth 1 such that the undirected
graph of the binary relation C is a forest and let c be an initial configuration of H. Then,
it is possible to construct a (n+ |C|)-tape automaton T such that L(T ) = post∗H(c). The
number of states of T is doubly exponential in ∑n

j=1 |Pj|+ |Γ j|+ |M|.

We sketch hereafter the proof of the theorem above in the case where H has two
processes P1 and P2 and a channel (2,1) ( i.e., H = (P1,P2,{(2,1)},M)). The extension
to the general case is omitted here for lack of space. It can be found in [4].

W.l.o.g., we assume that in the initial configuration c, the stacks of P1 and P2 as well
as the channel (2,1) are empty. So, let c = 〈p1, p2,E〉. We construct a 3-tape automaton
T that accepts post∗H(c) as follows: First, we construct an LPDS P̆1 = (P1,M,Γ1,Δ′1)
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s.t. p1
σ=⇒P̆1

pw means that P1 reaches the configuration pw from p1 provided that the
sequence of messages consumed during the computation is σ. Δ′1 is defined as follows:

(1) 〈p,u〉 m
↪→ 〈p′,u′〉 ∈ Δ′1 iff 〈p,u〉

(?,m,2)
↪→ 〈p′,u′〉 ∈ Δ1, and (2) 〈p,u〉 ε

↪→ 〈p′,u′〉 ∈ Δ′1 iff

〈p,u〉
nop
↪→ 〈p′,u′〉 ∈ Δ1.

Second, we construct an LPDS P̄2 = (P2,M,Γ2,Δ′2) such that p2
σ=⇒P̄2

p′w′ means
that P2 reaches the configuration p′w′ from p2 and the sequence of sent messages to the

channel is σ. Δ′2 is defined as follows: (1) 〈p,u〉 m
↪→〈p′,u′〉 ∈ Δ′2 iff 〈p,u〉

(!,m,1)
↪→ 〈p′,u′〉 ∈

Δ2, and (2) 〈p,u〉 ε
↪→ 〈p′,u′〉 ∈ Δ′2 iff 〈p,u〉

nop
↪→ 〈p′,u′〉 ∈ Δ2.

The 3-tape automaton T must accept (p′w′,σ, pw) ∈ P2Γ∗2×M∗×P1Γ∗1 iff ∃σ1,σ2 ∈
M∗ s.t. : (1) p1

σ1=⇒P̆1
pw, (2) p2

σ2=⇒P̄2
p′w′, and (3) σ1σ ! σ2 (σ1 is the sequence of

messages required by P1, σ2 is the sequence of messages sent by P2, and σ is what
remains in the channel after P1 reads σ1 from σ2). Then, to obtain T , we construct
the 2-tape automata T̂ (P̆1, p1) and T̃ (P̄2, p2) that accept respectively U(P̆1, p1) and
D(P̄2, p2), and we compose these automata using the operator ; on their second tape
(corresponding to the channel content).

Lemma 2. Let T = T̃ (P̄2, p2) ;(2,2) T̂ (P̆1, p1). Then, the 3-tape automaton T accepts
the vector (p′w′,σ, pw) iff 〈pw, p′w′,V 〉 ∈ post∗H(c) where V (2,1) = σ.

9 Computing the Channels Language for APNlc

We show in this section that the reachability problem for the whole class of APNlc is
decidable. Moreover, we show that the projection of the reachability set on the channels
is an effectively recognizable set.

Let H = (P1, . . . ,Pn,C,M) be an APNlc, and c = 〈p1, . . . , pn,V0〉, where V0(i, j) = ε
for every channel (i, j) ∈ C, be the initial configuration where all channels and stacks
are empty. Let (p′1, . . . , p

′
n) ∈∏n

i=1 Pi be a tuple of states of H. We define LH as follows:

Definition 3. LH is the channels language such that ((ui, j)(i, j)∈C) ∈ LH iff
∃(w1, . . . ,wn) ∈ Γ∗1×·· ·×Γ∗n s.t. 〈p′1w1, . . . , p′nwn,V 〉 ∈ post∗H(c) and V (i, j) = ui, j .

Theorem 6. The channel language LH is effectively recognizable, and can be effec-
tively defined by an m-union of products of finite-state automata with at most m states,
where m is n-exponential in ∑n

j=1(|Pj|+ |Γ j|)+ |M|.

We sketch the proof of the theorem assuming that H is linear. (See [4] for the extension
to the general case.) For presentation matters, we consider first the case of a system with
three processes P1,P2, and P3. First, we construct the LPDS P̄3 = (P3,M,Γ3,Δ′3) such

that p3
σ=⇒P̄3

pw means that there is a run of P3 from pw to p3, and the sent sequence
of message to the channel along this run is σ. Then, let A3 = (Q3,M,δ3,s3, f3) be a
finite-state automaton such that L(A3) is the regular language TracesP̄3

(p3, p′3Γ∗3)↓. In
fact, A3 recognizes all possible contents of the channel (3,2) when P3 reaches p′3Γ∗3
from p3. (We take the downward closure because the channels are lossy).

Then, we construct an automaton A2 that recognizes the set of all message sequences
sent by P2 to the channel (2,1) while consuming messages from the channel (3,2), i.e.,
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message sequences in L(A3). For that, we compute a kind of product P2 !A3 between
P2 and A3 defined as follows:

Definition 4. Given an index i and an automaton A = (Q,M,δ,s, f ), let Pi !A = (Pi×
Q,M,Γi,Δ′i) be an LPDS where Δ′i is defined as follows: (1) 〈(p,q),u〉 ε

↪→〈(p′,q′),u′〉 ∈

Δ′i iff 〈p,u〉
(?,m,i+1)
↪→ 〈p′,u′〉 ∈ Δi and (q,m,q′) ∈ δ, (2) 〈(p,q),u〉 m

↪→ 〈(p′,q′),u′〉 ∈ Δ′i
iff 〈p,u〉

(!,m,i−1)
↪→ 〈p′,u′〉 ∈ Δi and q = q′, and (3) 〈(p,q),u〉 ε

↪→ 〈(p′,q′),u′〉 is in Δ′i iff

〈p,u〉
nop
↪→ 〈p′,u′〉 ∈ Δi and q = q′.

The automaton P2 !A3 behaves like P2 while consuming messages from A3 (due to
rules (1)). Moreover, the language of P2 !A3 is the set of message sequences sent by P2

to the channel (2,1) (due to rules (2)). Since P2 consumes only a part (a prefix) of the
content of the channel, for each state q3 ∈ Q3 in A3, TracesP2!A3((p2,s3),(p′2,q3)Γ∗2)
represents the set of message sequences sent by P2 along a run from p2 to p′2w, for
some w ∈ Γ∗2, while consuming a prefix of a word in L(A3) that leads to q3. Then, the
set of message sequences that are left in the channel (3,2) is L(Aq3

3 ).
Let A2,q3 be an automaton s.t. L(A2,q3) = TracesP2!A3((p2,s3),(p′2,q3)Γ∗2)↓, i.e.,

A2,q3 recognizes all possible contents of the channel (2,1) when the content of the
channel (3,2) is in L(Aq3

3 ). Since P1 consumes messages from sequences in L(A2,q3),
for every state q2 ∈ Q2 in A2,q3 , we need to check whether there is a run of P1 from
p1 to p′1w, for some w ∈ Γ∗1, that consumes a prefix of a word recognized by a run of
A2,q3 ending at q2, i.e., TracesP1!A2,q3

((p1,s2),(p′1,q2)Γ∗1) is empty. If not, Aq2
2,q3

×Aq3
3

defines possible pairs of contents of the channels (3,2) and (2,1). Then, the contents
of the channels is given by the union over all the pairs of states q2 ∈ Q2 and q3 ∈Q3 of
the automata Aq2

2,q3
×Aq3

3 such that TracesP1!A2,q3
((p1,s2),(p′1,q2)Γ∗1) �= /0.

For linear networks with n≥ 2 processes, we proceed as follows: First, we compute
the finite-state automaton An = (Qn,M,δn,sn, fn) that recognizes TracesP̄n

(pn, p′nΓ∗n)↓.
Then, iteratively, for every i ∈ {n− 1, . . . ,2} from n− 1 down to 2, and for every
(qn, . . . ,qi+1) ∈ Qn × ·· · ×Qi+1, we compute the finite-state automaton Ai,qn,...,qi+1 =
(Qi,M,δi,si, fi) that recognizes TracesPi!Ai+1,qn,...,qi+2

((pi,si),(p′i,qi+1)Γ∗i )↓.

Lemma 3. ∀(w1, . . . ,wn) ∈ Γ∗1 × ·· · × Γ∗n, 〈p′1w1, . . . , p′nwn,V 〉 ∈ post∗H(c) iff
∃(qn, . . . ,q2) ∈ Qn × ·· · × Q2 s.t. TracesP1!A2,qn,...,q3

((p1,s2),(p′1,q2)Γ∗1) �= /0 and

(V (2,1), . . . ,V (n−1,n))∈ L(Aq2
2,qn,...,q3

×Aq3
3,qn,...,q4

×·· ·×Aqn−1
n−1,qn

×Aqn
n ).

For linear networks, Theorem 6 is a consequence of Lemma 3. The construction above
can be easily extended to the case of any acyclic network [4].

Finally, the previous algorithm can be adapted in order to prove the following fact.

Theorem 7. The reachability problem between configurations (and therefore between
recognizable sets) for APNlc is decidable.

10 Conclusion

We have proved the decidability of the reachability problem for acyclic networks of
pushdown systems with communication mechanisms based on shared memory and
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message-passing through lossy FIFO channels. Our models constitute an example of
infinite-state systems for which the reachability problem is decidable, even though their
reachability sets are not rational in general. In our work, we have explored the limits
of recognizability/rationality of the reachability sets. We have shown that rationality is
lost for depth 2, and for networks with lossy channels, it is lost even for depth 1 (unless
the undirected graph of the network is a forest).

Our decidability proofs use automata constructions based on compositional analysis
principles. A proof technique we use consists in analyzing the set of reachable configu-
rations in a component of the network, assuming that its environment can provide some
input (either an observable computation path, or a sequence of messages). On the other
hand, we can analyze the reachable configurations together with the output sequences
generated by the computations reaching these configurations. These two kinds of analy-
sis allow to define respectively the input and the output interface of each pushdown
process composing the network. Due to the communication mechanisms we consider,
these interfaces (which are context-free languages) can be approximated without loss
of preciseness (w.r.t. the considered reachability problem) by regular languages that are
effectively computable (as upward and downward closures of context-free languages).
Then, our proofs consist in showing that the input and output interfaces of a whole net-
work can be “summarized” as a regular language. For that, (1) we isolate the extremal
process, Pk say, (2) compute recursively the interface of the rest of the network, (3)
compose this (regular) interface with Pk, which leads to a new pushdown system P′k,
and then (4) compute the interface of P′k. This allows to reduce the reachability problem
of our models to solving a sequence of decidable problems on single pushdown systems.
(But obviously, this does not mean that our models can be reduced (or simulated) by a
single pushdown system.) We believe that this kind of compositional analysis, based on
computing upper/under approximate input and output interfaces, could be used for the
(approximate) verification of pushdown networks, not only in the acyclic case.

Finally, a natural question which may raise is whether the reachability problem re-
mains decidable if we allow switches between different acyclic communication rela-
tions. We prove that even for one of such a switch, the problem becomes undecidable
for networks of depth (at least) 2 [4]. The case of networks of depth 1 is left open.
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Abstract. We present a framework that combines ideas from spatial logics and
Igarashi and Kobayashi’s behavioural type systems, drawing benefits from both.
In our approach, type systems for the pi-calculus are introduced where newly
declared (restricted) names are annotated with spatial process properties, predi-
cating on those names, that are expected to hold in the scope of the declaration.
Types are akin to ccs terms and account for the processes abstract behaviour and
“shallow” spatial structure. The type systems relies on spatial model checking,
but properties are checked against types rather than against processes. The con-
sidered class of properties is rather general and, differently from previous propos-
als, includes both safety and liveness ones, and is not limited to invariants.

Keywords: pi-calculus, behavioural type systems, spatial logic.

1 Introduction

In the past few years, spatial logics [7, 9] have emerged as promising tools for analyz-
ing properties of systems described in process calculi. These logics aim at describing
the spatial structure of processes. This makes them apt to express properties related to
distribution and concurrency. An easy to grasp example is the race freedom property,
stating that at any time, nowhere in the system there are two output actions ready on
the same channel. The spectrum of properties that can be expressed by combination of
simple spatial and behavioral connectives is very rich (see e.g. [7]). This richness is
rather surprising, given the intensional nature of such logics: the process equivalences
they induce coincide with, or come very close to, structural congruence (see e.g. [6]), a
very fine equivalence that only permits elementary rearrangements of term structure.

A by known well-established trend in the field of process calculi is the use of behav-
ioural type systems to simplify the analysis of concurrent message-passing programs
[8, 10, 11]. Roughly, behavioural types are abstract representations of processes, yet suf-
ficiently expressive to capture some properties of interest. In Igarashi and Kobayashi’s
work on generic type systems [10], the paper that pioneered this approach, processes
are pi-calculus terms, while types are akin to simpler ccs terms. The crucial property
enjoyed by the system is type soundness: in essence, for a certain class of properties
(expressed in a simple modal logic), it holds that if a property is satisfied by a type then
it is also satisfied by processes that inhabit that type. Results of this sort can in principle
be used to effectively combine type checking and model checking. That is, in some cases
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it is possible to replace (expensive) model checking on message-passing processes by
(cheaper) model checking on types. The paper [8] further elaborates on these themes. A
limitation of behavioural type systems proposed so far concerns the kind of properties
that can be tackled this way. Essentially, in [8, 10], properties for which a general type
soundness theorem works are safety invariants.

In the present paper, we try to combine the expressiveness of spatial logics with the
effectiveness of behavioural type systems. More specifically, building on Igarashi and
Kobayashi’s work on generic type systems, we present type systems for the pi-calculus
where newly declared (restricted) names are annotated with properties that predicate on
those names. A process in the scope of a restriction is expected to satisfy, at run-time,
the property expressed by the formula. We shall focus on properties expressible in a
spatial logic – the Shallow Logic – which is a fragment of Caires and Cardelli’s logic.
Types are akin to ccs terms and account for (abstract) behaviour and “shallow” spatial
structure of processes. The type system relies on (spatial) model checking: however,
properties are checked against types rather than against processes. The considered class
of properties is rather general and, unlike previous proposals [8, 10], includes both safety
and liveness ones, and it is not limited to invariants. Several examples of such properties
– including race freedom, deadlock freedom and many others – are given throughout the
paper. As another contribution of the paper, we elaborate a distinction between locally
and globally checkable properties. Informally, a locally checkable property is one that
can be model-checked against any type by looking at the (local) names it predicates
about, while hiding the others; a globally checkable one requires looking also at names
causally related to the local ones, hence in principle at names declared elsewhere in the
process. These two classes of properties correspond in fact to two distinct type systems,
exhibiting different degrees of compositionality and effectiveness (with the global one
less compositional/effective). To sum up, we make the following contributions:

– we establish an explicit connection between spatial logics and behavioural type sys-
tems. In this respect, a key observation is that processes and the behavioural types
they inhabit share the same “shallow” spatial structure, which allows us to prove
quite precise correspondences between them and general type soundness theorems;

– we syntactically identify classes of formulae for which type soundness is guaran-
teed;

– unlike previous proposals, our type soundness results are not limited to safety prop-
erties nor to invariant properties;

– we investigate a distinction between locally and and globally checkable properties.

Structure of the paper. In Section 2 we introduce the language of processes, a standard
polyadic pi-calculus. In Section 3 we introduce both spatial properties and the Shallow
Logic, a simple language to denote them. In Section 4 the first type system, tailored
to “local” properties, is presented and thoroughly discussed. Type soundness for this
system is then discussed in Section 5 along with a few examples. A “global” variant of
the type system, a soundness result and a few examples are presented and discussed in
Section 6. Some limitations of our approach, and possible workarounds for them, are
discussed in Section 7. A few remarks on further and related work conclude the paper
in Section 8. Proofs are omitted due to space limitations.
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2 A Process Calculus

Processes. The language we consider is a synchronous polyadic pi-calculus [14] with
guarded summations and replications. As usual, we presuppose a countable set N of
names. We let lowercase letters a,b, ..., x,y, ... range over names, and ã, b̃, ... range over
tuples of names. Processes P,Q,R, . . . are defined by the grammar below

α ::= a(b̃)
∣∣∣ a〈b̃〉 ∣∣∣ τ P ::=

∑
i∈I αi.Pi

∣∣∣ P|P ∣∣∣ (νb̃ : t̃)P
∣∣∣ !a(b̃).P .

In the restriction clause, t̃ is a tuple of channel types, to be defined later in Subsec-
tion 2, such that |̃t| = |b̃|. Note that restriction acts on tuples b̃ = b1, ...,bn, rather than on
individual names. Indeed, the form νb̃ is equivalent to νb1 · · ·νbn from an operational
point of view. From the point of view of the type systems, however, the form νb̃ will
allow us to specify properties that should hold of a group of names, as we shall see
in later section. Notions of free names fn(·), of bound names and of alpha-equivalence
arise as expected, and terms are identified up to alpha-equivalence. In particular, we let
fn((νb̃ : t̃)P)= (fn(P)∪ fn(t̃))\ b̃. To avoid arity mismatches in communications, we shall
only consider terms that are well-sorted in some fixed sorting system (see e.g. [14]), and
call P the resulting set of processes.

Notation. We shall write 0 for the empty summation. Trailing 0’s will be often omitted.
Given n ≥ 0 tuples of names b̃1, ..., b̃n, we abbreviate (νb̃1 : t̃1) · · · (νb̃n : t̃n)P as (ν̃ b̃i :
t̃i)i∈1..nP, or simply (ν̃ b̃)P when no ambiguity about the t̃i arises. In general, channel
types annotations may be omitted when not relevant for the discussion. For any tuple/set
of names x̃ and item t, x̃#t means that x̃∩ fn(t) = ∅. This is extended to tuples of items
t̃, written x̃#t̃, as expected.

Over P, we define a reduction semantics, based as usual on a notion of structural
congruence and on a (labelled) reduction relation. These relations are defined, respec-

tively, as the least congruence≡ and as the least relation
λ−→ generated by the axioms in

Table 1 and Table 2. As usual, the structural law for replication is replaced by a suitable
reduction rule. Concerning Table 1, note that, similarly to [10], we drop two laws for
restrictions ((νỹ)0 = 0 and (νx̃)(νỹ)P = (νỹ)(νx̃)P): these laws become problematic once
restrictions will be decorated with formulae containing free names. Concerning Table 2,
note that we annotate each reduction with a label λ that carries information on the (free)
subject name involved in the corresponding synchronization if any: λ ::= 〈a〉 | 〈ε〉. We
define a hiding operator on labels, written λ ↑b̃, as follows: λ ↑b̃= 〈a〉 if λ = 〈a〉 and
a � b̃, λ ↑b̃= ε otherwise.

Notation. In the sequel, for σ = λ1 · · · · · λn, P
σ−→ Q means P

λ1−→ ·· ·
λn−→ Q, and

P→ Q (resp. P →∗ Q) means P
λ−→ Q (resp. P

σ−→ Q) for some λ (resp. σ). Moreover,

Table 1. Laws for structural congruence ≡ on processes

P|0 ≡ P (P|Q)|R ≡ P|(Q|R) P|Q ≡ Q|P (νx̃ : t̃)P|Q ≡ (νx̃ : t̃)(P|Q) if x̃#Q
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Table 2. Rules for the reduction relation
λ−→ on processes

(com) αl = a(x̃) βn = a〈b̃〉 l ∈ I n ∈ J∑
i∈I

αi.Pi|
∑
j∈J

β j.Q j
〈a〉
−−→ Pl[b̃/x̃]|Qn

(tau)
j ∈ I α j = τ∑

i∈I
αi.Pi

〈ε〉
−−→ P j

(rep-com) βn = a〈b̃〉 n ∈ J

!a(x̃).P|
∑
j∈J

β j.Q j
〈a〉
−−→ !a(x̃).P|P[b̃/x̃]|Qn

(par) P
λ−→ P′

P|Q
λ
−→ P′|Q

(struct) P ≡ Q Q
λ−→ Q′ Q′ ≡ P′

P
λ−→ P′

(res) P
λ−→ P′

(νx̃ : t̃)P
λ↑x̃−−→ (νx̃ : t̃)P′

we say that a process P has a barb a (resp. a), written P ↘a (resp. P ↘a), if P ≡
(ν̃b̃)(
∑

iαi.Pi+a(x̃).Q|R) (resp. P ≡ (ν̃b̃)(
∑

iαi.Pi+a〈c̃〉.Q|R)), with a � b̃.

Types. The set T of types T,S,U, . . . is generated by the following grammar:

μ ::=a(t)
∣∣∣ a ∣∣∣ τ t ::= (x̃ : t̃)T T ::=

∑
iμi.Ti

∣∣∣ T|T ∣∣∣ !a(t).T
∣∣∣ (νã : t̃)T

with x̃#t̃ and x̃ ⊆ fn(T). In channel types (x̃ : t̃)T, we stipulate that (x̃ : t̃) is a binder with
scope T. Informally, a(t).T is a process type where a can transport names of channel-
type t. In a channel type (x̃ : t̃)T, x̃ and t̃ represent, respectively, the formal parameters
and types of objects that can be passed along the channel, while type T is a process
type prescribing a usage of those parameters. Note that, in (x̃ : t̃)T, it might in general
be fn(T) \ x̃ � ∅. In the sequel, we shall often omit writing the channel type ()0, writing
e.g. (x)x instead of (x : ()0)x. Process types are akin to ccs terms bearing annotations
on input prefixes and restrictions. Notions of free names, alpha-equivalence, structural
congruence and reduction for types parallel those of processes. Note, that annotations
contribute to the set of free names 1 of a type, but do not play a direct role in its reduction

semantics (e.g. c.T|c(t).S
〈c〉
−−→ T|S).

3 Properties

We first take a general view of properties as P-sets, that is sets of processes and types
(subject to certain conditions). Then introduce Shallow Logic, a simple language to de-
note a class of such properties. Although processes and types live in different worlds,
for the purposes of this section it is possible and convenient to deal with them in a uni-

form manner. In what follows, we let A,B, ... range over the set U �
= P∪T . Elements

ofU will be generically referred to as terms.

1 Indeed, the reason for introducing these annotations is precisely to ensure that, in the type
systems we shall introduce, whenever Γ � P : T then fn(P) ⊆ fn(T).
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P-sets. Following [6, 7], a property set, P-set in brief, is a set of terms closed under
structural congruence and having a finite support: this intuitively means that the set of
names that are “relevant” for the property is finite (somewhat analogous to the notion of
free names for syntactic terms). In the following, we let {a↔ b} denote the transposition
of a and b, that is, the substitution that assigns a to b and b to a, and leave the other names
unchanged. For Φ ⊆U, we let Φ{a↔ b} denote {A{a↔ b} |A ∈Φ}.

Definition 1 (support, P-set, least support). Let be Φ ⊆ U and N ⊆ N . (a) N is a
support ofΦ if for each a,b � N, it holds thatΦ{a↔ b}=Φ. (b) A property set (P-set) is
a set of terms Φ ⊆U that is closed under ≡ and has finite support. (c) The least support

of Φ, written supp(Φ), is defined as supp(Φ)
�
=
⋂

N support of Φ N.

In other words, N is a support of Φ if renaming names outside N with fresh names does
not affect Φ. P-sets have finite supports, and since countable intersection of supports
is still a support, they also have a least support. In the rest of the paper we will deal
with properties that need not be invariant through reductions. This calls for a notion of
λ-derivative of a P-set Φ, describing the set of terms reachable via λ-reductions from

terms in Φ: Φλ
�
= {B|∃A ∈Φ : A

λ−→ B }. The λ-derivative of a P-set is a P-set.

Proposition 1. Let Φ be a P-set and λ be a reduction label. Then Φλ is a P-set and
supp(Φλ) ⊆ supp(Φ).

The Ok predicate defined below individuates P-sets that enjoy certain desirable condi-
tions. (1) requires a P-set to be closed under parallel composition with terms not contain-
ing free names (2) demands a P-set to be invariant under reductions that do not involve
names in its support. Finally, (3) requires preservation of (1) and (2) under derivatives.

Definition 2 (Ok(·) predicate). We define Ok(·) as the largest predicate on P-sets such
that whenever Ok(Φ) then: (1) for any A,B ∈ P s.t. fn(B) = ∅: A ∈ Φ if and only if
A|B ∈Φ; similarly for A,B ∈ T ; (2) Φλ =Φ for λ = 〈ε〉 or λ = 〈b〉 with b � supp(Φ); (3)
for each λ, Ok(Φλ) holds.

In the rest of the paper, we shall focus on properties represented by Ok P-sets.

Shallow Logic. The logic for the pi-calculus we introduce below can be regarded as a
fragment of Caires and Cardelli’s Spatial Logic [7]. We christen this fragment Shallow
Logic, as it allows us to speak about the dynamic as well as the “shallow” spatial struc-
ture of processes and types. In particular, the logic does not provide for modalities that
allows one to “look underneath” prefixes. Another important feature of this fragment is
that the basic modalities focus on channel subjects, ignoring the object part at all. This
selection of operators is sufficient to express a variety of interesting process properties
(race freedom, unique receptiveness [16], deadlock freedom, to mention a few), while
being tractable from the point of view of verification (see also Caires’ [6]).

Definition 3 (Shallow Logic). The set F of Shallow Logic formulae φ,ψ, . . . is given
by the following syntax, where a ∈ N and ã ⊆ N:

φ ::= T
∣∣∣ φ∨φ ∣∣∣ 〈a〉φ ∣∣∣ 〈ã〉∗φ ∣∣∣ 〈−ã〉∗φ

∣∣∣ ¬φ ∣∣∣ a ∣∣∣ a ∣∣∣ φ|φ ∣∣∣ H∗φ.
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Table 3. Interpretation of formulae over terms

[[T]]=U [[H∗φ]]=
{
A
∣∣∣∃ã,B : A ≡ (ν̃ã)B, ã#φ, B ∈ [[φ]]

}
[[φ1∨φ2]]= [[φ1]]∪ [[φ2]] [[φ1|φ2]]=

{
A
∣∣∣∃A1,A2 : P ≡ A1|A2, A1 ∈ [[φ1]], A2 ∈ [[φ2]]

}
[[¬φ]]=U\ [[φ]] [[〈a〉φ]]=

{
A
∣∣∣∃B : A

〈a〉
−−→ B, B ∈ [[φ]]

}
[[a]]=

{
A
∣∣∣A↘a

}
[[〈ã〉∗φ]]=

{
A
∣∣∣∃σ,B : P

σ−→ B, σ ∈ {〈b〉|b ∈ ã}∗, B ∈ [[φ]]
}

[[a]]=
{
A
∣∣∣A↘a

}
[[〈−ã〉∗φ]]=

{
A
∣∣∣∃σ,B : A

σ−→ B, ã#σ, B ∈ [[φ]]
}

The free names of a formula φ, written fn(φ), are defined as expected. We let Fx̃ =

{φ ∈ F : fn(φ) ⊆ x̃}. The set of logical operators includes spatial (a,a, |,H∗) as well as
dynamic (〈a〉, 〈ã〉∗, 〈−ã〉∗) connectives, beside the usual boolean connectives, including
a constant T for “true”. The interpretation of F over the set of processes is given in
Table 3. Connectives are interpreted in the standard manner. We write A |= φ if A ∈ [[φ]].

Interpretations of formulae are P-sets, as stated below.

Lemma 1. Let φ ∈ F. Then [[φ]] is a P-set and f n(φ) ⊇ supp([[φ]]).

Notation. In what follows, when no confusion arises, we shall often denoteΦ= [[φ]] just
as φ. Moreover, we shall write A |=Φ to mean A ∈Φ. We abbreviate ¬〈−x̃〉∗¬φ as �∗−x̃φ.
Moreover, 〈−∅〉∗φ and �∗−∅φ are abbreviated as ♦∗φ and �∗φ, respectively. Note that ♦∗
and �∗ correspond to the standard “eventually” and “always” modalities as definable,
e.g., in the mu-calculus.

A further motivation for our particular selection of modalities is that satisfaction of
any formula of F is, so to speak, invariant under parallel composition. In particular,
whether A satisfies or not a property φ of a bunch of names x̃, should not depend on the
presence of a parallel closed context B. Formulae of Cardelli and Caires’ Spatial Logic
outside F do not, in general, meet this requirement. As an example, the requirement
obviously fails for ¬(¬0|¬0), saying that there is at most one non-null thread in the
process. As another example, take the formula ♦T, where ♦ is the one-step modality,
saying that one reduction is possible: the reduction might be provided by the context B
and not by A. This explains the omission of the one-step modality from Shallow Logic.

Lemma 2. Let A be a term and φ ∈ Fx̃. For any term B such that A|B is a term and
fn(B) = ∅ we have that A |= φ if and only A|B |= φ.

Example 1 (sample formulae). The following formulae define properties depending on
a generic channel name a. They will be reconsidered several time throughout the paper.

Race freedom: NoRace(a)
�
= �∗ ¬H∗(a|a)

Unique receptiveness: UniRec(a)
�
= �∗

(
a∧¬H∗(a|a)

)
Responsiveness: Resp(a)

�
= �∗−a ♦∗〈a〉

Deadlock freedom: DeadFree(a)
�
= �∗

[ (
a→H∗(a|♦∗ a)

) ∧ (a→ H∗(a|♦∗ a)
) ]
.

NoRace(a) says that it will never be the case that there are two concurrent outputs com-
peting for synchronization on a. UniRec(a) says that there will always be exactly one
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receiver ready on channel a. Resp(a) says that, until a reduction on a does not take place,
it is possible to reach a reduction on a. If a is a return channel of some invoked service or
function, this means the service or function will, under a suitable fairness assumption,
eventually respond (see also [3]). Finally, DeadFree(a) says that each output on a will
eventually meet a synchronizing input, and vice-versa.

We shall sometimes need to be careful about the placement of the modality 〈−ã〉∗ with
respect to negation ¬. To this purpose, it is convenient to introduce two subsets of for-
mulae, positive and negative ones.

Definition 4 (positive and negative formulae). We say a formula φ is positive (resp.
negative) if each occurrence of modality 〈−ã〉∗ in φ is in the scope of an even (resp. odd)
number of negations “¬”.

We let F + (resp. F −) denote the subset of positive (resp. negative) formulae in F. The
sets F +x̃ and F −x̃ are defined as expected.

Example 2. Concerning the formulae introduced in Example 1, note that NoRace(a)
and UniRec(a) are negative, while both Resp(a) and DeadFree(a) are neither positive
nor negative, as in both the modality ♦∗ occurs both in negative and in positive position.

Note that our definitions of “positive” and “negative” are more liberal than the ones
considered by Igarashi and Kobayashi [10], where the position of all spatial modalities
– including the analogs of |, a and a – w.r.t. negation must be taken into account (e.g.,
unique receptiveness would not be considered as negative in the classification of [10]).
This difference will have influential consequences on the generality of the type sound-
ness theorems of the type systems. In the rest of the paper, we shall mainly focus on
formulae whose denotations are Ok P-sets. We write Ok(φ) if Ok([[φ]]) holds. The fol-
lowing lemma provides a sufficient syntactic condition for a formula to be Ok.

Lemma 3. Let φ be a Shallow Logic formula of the form either �∗ψ or �∗−ã♦
∗ψ′, where

ψ′ does not contain ¬. Then Ok(φ).

Example 3. Formulas in Example 1 are in the format of Lemma 3, hence they are Ok.

4 A “Local” Type System

We present here our first type system. The adjective “local” refers to the controlled way
P-set membership (that is, model checking, in practical cases) is checked.

Annotated processes. As anticipated in Section 2, the type system works on annotated
processes. Each restriction introduces a property, under the form of an Ok P-set, that
depends on the restricted names and is expected to be satisfied by the process in the
restriction’s scope. This means that, for annotated processes, the clause of restriction
is modified thus P ::= · · ·

∣∣∣ (νã : t̃ ; Φ)P with ã ⊇ supp(Φ) and Ok(Φ). For brevity,
when no confusion arises we shall omit writing explicitly channel types and properties
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in restrictions, especially when t= ()0 andΦ= [[T]]. The reduction rule for restriction on
annotated processes takes into account the λ-derivative ofΦ in the continuation process:

(res)
P

λ−→ P′

(νx̃ : t̃ ;Φ)P
λ↑x̃−−→ (νx̃ : t̃ ;Φλ)P′

.

For an annotated process P, we take P |= φ to mean that the plain process obtained by
erasing all annotations from P satisfies φ. A “good” process is one that satisfies its own
annotations at an active position. Formally:

Definition 5 (well-annotated processes). A process P ∈ P is well-annotated if when-
ever P ≡ (ν̃b̃)(νã :Φ)Q then Q |= Φ.

Typing rules. Judgements of type system are of the form Γ � P : T, where: P ∈ P, T ∈ T
and Γ is a context, that is, a finite partial map from names a,b,c, . . . to channel types
t, t′, . . .. We write Γ � a : t if a ∈ dom(Γ) and Γ(a) = t. We say that a context is well-
formed if whenever Γ � a : (x̃ : t̃)T then fn(T, t̃) ⊆ x̃∪dom(Γ). In what follows we shall
only consider well-formed contexts. Contexts are assumed to be well-formed in rules
of the type system. In the type system, we make use of a “hiding” operation on types,
T ↓x̃, which masks the use of names not in x̃ in T (as usual, in the definition we assume
that all bound names in T and t are distinct from each other and disjoint from the set of
free names and from x̃).

Definition 6 (hiding on types). For any type T and x̃, we let T ↓x̃ denote the type ob-
tained by replacing every occurrence of prefixes a(t). and a.with τ., for each a ∈ fn(T)\ x̃.
Hiding on channel types, t ↓x̃, is defined similarly.

E.g., (νa : t)(a(t).b(t′)|a(t).c|c|a) ↓b= (νa : t ↓a,b)(a(t ↓a,b).b(t′ ↓a,b)|a(t ↓a,b).τ|τ|a). The
rules of the type system are shown in Table 4. The structure of the system is along the
lines of [10]; the main differences are discussed in Section 7. The key rules are (T-Inp),
(T-Out), (T-Res) and (T-Eq). By and large, the system works as follows: given a process
P, it computes an abstraction of P in the form of a type T. At any restriction (νã : t̃ ;Φ)P
(rule (T-Res)), the abstraction T obtained for P is used to check that P’s usage of names

Table 4. Typing rules

(T-Inp) Γ � a : (x̃ : t̃)T Γ, x̃ : t̃ � P : T|T′ x̃#T′

Γ � a(x̃).P : a((x̃ : t̃)T).T′
(T-Tau) Γ � P : T

Γ � τ.P : τ.T

(T-Out) Γ � a : (x̃ : t̃)T Γ � b̃ : t̃ Γ � P : S

Γ � a〈b̃〉.P : a.(T[b̃/x̃] |S)
(T-Eq) Γ � P : T T ≡ S

Γ � P : S

(T-Sum) |I| � 1 ∀i ∈ I : Γ � αi.Pi : μi.Ti

Γ �
∑

i

αi.Pi :
∑

i

μi.Ti
(T-Rep) Γ � a(x̃).P : a(t).T

Γ �!a(x̃).P :!a(t).T

(T-Res) Γ, ã : t̃ � P : T T ↓ã |=Φ
Γ � (νã : t̃ ; Φ)P : (νã : t̃)T

(T-Par) Γ � P : T Γ � Q : S
Γ � P|Q : T|S
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ã fulfills propertyΦ (T ↓ã|=Φ; in practical casesΦ is a shallow logic formula and this is
actually spatial model checking). Note that, thanks to ↓ã, this is checked without looking
at the environment: only the part of T that depends on ã, that is T ↓ã, is considered, the
rest is masked. In particular, in T ↓ã, any masked subterm that appears in parallel to the
non-masked subterm can be safely discarded (a consequence of condition 1 of Ok). In
this sense the type system is “local”.

Rules for input and output are asymmetric, in the sense that, when typing a receiver
a(x̃).P, the type information on P that depends on the input parameters x̃ is moved to
the sender process. The reason is that the transmitted names b̃ are statically known only
by the sender (rule (T-Out)). Accordingly, on the receiver’s side (rule (T-Inp)), one only
keeps track of the part of the continuation type that does not depend on the input parame-
ters, that is T′. More precisely, the type of the continuation P is required to decompose
– modulo type congruence – as T|T′, where T is the type prescribed by the context for a
and T′, which should not mention the input parameters x̃, is anything else. In essence,
in well typed processes, all receivers on a must share a common part that deals with the
received names x̃ as prescribed by the type T.

Finally, (T-Eq) is related to sub-typing. As mentioned in the Introduction, a key point
of our system is that types should reflect the (shallow) spatial structure of processes.
When considering sub-typing, this fact somehow forces us to abandon preorders in favor
of an equivalence relation that respects P-sets membership, which leads to structural
congruence. Further discussion on this point is found in Section 7.

The judgements derivable in this type system are written as Γ �L P : T.

Example 4. Consider the formula φ = �∗¬H∗(a |b) saying that it is not possible to reach
a configuration where both an output barb on a and one on b are available at the same
time. Ok(φ) holds by Lemma 3. Consider the process P= (νa,b : t, t ; φ)Q, where: t= ()0,
Q =
(
(d〈a〉 + d〈b〉) | !a.b | !b.a

)
|d(x).x and a context Γ s.t. Γ � d : (x : t)x = t′. By applying

the typing rules for input, output, summation and parallel composition:

Γ, a : t, b : t �L Q : (d.a + d.b) | !a(t).b | !b(t).a |d(t′)
�
= T .

T ↓a,b= (τ.a + τ.b) | !a(t).b | !b(t).a |τ |= φ; hence, by (T-Res), Γ �L P : (νa,b : t, t)T.

Basic properties. We state here the basic properties of the type system presented in
the preceding subsection. Let us write Γ�NLP : T if there exists a normal derivation of
Γ �L P : T, that is, a derivation where the rule (T-Eq) is used only above rule (T-Inp).
Modulo ≡, every judgment derivable in the type system admits a normal derivation.

Proposition 2 (normal derivation). If Γ �L P : T then Γ�NLP : S for some S ≡ T.

Normal derivations are syntax-driven, that is, processes and their types share the same
shallow structure. This fact carries over to all derivations, modulo ≡. E.g., if Γ �L P :
T,T ≡ (ν̃ã : t̃)(T1|T2) then P ≡ (ν̃ã : t̃;Φ̃)(P1|P2), with Γ, ã : t̃ �L Pi : Ti, i = 1,2.

Theorem 1 (subject reduction). Γ �L P : T and P
λ−→ P′ implies that there exists a T′

such that T
λ−→ T′ and Γ �L P′ : T′.
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5 Type Soundness for the Local System

In this section we prove a general type soundness result for our system and provide a
few interesting examples of application of the type systems.

Definitions and results. We identify the general class of properties for which, at least
in principle, model checking on processes can be reduced to a type checking problem
whose solution requires only a (local) use of model checking on types. We do so by the
following coinductive definition.

Definition 7 (locally checkable properties and formulae). We let Lc be the largest
predicate on P-sets such that whenever Lc(Φ) then Ok(Φ) and: (1) whenever Γ �L P : T
and x̃ ⊇ supp(Φ) and T ↓x̃|= Φ then P |= Φ; (2) Lc(Φλ) holds for each λ. If Lc(Φ) then
we say Φ is locally checkable.

A formula φ ∈ F is said to be locally checkable if [[φ]] is locally checkable.

Theorem 2 (run-time soundness). Suppose that Γ �L P : T and that P is decorated
with locally checkable P-sets only. Then P →∗ P′ implies that P′ is well-annotated.

Our task is now providing sufficient syntactic conditions on formula φ that guarantee
Lc([[φ]]).

Lemma 4. Suppose Γ �L P : T. (a) If φ ∈ F −x̃ and T ↓x̃|= φ then P |= φ. (b) If φ ∈ F +x̃ and
P |= φ then T ↓x̃|= φ.

Theorem 3. Any negative formula of the form �∗φ is locally checkable.

The above result automatically provides us a type soundness result for an interesting
class of formulae, that include both safety and liveness properties.

Examples. The formulae NoRace(a) and UniRec(a) fits in the format given by Theo-
rem 3, hence they are locally checkable. As an example, consider

P = (νa,b,c : ()0, t′, t ; UniRec(a))
(
(c〈a〉 | a+b(x).x) |c(y).b〈y〉

)
where t = (x)b.x and t′ = (y)y. By the typing rules, we easily derive

Γ,a : ()0,b : t′,c : t �L
(
(c〈a〉 | a+b(x).x) |c(y).b〈y〉

)
: T

with T
�
= c.b.a | a+b(t′) | c(t). Since T ↓a,b,c= T |=UniRec(a), we can apply (T-Res) and

get
Γ �L P : (νa,b,c : ()0, t′, t)T .

For another example, consider the following access policy for a shared resource c. Be-
fore using the resource, a lock l must be acquired; the resource must then be used imme-
diately, and the lock must be released immediately after that. If we identify an available
resource c with an input barb on c, a use of c with a synchronization on c and the avail-
ability of l with an output barb on l, the above policy can be described by the following
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formula, where [c] stands for ¬〈c〉¬: S a f eLock(l,c)
�
= �∗
(
(l→ c) ∧ [c]l

)
. This is a

negative formula fitting the format of Theorem 3, hence it is locally checkable. As an
example of use of this formula, the process Q= (νc, l ;S a f eLock(l,c))(l|c|a〈l,c〉) |a(x,y).
!x.(y.y|x) is well typed under a Γ s.t. Γ � a : (x,y)!x.(y.y|x). Note that neither (the analog
of) UniRec(a), nor S a f eLock(l,c) is included in the type soundness theorem of [10].

Finally, note that Resp(a) and DeadFree(a) do not fit the format of Theorem 3.
Indeed, these formulae are not locally checkable. E.g., consider R= (νa;Resp(a))(c.a|a).
This process is easily seen to be well-typed under c : ()0, simply because the c blocking
a is masked (turned into τ) in (T-Res). However, c.a|a clearly fails to satisfy Resp(a).

6 A “Global” Type System

The Resp(a) example at the end of the preceding section makes it clear that it is not
possible to achieve type soundness result for properties like responsiveness unless we
drop the “locality” condition in the restriction rule. Indeed, those properties can only be
checked if one can look at the part of the type involving names from which the restricted
ones causally depend. In the previous example, where T = c.a|a, this means checking
Resp(a) against T ↓a,c= T, rather than against T ↓a, thus detecting the failure of the
property.

Below, we introduce a new type system that pursues this idea. Note that dropping
locality implies some loss of compositionality and effectiveness. The type system relies
on the use of dependency graphs, a technical device, introduced in the next subsection,
which helps to individuate causal relations among names.

Dependency graphs. Let χ range over a set a = {ε,◦,•} of annotations. For I ⊆ N , we
let a set of annotated names Î be a total function from I to a; by slight abuse of notation,
we write aχ ∈ Î rather than Î(a) = χ. The informal meaning of annotations is: ε = free
name, ◦= input-bound name, •= restricted name. A dependency graph G is a pair 〈V,E〉,
where: V = Î∪W, with W ⊆ {(νx̃)

∣∣∣ x̃ ⊆ N}, is a set of annotated names and restrictions
representing vertices, and E ⊆ V ×V is a set of edges.

A dependency graphG = 〈V,E〉, with V = Î∪W ranged over by u,v, . . ., encodes causal
relations among (free or bound) names in I. Vertices of the form (νx̃) are introduced for
delimiting the scope of restrictions. Edges (u,v) ∈ E are also written as u→G v;→∗G is
the reflexive and transitive closure of →G. A root of G is a vertex u ∈ V such that for
no v, v→G u; the set of G’s roots is denoted by roots(G). Given a dependency graph
G = 〈V,E〉, with V = Î ∪W, a name a is critical in G with respect to b̃, if it belongs to
the set of names G(b̃) defined below.

G(b̃)
�
=
{
x
∣∣∣ xε∈ Î∧∃ x→G v1→G · · ·→G vn = b ∈ b̃ s.t. ∀1≤ i< n : vi = (νỹ) implies b � ỹ

}
.

The set of critical names in G, written cr(G), is defined as cr(G)
�
=
⋃

b•∈Î G(b). Finally,

we define G[b̃]
�
= G(b̃)∪ b̃.

In order to define dependency graphs associated to types, we introduce three auxiliary
operations on graphs: (i) union G1∪G2 is defined componentwise as expected, provided
the sets of vertices V1 and V2 agree on annotations (otherwise union is not defined); (ii)
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χ-update G ↑χx̃ changes into χ the annotation of all names in x̃ occurring in V; (iii) a-

rooting is defined as a→G
�
=
〈

V ∪ {aε} , E∪ {(a,b) |b ∈ roots(G)}
〉
, where G = 〈V,E〉,

provided a does not occur in V with annotations different from ε (otherwise a-rooting is

not defined); (iv) (νx̃)-rooting is defined as (νx̃)→G
�
=
〈

V , E∪{((νx̃),b) |b ∈ roots(G)}
〉
.

Dependency graphs are inductively defined over types in normal form. Let us say a type
is prime if it is of the form either

∑
i∈I μi.Ti with I � ∅ or !a(t).T. Let us say a type is in

head normal form if it is of the form (ν̃ã)(T1| · · · |Tn) with the Ti’s prime and in normal
form if the Ti’s are recursively in normal form. Similar definition for processes. For
any T and t in normal form, the dependency graphs GT and Gt are defined by mutual
induction on the structure of T and t as follows (it is assumed that in T and t bound
names are distinct from each other and from free names).

Ga.T = a→GT Ga(t).T = a→ (Gt∪GT) G!a(t).T = Ga(t).T

G∑i∈I μi.Ti =
⋃

i∈I Gμi.Ti |I| � 1 G∏i Ti =
⋃

i GTi

G(νx̃:t̃)T = (νx̃)→
(
(GT∪

⋃
t∈t̃ Gt) ↑•x̃

)
G(x̃:t̃)T =

(
GT ∪

⋃
t∈t̃ Gt
)
↑◦x̃ .

In essence, GT encodes potential causal dependencies among (free or bound) names of
T as determined by prefixes in T. In the sequel, we shall abbreviate cr(GT) and GT[b̃],
for some b̃ ⊆ fn(T), as cr(T) and T[b̃], respectively.

Typing rules. We need some additional notations. A channel type (x̃)T is said to be well-
formed if x̃#cr(T); in what follows, we only consider contexts Γ containing well-formed
channel types. For any type T we let T ⇓x̃ denote T ↓T[x̃] (note that fn(T ⇓x̃) = T[x̃] by
definition). Intuitively, in T ⇓x̃, we keep the names in x̃ and those that are causes of x̃
in T; the others are masked. We also need a more permissive notion of well-annotated
process, that allows re-arranging of top-level restrictions before checking annotations
(property). To see why this is necessary, consider φ = �∗(♦∗a|♦∗a), a typical property
one would like to check in the new system. Consider the processes P = (νb)(νa;φ)R
and Q = (νa;φ)(νb)R, with R = b.c |b.d |b |b |c.a |d.a. We observe that (νb)R �|= φ, so that
Q is not well-annotated according to Definition 5; on the other hand, Q ≡ P and R |= φ,
which suggests that P, hence Q, could be considered as well-annotated up to a swapping
of (νa) and (νb).

Definition 8 (globally well-annotated processes). A process P ∈ P is globally well-
annotated if whenever P ≡ (ν̃b̃)(νã; Φ)(ν̃c̃)Q, with Q a parallel composition of prime
processes, then there is a permutation b̃′ c̃′ of b̃ c̃ such that P ≡ (ν̃b̃′)(νã; Φ)(ν̃c̃′)Q and
(ν̃c̃′)Q |= Φ.

The global type system is obtained by replacing some rules of the local one (Table 4)
with those reported in Table 5. The type system makes use of an auxiliary relation ∝x̃

among P-sets and types, defined coinductively as follows (the use of this relation is
explained in the sequel).

Definition 9 (∝x̃). We let ∝x̃ be the largest relation on P-sets and types such that when-

ever Φ ∝x̃ T then: (1) T ↓T[x̃]|= Φ; (2) for each λ,T′ such that T ↓T[x̃]
λ−→ T′ ↓T[x̃] then

Φλ ∝x̃ T′.
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Table 5. Typing rules

(T-Res) Γ, ã : t̃ � P : T Φ ∝ã T
Γ � (νã : t̃ ; Φ)P : (νã : t̃)T

(T-Eq-P) Γ � P : T P ≡ Q
Γ � Q : T

(T-Rep) Γ � P : T cr(T) = ∅
Γ �!P :!T (T-Par) Γ � P : T Γ � Q : S cr(T)#S cr(S)#T

Γ � P|Q : T|S

(T-Out) Γ � a : (x̃ : t̃)T Γ � b̃ : t̃ Γ � P : S b̃#cr(T) cr(T[b̃/x̃])#S T[b̃/x̃]#cr(S)

Γ � a〈b̃〉.P : a.(T[b̃/x̃] |S)

Note the presence of a new structural rule for processes, (T-Eq-P) forcing subject
congruence, which is not derivable from the other rules of the system. As an example,
while P = (νa : t; Resp(a))(b.a|b|a) can be typed without using rule (T-Eq-P), the struc-
turally congruent process (νa : t; Resp(a))(b.a|a)|b could not be typed without using that
rule. The condition on critical names in rule (T-Par) ensures that any Q put in parallel
to P will not break well-annotated-ness of P (and vice-versa). A similar remark applies
to the rules for output and replication. In rule (T-Res), use of the relation ∝ã ensures that
each derivative of T satisfies the corresponding derivative of Φ. It is worth noticing that
checking Φ ∝ã T could be undecidable, given that in general we are in the presence of
infinite state systems: at the end of the next section, we will identify a class of formulas
for which checking [[φ]] ∝ã T reduces to checking T ⇓ã|= φ. The judgements derivable
in the new type system are written as Γ �G P : T. It is worth noticing that the system
introduced in Table 5 is not syntax-driven, but a syntax-directed version can be easily
defined by adding some constraints on the structure of processes in the premises of the
typing rule for parallel composition (we omit the details for lack of space).

Type Soundness. Similarly to the local case, we identify a general class of properties
for which, at least in principle, model checking on processes can be reduced to a type
checking problem whose solution requires only model checking on types, then give suf-
ficient syntactic conditions for global-checkable-ness. The definition of globally check-
able property (omitted) is the same as the local one, except that the local hiding operator
“↓x̃” is replaced by “⇓x̃”.

Theorem 4 (run-time soundness). Suppose that Γ �G P : T and that P is decorated
with globally checkable P-sets only. Then P →∗ P′ implies that P′ is globally well-
annotated.

Like in the local case, we can give syntactic conditions for a formula to be globally
checkable.

Theorem 5. Suppose φ is of the form: (a) �∗ψ with negation not occurring underneath
any 〈−ỹ〉∗ in ψ; or (b) �∗−ỹ♦

∗ψ′, with negation not occurring in ψ′. Then φ is globally
checkable.

The following proposition guarantees that for formulas that satisfy the premises of The-
orem 5 checking [[φ]] ∝ã T reduces to checking T ⇓ã|= φ.
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Proposition 3. Suppose φ ∈ Fx̃ is of the form of the form (a) and (b) as specified in
Theorem 5. If T ⇓x̃|= φ then [[φ]] ∝x̃ T.

Examples. All properties defined in Example 1 fit the format of Theorem 5, hence they
are globally checkable. As an example, consider P = (νa : Resp(a))(c〈a〉)|Q, where Q =

!c(x).(x|x)|c〈b〉. Under a suitable Γ, we derive Γ �G c〈a〉|Q : c.(a|a)|!c|c.(b|b)
�
= T. Since

T ↓T[a]= c.(a|a)|!c|c.(τ|τ) |= Resp(a), by (T-Res), we get Γ �G (νa : Resp(a))(c〈a〉|Q) :
(νa)T, hence we can conclude that Γ �G P : (νa)T using (T-Eq-P).

It is worth to notice that (the analogs of) responsiveness and deadlock freedom escape
the type soundness theorem of [10], although, for deadlock freedom, a soundness result
can still be proven by ad-hoc reasoning on certain basic properties of the system.

7 Discussion

We discuss here some limits, and possible workarounds, of our approach, and con-
trast them with the generic type system approach of [10]. In [10], the subtyping re-
lation makes an essential use of a “sub-divide” law, T ≡ T ↑x̃ |T ↓x̃. This rule allows
one to split any type into a part depending only on x̃, T ↓x̃, and a part not depending
on x̃, T ↑x̃. As an example, with this law one has a.b.x ≡ a.b.τ|τ.τ.x. This law enhances
the flexibility of the input rule, hence of the type system. On the other hand, it dis-
regards the spatial properties of terms, leading to a lack of structural correspondence
between types and processes. In our system, we stick to spatial-preserving laws, thus
trading off some flexibility for precision. As seen, this gain in precision has influen-
tial consequences on the class of properties for which type soundness can be proven
(e.g., the class includes interesting liveness properties). An example of process that can-
not be treated in our type systems because of the absence of the “sub-divide” law is
the process Q = !a(x).(νc)

(
b(y).
(
(νz)(c〈x,z〉 |z.y) |c(x,z).(x|z)

))
. Here, a can be viewed

as an invocation channel, x as a formal invocation parameter and y as an acknowl-
edgement channel, introduced by another input (on b). It appears that y and x are re-
lated (via c), which makes the type of b dependent on the bound name x, which cannot
be expressed in our system. This dependency could be discarder using the sub-divide
law. In the example, the very dependency of y from x suggests a way to re-write the
process into a conceptually equivalent one that can be dealt with in our systems. E.g.,
!a(x,y).(νc)

(
(νz)(c〈x,z〉 |z.y) |c(x,z).(x|z)

)
.

8 Conclusion, Further and Related Work

We have provided a framework that incorporates ideas from both spatial logics and
behavioural type systems, drawing benefits from both. Implementation issues are not
in the focus of this paper. In this respect, the normal derivation property already pro-
vides us with syntax driven systems. Of course, implementing the model checks T |= φ
is an issue. One possibility would be re-using existing work on spatial model check-
ing: Caires’ work [6] seems to be a promising starting point. Also, approximations of
possibly infinite-state ccs types with Petri Nets, or even finite-state automata, in the
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vein of [12], seem unavoidable to obtain effective tools. Finally, it would be interest-
ing to cast our approach in more applicative scenarios, like calculi for service-oriented
computing [1].

Apart from the already cited works, also related to our approach are some recent
proposals by Caires. In [4, 5], a logical semantics approach to types for concurrency is
pursued. Closest to our work is [4], where a generic type system for the pi-calculus -
parameterized on the subtyping relation - is proposed. The author identifies a family of
types, the so called shared types, which allow to modularly and safely compose spatial
and shared (classical invariants) properties and to safely factorize spatial properties. A
preliminary investigation of the ideas presented in this paper, in a much simpler setting,
is in [2].
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Abstract. Spatial logics have been proposed to reason locally and modularly
on algebraic models of distributed systems. In this paper we define the spatial
equational logic AπLwhose models are processes of the applied π-calculus. This
extension of the π-calculus allows term manipulation and records communica-
tions as active substitutions in a frame, thus augmenting the underlying prede-
fined equational theory. Our logic allows one to reason locally either on frames
or on processes, thanks to static and dynamic spatial operators. We study the log-
ical equivalences induced by various relevant fragments of AπL, and show in
particular that the whole logic induces a coarser equivalence than structural con-
gruence. We give characteristic formulae for some of these equivalences and for
static equivalence. Going further into the exploration of AπL’s expressivity, we
also show that it can eliminate standard term quantification.

1 Introduction

Spatial logics. Spatial logics, partly inspired by pioneering ideas of resource log-
ics [1,2], have been proposed to reason locally and modularly on algebraic models of
distributed systems such as ambients [3] or π-calculus [4]. Two essential connectives in
these logics are spatial conjunction and adjunct. The spatial conjunction A ∗ B, which
introduces local reasoning, is the cause of a very intensional discriminating power for
spatial logics [5,6], as usually logical equivalence is structural congruence. When this
connective is dropped, reasoning only with adjunct−−∗ yields extensional equivalences
such as barb equivalence [7]. Though quite intuitive, these results are dependent on the
nature of the process model they deal with, and should be treated with some care: the
intensional equivalence might be much coarser than structural congruence, and logical
equivalence does not have to be a congruence in the presence of adjunct.

A spatial equational logic. In this paper we investigate a spatial equational logic that
extends the first order equational logic with spatial connectives. Term equalityM =N
is defined by both global axioms from an equational theory E and local axioms from
a frame. For example, the frame Φ = {enc(s,y)/x} |{pk(n)/y}, that we will use as an
example throughout this paper, augments the equational theory with the knowledge that
x is an alias for a message encrypted with a public key, itself aliased by y. To reflect
the private nature of s and n, these names will be hidden, and we will write νn, s. Φ.
Spatial conjunction ∗ may then split the frame into smaller pieces that may not share
any secret. For instance, νn, s. Φ = (νs. {enc(s,y)/x}) ∗ (νn. {pk(n)/y}).

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 387–401, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Our spatial equational logic, written AπL, naturally arises as the spatial logic of the
applied π-calculus [8], an extension of π-calculus [9] where processes may commu-
nicate terms through channels. One peculiar aspect of applied π-calculus is that what
is sent to the environment is kept as active substitutions that act as local aliases that
extend the equational theory. For instance, νn, s. Φ might have been generated from a
process νn. {pk(n)/y} | νs. ā〈enc(s, y)〉.P sending enc(s, y) to an environment listen-
ing on channel a, thus reducing to νn, s. Φ |P .

Motivations. Cryptographic protocols are the most standard applications modeled with
the applied π-calculus. Observation by a passive attacker may be modeled by a static
observational equivalence, usually simply called static equivalence. This proved sound
enough to express some complex cryptographic properties such as resistance to guess-
ing attacks, through other observational equivalences related to static equivalence. Log-
ical foundations for these notions of observations are however needed to understand
their dependencies and provide more flexible specifications.

From a logical point of view, spatial logics can be considered as fragments of second
order logics, hence have to be compared to first-order and second-order logics regarding
expressiveness issues. This line of research has been actively followed [10,11,12], but
is still open regarding first order equational logics.

Contributions. Our first contribution is the characterization of the logical equivalences
of the static, static extensional, and dynamic fragments. Static fragments turn out to play
similar roles as in the case of the π-calculus: static intensional equivalence is proved
to coincide with structural congruence for frames, whereas static extensional logical
equivalence coincides with static equivalence. This is, to our knowledge, the first log-
ical characterization of static equivalence that is independent on the equational theory.
All the constructions involved are rather simple compared to other logical characteri-
zations of frame equivalence [13] for specific classes of equational theories. Moreover,
characteristic formulae are derivable for both intensional and extensional equivalences.

Our second contribution deals with the logical equivalence for the dynamic inten-
sional fragment. Surprisingly, we show that the logic cannot distinguish messages with
similar information content. As a consequence, this equivalence is coarser than mere
structural congruence. Moreover, we show that it is not a congruence, due to the pos-
sible introduction of noise in communications that the logic may not detect. This no-
ticeably complicates the techniques to obtain an axiomatization of this equivalence. We
point out some admissible axioms for logical equivalence and prove this axiomatization
complete for the equational theory of finite trees.

Our third contribution is a quantifier elimination technique that shows that standard
term quantifiers ∃t. A can be mimicked by spatial connectives, which illustrates one
more particular example of a spatial logic that is more expressive than first-order logic.

Structure of the paper. In Section 2, we collect all the necessary background on the
applied π-calculus, and define our process compositions ∗ and �. Section 3 introduces
AπL; Sections 4 and 5 present the characterizations of the logical equivalences for the
static and dynamic fragments respectively. Section 6 establishes the quantifier elimina-
tion property.
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2 Applied π-Calculus

2.1 Terms

The grammar of applied π-calculus processes relies on the definition of a set of terms
along with an equational theory. This lets the user decide which cryptographic prim-
itives the calculus will use for example. The set of terms is constructed using disjoint
infinite sets V and N of respectively variables and names, and a finite signature Σ,
which is a set of functions, each with its arity (constants have arity 0). Its grammar is as
follows, ar (f) being the arity of f :

M,N ::= x ∈ V | a ∈ N | f(M1, . . . ,Mar(f)) .

We will use the letters a, b, c, n,m, s to refer to elements of N , x, y, z for elements
of V and u, v, w for “meta-variables” that may belong either to N or V . We will write
M,N for terms.

These terms are equipped with an equivalence relation E called an equational theory
on Σ, where membership of a pair (M,N) of terms is written E � M = N , or simply
M = N if E is clear from context. This relation must be closed under substitution
of terms for variables or names (M1 = M2 implies M1[u←N ] = M2[u←N ]) and
context application (N1 = N2 implies M [x←N1] = M [x←N2]). fn(M) and fv (M)
are respectively the sets of free names and free variables of M , defined as usual, and
fnv(M) � fn(M) ∪ fv(M).

2.2 Processes

Applied π-calculus extends the standard π-calculus with primitives for term manipula-
tion, namely active substitutions and term communications. The grammar of processes
is split into two levels: the plain processes which account for the dynamic part, and the
extended ones, also simply referred to as “processes” which extend the former with a
static part.Note that replication !P p is not part of our setting.

P p, Qp, . . . ::= plain processes P,Q, . . . ::= (extended) processes
0 null process P p plain process
P p |Qp composition {M/x} active substitution
νa. P p name restriction P |Q parallel composition
ach(n).P p name input νa. P name restriction
āch〈n〉.P p name output νx. P variable restriction
a(x).P p term input
ā〈M〉.P p term output
if M = N
then P p elseQp conditional

Our grammar differs from the original one in that it allows communications of two
kinds, that may not interfere: communications of names behave as in the standard
π-calculus whereas communications of terms may interact with active substitutions and
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conditionals. Names are thus allowed to serve both as channels through which commu-
nications may occur and as atoms on which to build terms, without the need to rely on
a type system to ensure the validity of communications.

From now on, we will only consider extended processes whose active substitutions
are cycle-free. Furthermore, we will always assume that there is at most one active
substitution for each variable, and exactly one if the variable is restricted. A process
following these constraints will be called well-formed.

The set of free names (resp. variables) of a process P is defined as usual and writ-
ten fn(P ) (resp. fv (P )), with fn({M/x}) � fn(M) (resp. fv ({M/x}) � {x} ∪ fv(M)),
and with both restrictions and both inputs being binders. We write fnv(P ) for the set
fn(P ) ∪ fv (P ).

Compositions of active substitutions of the form {M1/x1} | · · · |{Mn/xn} will be writ-
ten {M/x}, and referred to using σ, τ . Depending on the context, we will write x for
both the vector x1, . . . , xn and the associated set {x1, . . . , xn}, where n = |x|. Trailing
0’s in processes will often be omitted, as well as null else branches in conditionals.

2.3 Operational Semantics

The structural congruence relation≡ identifies processes that can be obtained one from
another by mere rewriting. It is the smallest equivalence relation on well-formed ex-
tended processes that is stable by α-conversion on both names and variables and by
application of contexts, and that satisfies the usual rules w.r.t. the AC properties of
| with neutral 0, and the scope extrusion of restrictions. For instance, we have that
νa. (νx. {a/x} | ā〈b〉) | c̄〈y〉 ≡ νx. νa. ({a/x} | ā〈b〉 | c̄〈y〉). In addition, it must satisfy
the following rules:

ALIAS νx. ({M/x} |P ) ≡ P [x←M ]
SUBST {M/x} |P p ≡ {M/x} |P p[x←M ]
REWRITE {M/x} ≡ {N/x} if E �M = N

Here, a context (resp. an evaluation context) is an extended process with a hole in place
of a plain (resp. extended) process. This hole can be filled with any extended process
provided the resulting extended process is well-formed. The original structural congru-
ence [8] is closed by application of evaluation contexts instead of arbitrary contexts.
This makes inductive characterization of processes up to ≡ impossible (see Section 5).

Due to the REWRITE rule, two structurally congruent processes may not have the
same set of free names or variables. Thus, we define the closures fn(P ), fv (P ), fnv(P )
of these sets up to structural congruence, and the corresponding sets for terms. For
instance, fn(P ) �

⋂
Q≡P fn(Q) and fv (M) �

⋂
N=M fv (N).

It is worth mentioning that rules ALIAS and SUBST are not the ones from the original
applied π-calculus, namely:

ALIAS’ νx. {M/x} ≡ 0
SUBST’ {M/x} |P ≡ {M/x} |P [x←M ]

With our rules, active substitutions may affect other active substitutions only if their
domain is a restricted variable. They may only apply to plain processes otherwise. As
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such, the rule ALIAS’ is still valid in our setting, whereas SUBST’ is restricted to plain
processes only. This makes our quantifier elimination technique easier, as it dramati-
cally limits the interferences between active substitutions. On the other hand, it does
not change the behaviour of processes, as both the reduction rules and the static equiva-
lence definitions, presented below, stay the same. Moreover, a processP can still always
be rewritten into a set of restricted names n, a public composition of active substitutions
σ and a public plain process Q: P ≡ νn. (σ |Q).

Finally, internal reduction → is the smallest relation that satisfies the rules below and
that is closed by structural congruence and by application of evaluation contexts.

COMM-T ā〈x〉.P | a(x).Q→ P |Q
COMM-C āch〈m〉.P |ach(n).Q→ P |Q[n←m]
THEN if M = M then P else Q→ P
ELSE if M = N then P else Q→ Q

(when fv(M,N) = ∅ and E � M = N)

2.4 Frames

A frame is an extended process built up from active substitutions and the null process
only. The domain dom(φ) of a frame φ is the set of variables upon which the active
substitutions of φ act. The frame φ(P ) of a process P is P in which every plain process
embedded into P is set to 0. Similarly, the plain process (P )p associated with P is
obtained by mapping every substitution over non-restricted variables to 0.

The following definitions are standard in the applied π-calculus:

– φ is closed when fv (φ) ⊆ dom(φ);
– an evaluation context C[·] closes the frame φ when C[φ] is both well-formed and

closed;
– two termsM andN are equal in the frame φ, written φ �M = N when there exists

a set of names n and a substitution σ (i.e. a public frame) such that φ ≡ νn. σ,
Mσ = Nσ and n ∩ fn(M,N) = ∅. Two terms are equal in the process P when
they are equal in φ(P ).

Definition 2.1 (Static equivalence). Two closed frames φ and ψ are statically equiva-
lent, written φ ≈s ψ, when dom(φ) = dom(ψ) and, for all termsM andN , φ �M =
N if and only if ψ �M = N .

Two processes are statically equivalent when their frames are.

As it is, static equivalence on non-closed frames does not lead to a congruence relation.
For instance, with 〈 · , · 〉 being the pairing operation and π1 the first projection, if we
let φ = νn. {dec(enc(〈1,n〉,1),y)/x} and ψ = νn. {dec(enc(〈1,n〉,1),z)/x} then φ ≈s ψ, but
one can deduce π1(x)= 1 from {1/y} |φ and not from {1/y} |ψ.

To overcome this issue, and later be able to write formulae characterizing static
equivalence for both closed and non-closed frames, we introduce strong static equiv-
alence ≈s

s, which is the largest equivalence included in ≈s and closed by application
of closing evaluation contexts. One can note that strong static equivalence is closed
by application of arbitrary evaluation contexts (and not just closing ones), and that it
coincides with static equivalence on closed frames.
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2.5 Additional Operators

When splitting up a process P into a parallel composition of two subprocesses P1 |P2,
two very different operations are performed, as both the dynamic and the static part of
the process are split up into two extended processes. This does not match our intuition of
local reasoning for processes. Indeed, consider a protocol νn, n′. ({ck(n,n′)/x} |A(x, n)
|B(x, n′)) where Abelard and Héloı̈se share a compound key ck(n, n′) generated from
a nonce n of A and n′ of B. Then a specification of the form A |B would fail since
this process is atomic. To overcome this situation we have broken down the parallel
composition into two finer-grained operators: the first one � keeps the same frame while
splitting up the plain process and, conversely, the second one ∗ keeps the same plain
process while splitting up the frame.

Definition 2.2 (Process and frame compositions). Given frames φ, φ1, φ2, plain
processes P , P1, P2 and names n1,n2 such that n1∩fn(φ2, P2) = n2∩fn(φ1, P1) =
∅, we let

νn1. ((νn2. φ) |P1) � νn2. ((νn1. φ) |P2) � νn1n2. (φ |P1 |P2)
νn1. (φ1 | νn2. P ) ∗ νn2. (φ2 | νn1. P ) � νn1n2. (φ1 |φ2 |P ) .

In the following, for † in { |, ∗}, we write P ↔ P1†P2 if there are P ′,P ′
1,P ′

2 such that
P ≡ P ′, P1 ≡ P ′

1, P2 ≡ P ′
2 and P ′ = P ′

1†P ′
2.

Remark 2.3. Formally, P ↔ P1 ∗ P2 is a ternary relation, and for some P1, P2, one
may have P ↔ P1 ∗ P2, P ′ ↔ P1 ∗ P2 for some non congruent P, P ′. Albeit not
a composition law, ∗ projects as a composition on frames: φ(P ∗ Q) ≡ φ(P ) |φ(Q).
Ternary relations also arise in the relational models of BI, or in context logics.

3 A Spatial Logic for the Applied π-Calculus

3.1 Syntax and Semantics

We assume an infinite set T V of term variables, distinct from V , ranged over with
t, t′, . . . , and we write U, V for terms that possibly contain these term variables. We
call Lspat the set of formulae defined by the following grammar:

A,B ::= U = V | ¬A | A ∧B | ♦A | ∃t. A | Iu.A | Nu.A | A�u | c©u
| 0 | A �B | A�B | ∅ | A ∗B | A −−∗ B

U = V is the equality of terms w.r.t. the current frame, negation and conjunction
are classical, and ♦A is the strong reduction modality. ∃t. A is term quantification and
In.A and Ix.A are respectively the fresh name and variable quantifications. We use
the same operator for both of these, as well as for the N, c© and � operators, because
our convention on namings lets us do so unambiguously. Nu.A is the hidden name or
variable quantification; c©u means that u appears free in the process; A� u is hiding
of name or variable u. 0 (resp. ∅) denotes the null plain process (resp. the empty frame)
and A �B (reps. A ∗B) plain process (resp. frame) composition.A�B (resp. A −−∗ B)
is a guarantee operator and the adjunct of A �B (resp. A ∗B).
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We define two usual fragments of our logic: the extensional one, which lets one
observe a process via its interactions with some (possibly constrained) environment,
and the intensional one, which lets one explore the very structure of the process. We also
distinguish between static operators, that only account for the frame, and dynamic ones,
which account for the whole process. The four fragments are summed up by the table
below, that defines which operators the formulae of each fragments may be composed
of. The intensional fragment contains the extensional one and the dynamic one contains
the static one; the static extensional fragment is thus common to all fragments, and the
dynamic intensional one coincides with the whole logic.

Static Dynamic
Extensional =,¬,∧, ∃,I,−−∗,� ♦,�
Intensional N, ∗, ∅ c©,0, �

P, v � U = V ⇔ P $ Uv = V v
P, v �¬A ⇔ P, v � A
P, v � A1 ∧ A2 ⇔ P, v � A1 and P, v � A2

P, v �♦A ⇔ ∃P ′. P → P ′ and P ′, v � A
P, v � ∃t.A ⇔ ∃M. P, (v{t→M}) � A
P, v � Iu. A ⇔ ∃u′ /∈ fnv(P, v, A). P, v � A[u←u′]
P, v � Nu. A ⇔ ∃u′ /∈ fnv(P, v, A).∃P ′. P ≡ νu′. P ′ and P ′, v � A[u←u′]
P, v � A� n ⇔ νn. P, v � A
P, v � A� x ⇔ x ∈ dom(P ) and νx. P, v � A

P, v � c©u ⇔ u ∈ fnv(P )
P, v � 0 ⇔ (P )p ≡ 0
P, v � A1 � A2 ⇔ ∃P1, P2. P ↔ P1 � P2, P1, v � A1 and P2, v � A2

P, v � A � B ⇔ ∀Q, R. (R ↔ P � Q and Q, v � A) implies R, v � B
P, v � ∅ ⇔ φ(P ) ≡ 0
P, v � A1 ∗ A2 ⇔ ∃P1, P2. P ↔ P1 ∗ P2, P1, v � A1 and P2, v � A2

P, v � A −−∗ B ⇔ ∀Q, R. (R ↔ P ∗ Q and Q, v � A) implies R, v � B

Fig. 1. Satisfaction relation

The operators’ semantics, close to the one defined by Caires and Cardelli for the
π-calculus [4], is given by a satisfaction relation described in Figure 1 whose judge-
ments are of the form P, v � A between a process P , a spatial formula A and a val-
uation v. Valuations assign terms M to all the free variables t of the formula and are
written {t→M} when |t| = |M | = n and v(ti) = Mi for all i ∈ {1 . . . n}. We write
v{t→M} for the valuation v whose domain has been extended to t with v(t) = M . Fi-
nally, when A is closed and the valuation is empty, judgements are written P � A. The
following lemmas state that the logic behaves consistently w.r.t. structural congruence
and that static operators may only state static properties indeed:

Lemma 3.1. P � A and P ≡ Q impliesQ � A.

Lemma 3.2. For every formula A of Lstat, P � A iff φ(P ) � A.
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Boolean operators are assumed to bind more tightly than compositions and adjunctions,
which in turn bind more tightly than every other operator. Derived connectives ∀t, ∨,
⇔ and U �= V are defined as usual, and so are the sets of free names and free variables
of a formula A, written fn(A) and fv (A).

3.2 Derived Formulae

The formulae below will be useful in the following sections:

0� 0 ∨ ¬0 ⊥� ¬0 A[B] � (A ∧ 0) �((B ∧ ∅) ∗ 0)

A�B � ¬(A � ¬B) A −−� B � ¬(A −−∗ ¬B) 1 � ¬0 ∧ ¬(¬0 �¬0)

I � ¬∅ ∧ ¬(¬∅ ∗ ¬∅) public � ¬Nn. c©n single � 1 ∧ ∅ ∧ public

Their meanings for a process P is that there must exist a processQ ≡ P such that:

– 0: nothing is required;⊥ is always false;
– A[B]: φ(Q) verifies A and (Q)p verifies B;
– A � B (this is the dual of �): there are Q′, R such that R ↔ Q �Q′, Q′ � A and
R � B, and similarly for−−�;

– 1 (resp. I): (Q)p (resp. φ(Q)) is not null and cannot be divided into two non-null
processes;

– public: Q has no bound name: ∀n,Q′. Q ≡ νn.Q′ ⇒ n /∈ fn(Q′);
– single: Q is guarded, either by a communication or by a conditional construct.

3.3 Cryptographic Examples

We now propose, on a very basic example, some possible avenues for using the spa-
tial logic for the specification of some cryptographic properties. As usual, we inter-
pret the frame as the history of past communications: restricted names are nonces or
secrets, and each active substitution holds the content of an emitted message. Recall
the frame νn, s. Φ of the introduction, modeling a situation where an encrypted se-
cret s had been transmitted using a published public key pk(n) — we assume here
the equational theory axiom dec(enc(x, pk(y)), sk(y)) = x — and consider the frame
νn, s. Φ |φ = νn, s. {enc(s,y)/x} |{pk(n)/y} |φ.

Following the definition of the applied π-calculus, we will say that the secret s is
deducible from this frame if the formula leak � ∃t. x= enc(t, y) holds; for instance,
choosing φ = {sk(n)/z} would yield such a leak, with witness t = dec(x, z). The
formula ∃t. ∀t′.Nn. (t=pk(n) ∧ t′ �= sk(n)) asserts that the published key is indeed
public, whereas its associated private key is secret. An emitted messageM represented
by an active substitution {M/z} in φ is part of the cause for a leak if the formula
(¬leak)� z ∧ leak holds.

One could also express static properties about authenticated sessions: in a protocol
where each user is assigned a session identifier (here, a secret name) used in every subse-
quent communication, one may count the number of opened sessions with∗-conjunctions
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of the I formula. Indeed, if every other nonce used by the protocol within a session is
generated from the session identifier, each subframe verifying I will correspond to a
different session.

The dynamic part of the logic allows one to reason about the execution in isolation
of some partners of a given protocol, or in a context which abides by some policy of
the protocol: formulae Client �Server, or Client � Attack, would describe a protocol
with a client and a server, or a server that might be attacked by a context following the
specification of a genuine client.

4 Spatial Logic Applied to Frames

In this section, we establish that logical equivalences induced by the static fragments
match static equivalences that have originally been proposed for the applied π-calculus:
structural congruence for frames for the intensional fragment, and static equivalence for
the extensional fragment.

4.1 Intensional Characterization

The formula Subst(x=M) below characterizes processes of the form {M/x}, for a
given x and a given M . The other two will be useful for our quantifier elimination
procedure in Section 6.

public frame � ¬(0 ∗ (I ∧ Nx. I)) Subst(x) � public frame ∧ (∅�x)
Subst(x=M) � ∅�x ∧ x =M

Lemma 4.1. For each process P , variable x and term M such that E � x = M , we
have:

– P � public frame iff φ(P ) ≡ {M/x} for some variables x and terms M ;
– P � Subst(x) iff φ(P ) ≡ {N/x} for some N ;
– P � Subst(x=M) iff φ(P ) ≡ {M/x}.

Proof: First, observe that if P � I ∧ Nx. I then P � I, so either φ(P ) is a single public
active substitution or φ(P ) ≡ νn. σ where σ cannot be split into σ1 and σ2 that do
not share names in n. Moreover, P � Nx. I so we can reveal a fresh variable to obtain
a process whose frame still verifies I. This is only possible if P ’s frame was of the
latter form and if the active substitution created by this revelation makes use of some
restricted name in n. This illustrates one peculiar behaviour of variable revelation: it
may reveal a substitution under the scope of an arbitrary number of name restrictions.
Now, if P � public frame then we cannot isolate a non-public subframe of P , so P ’s
frame is public.

Reciprocally, if φ(P ) is not public, then there is n such that φ ≡ (νn. φ1) ∗ φ2, n ∈
fn(φ1) and νn. φ1 � I. Then, for x /∈ dom(P ), we have νn. φ1 ≡ νx, n. (φ1 |{n/x})
so νn. φ1 � Nx. I, hence the result.

The other two formulae are straightforward. Observe that the hide operator is used
in conjunction with the ∅ predicate to state both x ∈ dom(P ) and dom(P ) ⊆ {x}. �
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Once this basic block is defined, one can easily build up a formula capturing processes
in a certain structural congruence class, as expressed by the following theorem:

Theorem 4.2 (Characteristic formulae for frames). For all frames φ there exists a
formula Fφ in Lstat

int such that for all extended processes P , P � Fφ if and only if
φ(P ) ≡ φ.

For example, a characteristic formula for νn, s. Φ is (Ns. Subst(x= enc(s, y))) ∗
(Nn. Subst(y= pk(n))). Together with Lemma 3.1, this theorem gives a precise de-
finition of logical equivalence induced by Lstat

int on frames:

Corollary 4.3 (Logical equivalence in Lstat
int ). For all extended processes P and Q, P

andQ satisfy the same formulae of Lstat
int if and only if φ(P ) ≡ φ(Q).

4.2 Extensional Characterization

We will show in this section that logical equivalence for Lstat
ext , or extensional equiva-

lence, coincides with strong static equivalence and that, given a closed frame φ, one
can construct a formula F≈s

φ characterizing the equivalence class of φ. The right-to-left
inclusion is given by the following lemma:

Lemma 4.4. φ ≈s
s ψ and φ � A implies ψ � A.

For the converse of the above lemma, let us first remark that one can characterize frames
whose domains are x using the formula ∅�x. Then, one can define a characteristic
formula F≈s

σ for a public frame σ = {M/x} of size n:

F≈s
σ � ∅�x ∧

n∧

i=1

xi = Mi .

Let φ be a closed frame νn. σ with σ a public frame, and consider the formula

φ forces U =V � F≈s
σ −−∗

(
(U =V )� n

)
.

Then ∅, v � φ forces U =V if and only if φ, v � U =V . Moreover, one can internalize
an assumption ∅ � A in the logic: a process P satisfies (∅ ∧ ¬A) −−∗ ⊥ if and only
if ∅ � A. We may then derive characteristic formulae for static equivalence on closed
frames:

F≈s

φ � ∅�x ∧ ∀t, t′.
(
(∅ ∧ ¬φ forces t= t′) −−∗ ⊥

)
⇔t= t′ .

Theorem 4.5 (Formulae for static equivalence). For all closed frames φ, ψ, ψ � F≈s

φ

if and only if φ ≈s ψ.

Using this theorem and the Lemma above, one concludes that two closed frames φ and
ψ satisfy the same formulae of Lstat

ext if and only if φ ≈s ψ.
For the general case, let us consider two non-closed, logically equivalent frames φ1

and φ2. Then, for any closing evaluation context C ≡ νn. ( · |σ), they should both
satisfy the formula Fσ −−∗ F≈s

C[φ1]
�n. Thus, for all closing evaluation contexts C,

C[φ2] � F≈s

C[φ1]
so C[φ2] ≈s C[φ1]. This shows φ1 ≈s

s φ2, so logical equivalence
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on frames is indeed strong static equivalence on frames (and thus on processes, by
Lemma 3.2).

5 Logical Characterization of Processes

In this section we study the logical equivalence induced by the dynamic intensional
fragment.1 More precisely, we write P =L Q if P,Q cannot be discriminated by Lspat

formulae and look for a better understanding of =L. We introduce a notion of inten-
sional bisimulation that aims at characterizing =L by an Ehrenfeucht-Fraı̈ssé game.

Definition 5.1 (Intensional bisimulation). A relationR is an intensional bisimulation
if R is symmetric and the following assertions hold for all (P,Q) ∈R:

1. φ(P ) ≡ φ(Q)
2. if P p ≡ 0, then Qp ≡ 0;
3. if u ∈ fnv(P ), then u ∈ fnv(Q);
4. if there is P ′ s.t. P ≡ νu. P ′, then there is Q′ s.t. Q ≡ νu.Q′ and P ′ R Q′;
5. for † ∈ {∗, �}, for all P1, P2, if P ↔ P1†P2, then there are Q1, Q2 such that
Q↔ Q1†Q2 and Pi R Qi;

6. for † ∈ {∗, �}, for all P1, P
′, if P1 ↔ P †P ′, then there are Q1, Q

′ such that
Q1 ↔ Q†Q′, P ′ R Q′ and P1 R Q1;

7. if there is P ′ s.t. P→P ′, then there is Q′ s.t. Q→Q′ and P ′ R Q′;
8. νu. P R νu.Q.

Let us stress the fact that the equivalents of conditions 6 and 8 do not occur in the orig-
inal intensional bisimulation [14]. Fortunately, in that case the intensional bisimilarity
was a congruence, and as a consequence, conditions 6 and 8 were admissible. Note
moreover that conditions 6 and 8 do not entail thatR is a congruence (even with † = |).

Proposition 5.2. Let R be an intensional bisimulation. Then R⊆=L.

We now give two examples of intensional bisimulations that illustrate that logical equiv-
alence is strictly coarser than structural congruence, and is not even a congruence in
general. These bisimulations are based on the notion of shift functions. A unary func-
tion symbol f is called a shift function if there are unary function symbols g1, . . . , gn
such that E � f(g(x)) = g(f(x)) = x. In the remainder, we assume some fixed shift
function f — we will later on consider the case of the equational theory of trees, for
which there is no such function. In cryptographic terms, M and f(M) represent two
different pieces of information that are deducible one from another by a linear deduc-
tion, which explains why they may be indistinguishable for some notion of observer
matching our logic.

Let a be some fixed channel name, f a shift function and g such that E � f(g(x)) =
g(f(x)) = x. We consider a transformation shiftfa(P ) that intuitively shifts all term
communications of P on channel a using function f — this could be thought of as a
reversible noise introduced globally on all communications over a.

1 We also observed that dynamic extensional fragment does not characterize behavioral equiva-
lence, but due to lack of space we will not develop this point.
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Definition 5.2 (Shifted channels). The transformation shiftfa(.) is inductively defined
as a morphism for all syntactic operators but term inputs and outputs on a, for which it
is defined as follows:

shiftfa(ā〈M〉.P ) � ā〈f(M)〉.shiftfa(P )
shiftfa(a(x).P ) � a(x).shiftfa(P [x←g(x)]).

Proposition 5.4. The symmetric closure of R= {(P, shiftaf (P )), P ∈ P} is an inten-
sional bisimulation.

Propositions 5.2 and 5.4 have some quite unexpected consequences on logical equiva-
lence. First, it entails the following equivalences:

ā〈0〉 =L ā〈f(0)〉 and ā〈0〉 | b̄〈0〉 =L ā〈f(0)〉 | b̄〈0〉.
But the noise introduced on a channel should affect all of its communications, as it
could otherwise be observed; in particular, it can be proved that:

ā〈0〉 | ā〈0〉 ¬L ā〈f(0)〉 | ā〈0〉,
which shows that =L is not a congruence. Such a phenomenon was already observed
for the spatial logic of CCS [15], where =L coincided with structural congruence up to
injective renaming. Non-congruence makes the proof of the converse of Proposition 5.2
much harder than the Howe-like method used e.g. by Sangiorgi [14], even in the very
simple case of CCS. Indeed, a global quantification over the shift function used for
each channel should be expressed at the logical level, which calls on for a quantifiers
elimination result; despite some progress in that direction (see next section), we did not
succeed in using them to prove that =L is an intensional bisimulation.

Let now ∼ be the smallest equivalence on pairs of termsM =N such that:

SYMMETRY M = N ∼ N = M
SHIFT M = N ∼ f(M) = f(N)

where f is a shift function. Let moreover ≡′ be the smallest congruence extending ≡
with the following axiom:

TEST
if test
then P else Q ≡′ if test′

then P else Q

when test ∼ test′. Then the following result can be established:

Proposition 5.5. ≡′ is an intensional bisimulation.

As mentioned above, we did not succeed to prove any completeness result in the general
case, but we managed to derive some widget formulae that are sufficiently expressive
to characterize≡′ on, at least, the equational theory of finite trees. Due to lack of space,
we skip the quite involved construction.

Theorem 5.6. Let E be the theory of finite trees. Then for every process P there is a
formula FP ∈ L such that for all processes Q, Q |= FP if and only if Q ≡′ P . In
particular, ≡′ is the same as =L.

On π-calculus processes, i.e. processes that contain neither term communications nor
conditionals, it can be shown using a similar technique that logical equivalence is struc-
tural congruence for all equational theories.
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6 Elimination of Term Quantification

This section is devoted to the construction of a translation of any formulaA of Lspat into
a logically equivalent one that does not make use of term quantification, thus proving
the following theorem:

Theorem 6.1 (Term quantification elimination). For every closed formula A ∈ L,
there is a formula �A� ∈ L \ {∃} such that A⇔�A� is valid.

�A� is defined by structural induction on the formula A. It leaves most of A’s struc-
ture unchanged, while replacing every subformula ∃t. A′ with a formula of the form
Nx. �A′�{t→x}. Hence, the N quantifier is in charge of picking a term M for the new
active substitution {M/x} it reveals, thus mimicking term quantification. Further occur-
rences of t in the formula will have to be replaced by x. This inductively builds up an
environment frame placed alongside the actual process that records witnesses of term
quantifications, but for which some maintenance work is needed during the translation
of a formula. For instance, we will need to copy this environment on each side of a ∗
operator, and on the left-hand side of a−−∗. Moreover, to follow the semantics of ∃t. A,
one has to make sure that this substitution does not use any hidden name of the process
or any of the substitutions belonging to the environment frame.

To keep track of this, the translation will have to be of the form �A�v where v is a
valuation {t→x} that lets previously encountered term variables point to their corre-
sponding variables in the domain of the environment frame. The translation thus starts
with an empty valuation: �A� � �A�∅, and the valuation grows up each time a term
quantification is encountered. We write e for the environment {x→M} corresponding
to the environment frame �e��{M/x}. Moreover, we only consider environments e and
translations �A�v where fv(A,M )∩x = ∅. Finally, when the domain of ematches the
codomain of v, we write e ◦ v for the valuation {t→M}.

We are now ready to give the inductive lemma we want to prove on �A�v :

Lemma 6.2 (Inductive hypothesis). P � �A�v if and only if there exists Q and e such
that P ≡ Q |�e�, fv(Q) ∩ dom(�e�) = ∅, andQ, e ◦ v � A.

To meet the requirements of this lemma and make sure that P is indeed the composition
of a process Q and an environment frame corresponding to e, we first define a formula
Φv that will have to be verified at every step of the translation:

Φ{t→x} �
∧

x∈x

(Subst(x) ∗ ¬ c©x) .

Lemma 6.3. For all processes P and valuations v, P � Φv if and only if there exists a
process Q and an environment e such that P ≡ Q |�e� and fv (Q) ∩ dom(�e�) = ∅.

The translation of all the operators of the logic can be found in the companion technical
report [16]. We will give here the proof sketches for the translations of ∃t. A and A1 ∗
A2. The actual translation of term quantification is as follows, where xn+1 /∈ fv(A, v):

�∃t. A�v � Φv ∧ Nxn+1. �A�v{t→xn+1} .

It merely creates a fresh substitution, as the inductive hypothesis on �A�v{t→xn+1}
suffices to enforce the validity of the new environment frame.
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The translation of frame composition needs the valuation frame to be copied in order
for it to be present alongside both subprocesses. It is performed as follows:

�A1 ∗A2�v � Φv ∧Ix′. (Φv′ ∧
∧

x∈x

¬ c©x ∧ Subst(x′)) −−�

(
∗n

i=1(Subst(xi, x
′
i) ∧ x′i = xi) ∗ 0

∧�A1�v ∗ �A2�v′

)

.

The idea is to add a new environment frame over fresh variables x′. The left-hand
side of −−� ensures that this is a valid environment which does not make use of the
variables of the previous environment. This is to avoid the possibility of creating active
substitutions of the form {x/x′} which would not make sense once we separate them
from the first environment. The right-hand side makes sure that both environments are
the same and distributes them over the interpretations of sub-formulaeA1 and A2.

7 Conclusion

Related work. Spatial logics for process algebrae with explicit resources have been first
studied by Pym [17]. The idea of distributing assertions about knowledge in space using
spatial logics has been explored by Mardare [18]. More examples of applications of spa-
tial connectives in cryptographic logics can be found in Kramer’s thesis [19]. Hüttel et al.
gave a logical characterization and characteristic formulae for static equivalence [13] for
some classes of equational theories.

Extensions. One natural way to extend the logic could be to consider a weak, several
steps version of the ♦ modality. We conjecture that this would allow us to handle the
full applied π-calculus with replication, as in the case of ambients [6].

Future work. The decidability status of the logic depends on the considered equational
theory, and is already limited by strong undecidability results for the first-order equa-
tional logic. At the time of this writing, we are investigating the decidability of the
model-checking problem for (fragments of) our logic. A first positive result has been
obtained for the static part of the logic without the magic wand operator or the ability to
reveal variables, and for a very restricted class of equational theories [16]. A promising
line of work would be to try to extend this result to common equational theories, and to
allow the use of variable revelation in formulae.

Acknowledgments. We acknowledge, among others, Steve Kremer, Ralf Treinen and
Simon Kramer for valuable discussions.
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Abstract. We propose an interactional generalisation of structured exceptions
based on the session type discipline. Interactional exceptions allow communi-
cating peers to asynchronously and collaboratively escape from the middle of a
dialogue and reach another in a coordinated fashion, under an arbitrary nesting
of exceptions. New exception types guarantee communication safety and offer
a precise type-abstraction of advanced conversation patterns found in practice.
Protocols for coordinating normal and exceptional exit among asynchronously
running sessions are introduced. The liveness property established under these
protocols guarantees consistency of coordinated exception handling among com-
municating peers.

1 Introduction

Structured exceptions in modern programming languages such as Java and C� allow
a thread of control in a block (often designated as “try block”) to get transferred to
another block (exception handler, “catch block”), when a system or user raises an
event called exception. Their central merit is to enable a dynamic escape from a block
of code to another (like goto), but in a controlled and structured way (unlike goto).
They are useful not only for error-handling but more generally for a flexible control
flow while preserving well-structured description and type-safety.

This paper studies the new notion of structured exceptions for distributed, concurrent,
asynchronously communicating programs based on session types [10,17], motivated by
collaboration with industry partners in web services [19] and financial protocols [14].
These two application domains contain a wealth of structured conversation patterns aris-
ing from practical needs [11], and many of these patterns crucially rely on dynamic es-
cape: a conversation is interrupted by a special communication action, after which all
peers move to a different stage. Realising such conversation patterns requires a consis-
tent propagation of exception messages among concurrently communicating peers; an
exception affects not only a sequential thread but also a collection of parallel processes;
and an escape needs to move into another dialogue in a concerted manner. The dis-
tinguishing feature of these exceptions in comparison with their traditional counterpart
is that they demand not only local but also coordinated actions among communicating
peers. We call such exceptions, interactional exceptions.

As a simple example of interactional exceptions, we present the following scenario,
coming from widely used financial protocols. Henceforth we assume a message passing
in a session is asynchronous, i.e. the completion of a sending action does not need a
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handshake with its receiver, a standard assumption in financial messaging [1]. Suppose
Seller wishes to sell a product to Buyer.

1. Seller repeats sending quotes of a product without waiting for an acknowledgement;
2. When Buyer replies with his interest in one of the quotes, the loop terminates and

Seller and Buyer move to another stage, for e.g. completion of the transaction.

This simple conversation pattern contains an asynchronous escape from one part of a
conversation to another. After one party aborts, the same thing should happen to the
other, both moving together to another part of the conversation.

As a second example, we continue the above scenario, extending to the situation
where Buyer and Seller negotiate the price of the product through Broker.

1. Buyer initiates a conversation (session) with Broker, in order to buy a product.
2. As a result, Broker initiates a conversation with Seller, and starts brokering between

Buyer and Seller, to reach a successful transaction.
3. If an exceptional circumstance arises between 1 and 2 (e.g. a legal issue), Buyer

or Broker will abort and they together move to an exception dialogue to quit the
transactions formally.

4. On the other hand, if there is an exceptional circumstance during 2, then there is an
exception dialogue involving all of Broker, Seller and Buyer.

Above, an exception handling at Broker is nested, whose later, or inner, exception han-
dling (4, involving all three parties) supersedes the earlier, or outer, one (3, involving
only Broker and Seller). As a conversation evolves, more communication peers may be
involved, making it necessary to coordinate more parties when an exception is raised.

To maintain the virtues of traditional structured exceptions, as well as those of the
existing session types discipline, we may as well demand the following three properties
for this generalised form of exceptions.

– flexibility: it should allow asynchronous escape at any desired point of a conversa-
tion, including nested exceptions;

– consistency: even under asynchrony, messages in a “default” conversation should
not get mixed up with those in an “exception” conversation, under arbitrary nesting;

– type safety: communications inside a session always take place linearly and with-
out communication mismatch, carrying out fundamental properties of foregoing
session type disciplines.

We address these requirements by extending session types with the following features:

1. Asynchronous exceptions where nested scopes are consistently handled by a meta-
level reduction and a stack discipline. A simple machinery, based on exception
levels, prevents mix-up of messages in normal and exception conversations.

2. An operational structure for coordinating exceptions including the protocols to
propagate exceptions, to handle normal and exceptional exit from a conversation,
and to coordinate entry into exception-handling conversations.

3. A type structure for interactional exceptions which minimally extends that of the
existing session types. They ensure communication safety and liveness, which to-
gether guarantee the consistency of the introduced operational structures.
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The stipulated formal semantics of interactional exceptions is intended to suggest a
possible framework of implementation, as discussed in § 5. As far as we know, this
work is the first to present a consistent extension of the session types discipline to
interactional exceptions, backed up by its key formal properties.

2 Session Calculus with Interactional Exceptions

Syntax. We introduce the syntax of processes using the π-calculus with session primi-
tives [10]. Let a, b range over service channels; s, r, t over session channels; x, y, z over
variables; and X, X′, . . . over term variables. We first introduce the syntax of processes
(P,Q,R, . . .) written by programmers.

P ::= ∗ c(λ)[P,Q] (service) | c(λ)[κ̃, P,Q] (request)

| κ?(x). P (input) | κ!〈e〉. P (output)

| κ � {li : Pi}i∈I (branch) | κ � l. P (select)

| P | Q (par) | if e then P else P (cond)

| 0 (inact) | (νa) P (resServ)

| X (termVar) | μX. P (recursion)

| throw (throw)

e ::= a | tt | ff | e and e | ¬e | . . . c ::= a | x κ, λ ::= sp

Session channel sp is a polarised channel [8] where variable p ranges over polarities
{+,−}. We define the dual of a polarised channel sp as s+ = s− and s− = s+.

A service ∗a(λ)[P,Q], named a, is a replicated process where P is the default process
and Q is the exception handler. By replication a service is always available (follow-
ing Service Channel Principle (SCP): “services should always be available in multiple
copies” [6], like services at URLs). When ∗a(λ)[P,Q] is requested for a session via a
shared name a, a fresh session channel is established, and through this channel P is
engaged in a series of communication actions, possibly followed by Q if an exception
takes place. A request c(λ)[κ̃, P,Q] interacts with a service via c and establishes a fresh
session λ, with its default process P and handler Q. The channels κ̃ are the already es-
tablished sessions with which the handler Q gets associated with, thus allowing nesting
of exceptions. We also let λ itself be included in κ̃, which is convenient for typing. We
call c(λ)[κ̃, P,Q] a refinement of each κi for κi ∈ {κ̃} \ {λ}, since its handler Q refines the
handlers of the previous sessions enabling nested exceptions. throw is a process which
is about to throw an exception. All other constructs are from [6,10].

Free/bound (term) variables/channels and α-equivalence are standard. fsc(P), fn(P)
and fv(P) respectively denote the sets of free session channels, service channels, and
variables in P. We call program a process which does not contain free variables or free
session channels. We often omit the tailing 0.

For having consistent operational semantics, we stipulate the following syntactic
constraints: (i) recursions should be guarded, i.e. P in μX. P is prefixed by an input/out-
put/branch/select/conditional; (ii) a service can never occur under an input/output/recur-
sion prefix nor inside a default process or a handler thus protecting the availability of
services from exceptions; and (iii) in c(λ)[κ̃, P,Q], a free term variable never occurs in
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P or Q and, for each c′(λ′)[κ̃′, P′,Q′] occurring in P, we have κi ∈ κ̃′ if and only if
κ̃ ⊆ κ̃′ (for consistent exception propagation). Further, such a refinement never occurs
inside a handler (otherwise we have ambiguity when launching a handler).

In the present paper we also stipulate that throw never occurs inside a handler. This
prevents a handler from throwing a further exception in the same session. We do not
consider such “cascading exceptions” (which is another kind of nested exceptions) for
the sake of simpler presentation: their treatment is discussed in §5.

Example 1 (Asynchronous Escape). We can write the first example in § 1 as:

Buyer = chSeller(s+)[ s+, Seller = ∗chSeller(s−)[

μX. s+?(y). if ok(y) throw else X, μX. s−!〈quote〉. X ,

s+!〈card〉. s+?(z) ] s−?(y2). s−!〈time〉 ]

Buyer keeps on reading messages on s+ until condition ok(y) is met and then it throws
an exception. Seller, instead, is in an infinite loop where it persistently sends a quote
over channel s− (we assume quote changes over time). When the exception is raised
the handlers are run: Buyer will send the credit card details card and Seller will ac-
knowledge on channel s− with the current time.

Example 2 (Nested Escapes). The second example given in the introduction, can be
represented in our calculus as (Seller is unchanged from Example 1):

Buyer= chBroker(t+)[ t+, Broker= ∗chBroker(t−)[ t−,

t+!〈id〉. t−?(x). if bad(x) then throw else

chSeller(s+)[ (s+, t−),

μX. t+?(y). if ok(y) throw else X, μX. s+?(x). t−!〈x + 10%〉. X,

t− � l1. t−?(y2). s+!〈y2〉.
t+ � { l1 : t+!〈card〉. t+?(z), s+?(y3). t−!〈y3〉 ],

l2 : Pabort} ] t− � l2. Rabort ]

Buyer first sends its identity id and then Broker throws an exception or proceeds by
invoking Seller based on bad(id). In the first case, process t− � l2. Rabort in the out-
ermost handler selects the l2 branch on Buyer’s handler and proceeds with abortion
(conversation between Pabort and Rabort). In the other case, Seller is invoked and the
protocol proceeds as in Example 1 with Broker forwarding messages and increasing
quotes by 10%. When Buyer decides to accept a quote, the innermost handler is run by
Broker which selects the l1 conversation in Buyer’s handler and forwards the exception
to Seller. Then Broker forwards messages, successfully completing the transaction.

Semantics. We augment the semantics of asynchronous sessions [4, 9, 12] with ex-
ception handling (i.e. shutting down a default process and launching the corresponding
handler) and exception propagation (informing session peers of an exception occur-
rence, realised by propagation of the special exception message †). Further we ensure
that processes always carry out their conversation at properly matching levels (for ex-
ample when a default process sends a message, a receiving peer may throw an excep-
tion before the message arrives, making it no longer relevant), by annotating message
queues, hence in effect messages in them, with exception levels.
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We use the following runtime processes [4,9,12] to define the operational semantics,
extending the grammar of programs.

P ::= . . . | (νs) P (resSess) | κ ↪→φ κ : L (queue)

| try{ P } catch { κ̃ : Q } (try-catch) | κ̃{[P]} (wrap)

L ::= ε | h :: L h ::= l | a | tt | ff | †

Free variables and channels are extended to run-time processes. Session restriction
(νs) P is standard. For formalising order-preserving asynchronous message passing,
we use a directed message queue κ ↪→φ κ : L [4, 9], where κ (source) and κ (target)
are two dual endpoint session channels. φ ranges over natural numbers, describing the
level of the exception at which messages in the queue are to be received, relative to the
current position of the queue (we do not need to consider the level of a sender, since
this level is recorded by the number of the exception messages † inside a queue). We
often write κ ↪→ κ : L for κ ↪→0 κ : L. The list L :: h is obtained by extending L
with an extra tail element h. The try-catch block try{ P } catch { κ̃ : Q } is the runtime
presentation of a default process and a handler: the default process P in the try-block
is running during which an exception on channels κ̃ can be thrown, which terminates
P and launches the handler Q in the catch-block. When this Q is launched, it becomes
a wrapped process or a wrap, κ̃{[Q]}, making Q immune to an exception notification
at the same or upper levels (note such notifications can come due to asynchrony). The
transition from a try-catch to a wrap is realised by the meta reduction.

Meta Reduction. The meta reduction (1) erases the remaining activity of the default
process in the try-block; (2) propagates exceptions to the try-catch blocks inside the try-
block; and (3) leaves wrapped processes as they are. In traditional structured exceptions
as found in Java or C++, an exception completely erases the try-block and lets the
handler run in the same state. In our calculus, concurrently running threads inside a try-
block may have conversations (sessions) with other agents. Erasing them would make
conversations inconsistent, thus an exception is thrown in each of them.

The meta reduction is written P� (P′, S ), where the initial process P is transformed
into process P′, the result of erasing and wrapping; and S denotes session channels via
which we should communicate that the exception takes place including the ones of
nested try-catch blocks. The rules are defined as follows

(MTry) P� (P′, S ) ⇒ try{ P } catch { κ̃ : Q }�
{

(P′, S ) if κ̃ ⊆ S
(κ̃{[Q]} | P′, S ∪ κ̃) otherwise

(MWrap) κ̃{[Q]} � (κ̃{[Q]},∅)
(MPar) P � (P′, S 1) and Q � (Q′, S 2) ⇒ P | Q � (P′ | Q′, S 1 ∪ S 2)

(MNil) R � (0, ∅) if R ∈
{

(inact),(request), (input), (output), (branch),
(select), (cond), (recursion), (throw)

}

(MTry) propagates the exception to a nested try-catch block. If the try-block meta re-
duces to some P′ with some set S then try{ P } catch { κ̃ : Q } will reduce either to (i) P′

itself or to (ii) the parallel composition of P′ and κ̃{[Q]} with the new set S ∪ κ̃ ensuring
that also channels κ̃ will be notified with an exception. Case (i) discards handler Q when
another handler for κ̃ is already in P while case (ii) happens when there is no refinement
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Table 1. Reduction Semantics

(Init) ∗a(s−)[P,Q] | C[a(s+)[κ̃, P′,Q′]] −→

∗a(s−)[P,Q] | (νs)
(

try{ P } catch { s− : Q } |
C[try{ P′ } catch { κ̃ : Q′ }] |

s− ↪→0 s+ : ε |
s+ ↪→0 s− : ε

)
(Out) κ!〈e〉. P | κ ↪→φ κ : L −→ P | κ ↪→φ κ : (v :: L) (e ↓ v)

(In) κ?(x). P | κ ↪→0 κ : (L :: v) −→ P{v/x} | κ ↪→0 κ : L

(Sel) κ � l. P | κ ↪→φ κ : L −→ P | κ ↪→φ κ : (l :: L)

(Bra) κ � {li : Pi}i∈I | κ ↪→0 κ : (L :: l j) −→ Pj | κ ↪→0 κ : L ( j ∈ I)

(Con) P −→ Q ⇒ C[P] −→ C[Q]

(If) if e then P else Q −→ P (e ↓ tt) if e then P else Q −→ Q (e ↓ ff)

(Str) P ≡ P′ and P′ −→ Q′ and Q′ ≡ Q ⇒ P −→ Q

(Thr) try{ P } catch { κ̃ : Q }� (R, S ) ⇒
try{ throw | P } catch { κ̃ : Q } | Πκ∈S κ ↪→φκ κ : Lκ −→ R | Πκ∈S κ ↪→φκ κ : († :: Lκ)

(RThr) try{ P } catch { κ̃ : Q }� (R, S ) ⇒
try{ P } catch { κ̃ : Q } | κ j ↪→0 κ j : (L :: †) | Πκ∈S κ ↪→φκ κ : Lκ

−→R | κ j ↪→1 κ j : L | Πκ∈S κ ↪→φκ κ : († :: Lκ)

(WVal) κ̃{[Q]} | κi ↪→0 κi : (L :: v) −→ κ̃{[Q]} | κi ↪→0 κi : L

(WThr) κ̃{[Q]} | κi ↪→0 κi : (L :: †) −→ κ̃{[Q]} | κi ↪→1 κi : L

(Clean) P� (R, S ), (λ ∈ κ̃, † ∈ L) ⇒
try{ P | λ ↪→φ λ : L } catch { κ̃ : Q̃ } | Πκ∈S κ ↪→φκ κ : Lκ

−→ R | λ ↪→φ λ : L | Πκ∈S κ ↪→φκ κ : († :: Lκ)

of κ̃ in P. The mechanism is sound because of the assumption that κi are always refined
together (cf. syntax). Note that, if the try-block is single-threaded, the meta reduction
mechanism is identical to the one of standard exception handling.

Reduction. We now introduce the main reduction rules. Due to the nesting of wraps
and try-catch blocks, the reduction is defined using the following reduction context:

C ::= try{C } catch { κ̃ : Q } | P | C | κ̃{[C]} | (νs) C | (νa) C | −

The reduction −→ is the smallest relation generated by the rules in Table 1. (Init) gives
the semantics of session initiation, generating two fresh dual session channels, the as-
sociated two empty queues (ε denotes the empty string) and the two try-catch blocks
try{ P } catch { s− : Q } and try{ P′ } catch { κ̃ : Q′ }. Note that ∗a(s−)[P,Q] is not in a
context. This is because we have assumed that services never appear nested in a try- or
a catch-block as we do not want them to be terminated (following SCP).

(Out) and (Sel) enqueue, respectively, a value and a label at the head of the queue for
κ. Symmetrically, (In) and (Bra) dequeue from the tail of the queue. The exception level
in the latter two rules is 0, indicating the level of an actual receiver. The exception level
of a queue ensures that a message is sent and received at the same level, guaranteeing
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consistency of communication. This depends on the invariance that the sum of the level
of the queue and the number of †’s in the queue before a specific message, determines
the depth (the number of wraps) at which the message enqueueing is performed. In
(Out,If), e ↓ v says that expression e evaluates to value v. (Con,Str) are standard.

(Thr) and (RThr) represent the firing of an exception. (Thr) is when throw appears
top-level in the try-block, i.e. exception is thrown locally; while (RThr) is when a re-
mote exception is received as † in the queue. Eventually, all peers will be notified of the
exception by sending † via channels in S generated from P as well as κ̃. An alternative
semantics prioritises † [2].

Rule (WVal) describes the case when messages at the default level meet a wrapped
process and are drained into a sink (i.e. get dequeued but ignored). In (WThr), † meets
a wrap and the exception level of the queue is incremented, allowing the queue to enter
the wrap. In (Clean), † in the queue reveals the presence of a refinement in P which has
now become a wrap due to a local throw. Meta reduction propagates the exception to
each parallel process in P and the try-catch block is discarded.

This last step is formally defined by the structural congruence ≡ which plays a key
role in treating exceptions and, in particular, moving queues while maintaining their
exception levels. ≡ is the least congruence relation on processes such that ( P, | ) is a
commutative monoid and includes the standard rules for restriction (such as scope ex-
trusion) and recursion. In addition, it has the following rules:

a) try{ P | λ ↪→φ λ : L } catch { κ̃ : Q }≡ try{ P } catch { κ̃ : Q } | λ ↪→φ λ : L (λ ∈ κ̃⇒ † � L)

b) κ̃{[P | λ ↪→φ λ : L]} ≡ κ̃{[P]} | λ ↪→φ λ : L (λ � κ̃)

c) κ̃{[P]} | κi ↪→φ κi : L ≡ κ̃{[P | κi ↪→φ−1 κi : L]}
d) try{ (νa) P } catch { κ̃ : Q } ≡ (νa) try{ P } catch { κ̃ : Q } (a � fn(Q))

e) κ̃{[(νa) P]} ≡ (νa) κ̃{[P]}

The first and second rules allow a queue to move into a try-catch block and a wrap
respectively. The third rule is applicable when the receiving side of the queue is in κ̃:
when entering the wrap, φ is decreased so that the process inside the wrap can read the
value if the level after the decrement is 0. The last two rules open the scope.

To illustrate how queue levels work, we consider the following process:

P = try{ throw | κ!〈5〉 } catch { κ : κ!〈tt〉 } | κ ↪→0 κ : ε |
try{ throw | κ?(x) } catch { κ : κ?(x) } | κ ↪→0 κ : ε

Process P can reduce to P′ = κ{[0]} | κ{[0]} | κ ↪→0 κ : ε | κ ↪→0 κ : ε in different ways.

P −→≡ κ{[κ!〈tt〉]} | κ ↪→0 κ : † | try{ throw | κ?(x) } catch { κ : κ?(x) } | κ ↪→0 κ : ε
−→≡ κ{[0]} | κ ↪→0 κ : (tt :: †) | try{ throw | κ?(x) } catch { κ : κ?(x) } | κ ↪→0 κ : ε
−→≡ κ{[0]} | κ ↪→1 κ : tt | κ{[κ?(x)]} | κ ↪→0 κ : †
−→≡ κ{[0]} | κ ↪→1 κ : ε | κ ↪→1 κ : tt | κ{[κ?(x)]} −→≡ P′

In this case, an exception and then tt are sent over κ. Finally the exception is delivered
to κ before delivering tt. But we can also have:

P −→−→≡ try{ throw } catch { κ : κ!〈tt〉 } | κ ↪→0 κ : 5 | κ{[κ?(x)]} | κ ↪→0 κ : †
−→≡ κ{[κ!〈tt〉]} | κ ↪→0 κ : († :: 5) | κ{[κ?(x)]} | κ ↪→1 κ : ε −→−→−→≡ P′

Above, 5 is sent over κ and an exception is thrown on κ. In this situation, the system
will ignore 5 (discarded by (WVal)), and deliver tt inside the wrap.
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The following example shows how refinement of an existing exception is handled:

R = try{ try{ throw } catch { (κ, λ) : Q1 } } catch { κ : Q2 } | κ ↪→0 κ : † | κ ↪→0 κ : L

Process R either throws an exception in the inner try-catch block (by (Thr)) or receives
a remote exception (by (RThr)). By applying (Thr), (Clean) and (WThr) in the first
case or by (RThr) in the second case, we have (omitting some queues):

R −→≡ try{ (κ, λ){[Q1]} | κ ↪→0 κ : † :: L } catch { κ : Q2 } | κ ↪→0 κ : † −→
(κ, λ){[Q1]} | κ ↪→0 κ : † :: L | κ ↪→0 κ : † −→ (κ, λ){[Q1]} | κ ↪→0 κ : † :: L | κ ↪→1 κ : ε.

3 Typing Interactional Exceptions

This section introduces a type discipline for sessions with interactional exceptions. In
comparison with the standard session types, the central difference is the shape of a type
itself, which now consists of the abstraction of the default behaviour (the “try” part) and
that of the handler behaviour (the “catch” part). This simple extension, combined with
the use of levels, allows to establish subject reduction, guaranteeing that messages are
always delivered at proper levels at proper timings in the presence of nested asynchro-
nous escapes, testifying consistency of the operational semantics introduced in §2.

Type Syntax. The grammar of types extends the standard session types:

α, β ::= ↓ (θ). α | ↑ (θ). α | ⊕ {li : αi}i∈I | &{li : αi}i∈I | α{[β]} | end | μt. α | t
θ ::= 〈α{[β]}〉 | bool | . . .

α and θ are respectively called session types and service types. The grammar follows
the standard session types [10, 17], except for try-catch type α{[β]}, the abstraction of
a try-catch block: in α{[β]}, α denotes the type of the try-block and β the catch block.
A session type α is plain if it does not use a try-catch type (except in a service type it
carries). From now on in α{[β]}, we stipulate α and β are both plain. This is because a
try-catch on κ cannot occur nested in a try- or catch-block of λ if κ = λ.

The dual of α is written α. The dual of the try-catch type is defined as α{[β]} = α{[β]}:
the other cases are standard [10]. For example, by exchanging input and output, the dual
of ↓ (string).end{[↑ (bool).end]} is ↑ (string).end{[↓ (bool).end]}.

Environments. Typing judgements for processes and expressions have the forms Γ �
P � Δ and Γ � e : θ respectively where Γ is a service typing, which typically maps
service channels to service types and Δ is a session typing which typically maps session
channels to session types. For (n ∈ {0, 1} and ρ ∈ {p, u}), typings are defined as

(Session Typing) Δ ::= ∅ | Δ, κ :nρ α | Δ, (κ, κ) :α | Δ, (κ, κ) :⊥
(Service Typing) Γ ::= ∅ | Γ, c :〈α{[β]}〉 | c :bool | Γ, X :Δ

In session typings, κ :nρ α says that: at a polarised session channel κ, there is a session
of type α. The natural number n is equal to 1 if there is a wrap on κ, 0 otherwise. A
session channel with respect to its type is unprotected if ρ = u (no try-catch nor wrap
on κ occurs) and protected if ρ = p (there is a try-catch or a wrap on κ). This is needed
in the try-catch and wrap typing as well as in the merging with the queue types (κ, κ) :α
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and (κ, κ) :⊥ used for typing a queue from κ to κ (the type of a queue is composed with
the type of a process in which case the queue’s type becomes ⊥).

In the service typing, c either has type α{[β]} (a service using a session channel with
default behaviour of type α and with a handler of type β) or an atomic type such as
bool. Typing X : Δ is used for recursion as in [6].

Typing System for Programs. We show the typing system by which the programmer
can check whether her program is error free or not, especially w.r.t. its exception usage.
The following are the selected typing rules:

(TReq)

Γ � P �
∏

i κi :0
u αi{[βi]}

Γ′ � Q �
∏

i κi :0
u βi s+ = κ j

Γ � c : 〈α j{[β j]}〉 Γ′ ⊆ Γ, fv(Γ′) = ∅
Γ � c(s+)[κ̃, P,Q] �

∏
i� j κi :0

u αi{[βi]}
(TServ)

Γ � P � s− :0
u α{[β]}

Γ � Q � s− :0
u β fv(Γ) = ∅

Γ, a : 〈α{[β]}〉 � ∗a(s−)[P,Q] 	 ∅

(TThr)
fv(Γ) = ∅

Γ � throw �
∏

i κi :0
u αi

(TPar)
Γ � Pi � Δi (i = 1, 2) Δ1 # Δ2

Γ � P1 | P2 � Δ1 $ Δ2

Other than the rules for the exception constructs, all rules are identical to [21], aug-
mented with annotation of exception levels.

(TReq) types a request on service channel c whose type, according to Γ, is α j{[β j]}.
Condition s+ = κ j makes sure that the fresh name s+ will also be in the try-catch after
reduction. Session s+ has type α j{[β j]}, the dual of c’s type. This rule checks that each κi

in Q (exception handler) has type βi whereas in P it has type αi{[βi]} where each βi may
come from a refinement of κi in P. Finally, Γ′ is a subset of Γ without free variables
for service channels (otherwise the queue stores open terms at run-time). In (TServ),
because of SCP in § 2, services should never be prefixed therefore the only visible (free)
session in P and Q should be s−. Throwing an exception interrupts any conversation,
thus (TThr) allows to type throw with any κ : α (unprotected). (TPar) requires the
coherence relation # and the partial operator $ based on duality [10,17]. When typing
programs, the operator becomes just a set union. We shall extend it for types of queues
in the next subsection. The rules for communication are standard.

Typing System for Run-Time Processes. The rules for typing run-time processes,
which are necessary for type soundness, include, among others:

(TExcept)

Γ � P � Δ ·
∏

j λ j :
n j
p α′j ·

∏
i κi :mi

ρ αi{[βi]}
Γ′ � Q 	 ∏i κi :0

u βi queue(Δ) Γ′ ⊆ Γ, fv(Γ′) = ∅
Γ � try{ P } catch { κ̃ : Q } � Δ ·

∏
j λ j :

n j
p α′j ·

∏
i κi :mi

p αi{[βi]}

(TWrap)
Γ � Q 	 Δ ·

∏
i λi :ni

p α′i ·
∏

i κi :0
u βi queue(Δ)

Γ � κ̃{[Q]} � Δ ·
∏

i λi :ni
p α′i ·

∏
i κi :1

p αi{[βi]}

(TExcept) is a key rule, associating the type α{[β]} to the try-catch block, ensuring
each κi is used as αi{[βi]} in P (βi may come from a refinement in P) and as βi in
Q. The premise makes sure that each λ j � κ̃ is protected in a try-catch block or a
wrap in P. Without this condition, we may end up with unprotected code that could
be brutally removed by an exception, violating the session duality. For example, in
try{ λ!〈v〉. R } catch { κ : Q } | λ?(x). R | P, if an exception is thrown by P over κ,
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the output λ!〈v〉. R would be lost leaving the input λ?(x). R alone violating duality.
The predicate queue(Δ) checks that Δ contains queue types only. No condition on mi is
required since in P, each κi can be either unprotected (no wraps nor try-catch blocks on
κi) or protected (because of a refinement, κi occurs in a try-catch block or in a wrap).
Finally, in order to record that now we have the try-catch block on κi, we force the tag
ρ to become p, i.e. protected. Note that, since Q is a program, we do not need to check
that fv(Γ) = ∅.

(TWrap) types a wrap over a process Q. All the κi that have type βi will have new
type αi{[βi]} so to form the correct dual for the other side of the session in the case the
exception has not been yet received there. The new type will make sure that each κi is
protected. We set n to 1 in order to remember an existence of a wrap. As queues contain
only an output or a select, queue types will only have output or selection types [12].

We conclude with the definition of # and $ using the treatment of queue types from
[12]. We say Δ1 and Δ2 are compatible, written Δ1 # Δ2, if and only if (i) dom(Δ1) ∩
dom(Δ2) = ∅; (ii) κ :nρ α, (κ, κ) :⊥, κ :mρ′ β, (κ, κ) :⊥∈ Δ1 ∪ Δ2 implies α = β; (iii) κ :nρ α,

(κ, κ) : α′, κ :mρ′ β, (κ, κ) : β′ ∈ Δ1 ∪ Δ2 implies merge(α′, α, n) = merge(β′, β,m); and

(iv) κ :nρ α, (κ, κ) :⊥, κ :mρ′ β, (κ, κ) : β′ ∈ Δ1 ∪ Δ2 implies α = merge(β′, β,m). The
operation merge(α′, α{[β]}, n) merges a session type with the type of the queue w.r.t. the
level n i.e. it merges α′ with α if n = 0 and it merges α′ with β if n = 1. The operation
Δ1 $ Δ2 (defined if Δ1 # Δ2) is such that if κ :nρ β and (κ, κ) : α are in Δ1 ∪ Δ2 then
κ :nρ: merge(α, β, n), (κ, κ) :⊥∈ Δ1 $ Δ2 (⊥ keeps track that the corresponding queue
exists). The other elements in Δ1 $ Δ2 are the same as in Δ1 ∪ Δ2.

The processes in Examples 1/2 are typable: channel chSeller in both examples has
type μt. ↑ (int). t{[↓ (int). ↑ (time)]}. In Example 2, channel chBroker has type
(↓ (int). μt. ↑ (int). t){[⊕{l1 :↓ (int). ↑ (time), l2 : α}]} for some α.

In the following Theorem, −→∗ denotes the reflexive and transitive closure of −→.

Theorem 1 (Subject Reduction). Let P be a program such that Γ � P � ∅. If P −→∗ Q
then Γ � Q � ∅.

As a corollary, the typing system also satisfies type safety and communication safety
including communication-error freedom and linearity [12, Theorem 5.5].

4 Liveness

The previous section establishes a basic consistency of dynamics of typed processes via
subject reduction. This section strengthens this result with a liveness property, which
intuitively says that all compensating session channels eventually get fired (except those
which are “erased” by thrown exceptions in which case the compensating actions both
disappear). Along the way we also show relative termination of individual protocols
for exceptions and their partial confluence vis-a-vis ordinary communications, two key
consistency criteria for the proposed operational mechanism.

A Termination Protocol. We first augment the operational semantics in §2 with yet
another protocol, called termination protocol, which in fact is an intrinsic part of the dy-
namics of exceptions. As an example, suppose there are two (and only two) processes in
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a configuration, which are try-catch blocks and which are communicating in a session.
If each party’s default process becomes the inaction process, it is natural to reduce each
try-catch block to the inaction, freeing up the resources for its handler. This “garbage
collection” is essential when we consider integration of interactional exception into the
standard imperative programming languages with sequential composition since in this
case launching Q depends on whether P reduces to the inaction or not.

We call a termination of a try-block in this form, normal exit. In interactional excep-
tions, a normal exit of a try-catch block demands an agreement of all peers: even if one
try-block has terminated, if any of its communicating peers throws an exception, it also
has to throw one, hence synchronising among all peers is essential for consistency. The
termination protocol we introduce below makes the most of the tree structure associated
with hierarchy of service invocation, leading to relatively efficient execution in terms of
the number of messages. The protocol consists of two stages:

(Stage 1: Voting): Each try-catch block notifies its caller in the caller-callee relation
of services by sending its vote of termination after itself terminating and receiving the
same news from its callees.
(Stage 2: Decision): When the initial caller hears this, it in turn lets the news flow down
to all of its callees, upon whose receipt the try-catch blocks can normally terminate.

Above, callees and callers refer to the service invocation mechanism. We formalise this
protocol by extending the reduction relation. First, we augment polarities of channels in
try-catch blocks with {⊕,%}, replacing +,− for Stage 2 (indicating the casting of votes).
We also use two special messages, {V,D} standing for Voting and Decision.

(Coll)
try{� } catch { s′−; t̃⊕; s+; r̃+ : Q̃ } | s− ↪→φ s+ : V →
try{� } catch { s′−; t̃⊕; s⊕; r̃+ : Q̃ } | s− ↪→φ s+ : ε

(Vote) try{� } catch { s−; t̃⊕ : Q̃ } | s− ↪→φ s+ : ε→ try{� } catch { s%; t̃⊕ : Q̃ } | s− ↪→φ s+ : V
(Root) try{� } catch { s̃⊕ : Q̃ } |∏i s

+
i ↪→φ s−i : ε → � |∏i s+i ↪→φ s−i : D

(Dec)
try{� } catch { s%; t̃⊕ : Q̃ } | s+ ↪→φ s− : D |∏i t+i ↪→φ t−i : ε →
� | s+ ↪→φ s− : ε |∏i t+i ↪→φ t−i : D

where � ::= 0 | � |� | κ̃{[�]}. Briefly, (Coll) collects the votes from the callees;
(Vote) sends a vote to the caller once all the callees have voted; (Root) is for the initial
caller which terminates once all its callees have voted; and (Dec) terminates once the
caller has terminated. The rules only make sense for well-typed processes as we shall
show later. We write P →term P′ for a reduction generated from the above rules. As an
example, consider the following processes:

try{ 0 } catch { s−; t+; r+ : Q1 } | try{ 0 } catch { s+ : Q2 } (1)

try{ 0 } catch { t− : Q3 } | try{ 0 } catch { r− : Q4 } (2)

By (Vote) the two processes in (2) will put V in the queues with writing side r+ and t+

respectively. Applying (Coll) twice, the right-hand process in (1) will reach the state
try{ 0 } catch { s−; t⊕; r⊕ : Q2 }. Again, by (Vote), it will send V to the parent. Finally,
by (Root) and then (Dec) it will reduce to process 0.

Note that for the exit protocol to work, the caller-callee relation must have a tree
structure where the root is the initial service invoker and leaves are a collection of
interacting processes. We shall explore this topic further in the next subsection.
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Normal and Exceptional Exits. We first show that the above protocol always leads
to a normal exit. For this purpose, we need to identify the set of nodes that form the
caller-callee relation in a given process.

Definition 2 (Node). R is a node process of P whenever P ≡ (νs̃) (Q | R), R is
restriction/queue/service-free, and R does not have the form � or R′ | R′′. If fsc(R) � ∅
then fsc(R) is called a node of P.

A node process of P is a subprocess of P which is not the parallel composition of two
other processes and contains no restriction, queue, service or is composed by zero or
more wraps over process 0. Then a node is the set of free session channels (only if
non-empty) of a node process. Using the processes (1) and (2) given above, the process
(1) | (2) has four nodes: s+, (s−, t+, r+), t− and r−. Process try{ κ!〈v〉. 0 } catch { κ : Q }
has a unique node κ while try{ κ!〈v〉. 0 } catch { κ : Q } | λ?(x) also has λ. The caller-
callee structure of a process is identified by the directed edges of the following graph.

Definition 3 (Invocation Graph). Let G be the set of nodes of a process P. Then the
invocation graph of P is the directed graph G = (G, E) where (κ̃, λ̃) ∈ E if and only
if κi ∈ {s+, s⊕} and λ j ∈ {s−, s%} for some s, i, j. An invocation tree in P is a maximal
subtree in the invocation graph.

The invocation graph of process (1) | (2) is a graph with one edge from s+ to (s−, t+, r+),
one from (s−, t+, r+) to t− and one from (s−, t+, r+) to r−. Recall the definition of pro-
grams given in § 2.1. If we reduce a typed program by zero or more steps then the
invocation graph of the resulting process always forms a forest.

Lemma 4 (Evolution). Let P be a typable program. If P →∗ R then R’s invocation
graph G(R) is a forest.

An invocation tree in P is in the pretermination state if each of its try-blocks have the
form �. From the Evolution Lemma, it follows that once an invocation tree reaches a
pretermination state then all of its nodes will eventually vanish (see [2] for details).

Theorem 5 (Normal Exit). Let P0 be typable program and P0 →∗ P such that P has
an invocation tree T in the pretermination state. Then whenever P →∗ P′ there is Q
such that P′ →∗term Q where Q does not contain any active nodes from T.

The result above can actually be made stronger. For instance, in try{ try{ 0 } catch { λ :
Q1 } } catch { κ : Q2 }, we do not have a pretermination state as the outer try-block
contains a try-catch block. Nevertheless, the normal exit is guaranteed as when the
inner block and the subtree connected to λ terminate, the outer catch block can proceed.

A try-catch block can also exit due to an exception which will be propagated through
the invocation graph. We write P →ex P′ if this is generated from (RThr) and we say
that κ is in preexception if it is the channel for a try-block which moreover contains an
active throw.

Theorem 6 (Exception Exit). Let P0 be a typable program and P0 →∗ P such that P
has an invocation tree T. Suppose κ̃ is in a node of T which is in preexception for some
κi. Then P→∗ P′ implies P′ →∗ex R for some R.

Liveness. We can use the Evolution Lemma to obtain a strong form of liveness for
well-typed processes in the presence of asynchronous exceptions. We first define:
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Definition 7. We say P is stable if P is the parallel composition of zero or more �
processes and zero or more empty queues, possibly under ν-restrictions. We say P has
all resources if a ∈ fn(P) implies P ≡ (νũ) (∗a(λ)[Q1,Q2] | R), i.e. all output channels
are compensated by replicated inputs.

We can finally state that a well-typed program either continues to reduce forever or
reaches a state which does not contain active prefixes (except replicated services), try-
catch blocks, throws nor messages in transit.

Theorem 8 (Liveness). Suppose P is a typable program and has all resources. Then
P→∗ Q implies either Q is stable or Q→ Q′ for some Q′.

In particular, if there are two compensating actions in a session at the same exception
level, then these two will eventually interact, attesting the consistency of exception
protocols. Practically, observing that SCP (the key reason the result holds) is widely
found in e.g. services in the world wide web, the result says that if a conversation ever
gets stuck in such an environment, it may as well be for non-interactional reasons (such
as deadlock over shared resources at the servers).

5 Related Work and Conclusion

Related Work. In concurrent programming of distributed objects, exception handling is
investigated in [20] where an algorithm to resolve multiple kinds of exceptions (which
form a linear order) among concurrently running objects is proposed. Asynchronous ex-
ceptions among concurrent threads and their interplay with states in Haskell is studied
in [16]. Motivated by subtle race conditions for mutual states, they formalise and imple-
ment blocking constructs to postpone asynchronous exceptions. The key idea is to relax
the exception mask through the use of interruptible operations, to balance asynchrony
and state consistency. [3] introduces a model for long-running transactions which treats
failures by restoring the initial state and firing a compensation process. The calculus
for web services called COWS [15] provides an operation to kill processes except those
protected by wraps similar to our exception mechanism. CaSPiS [5], a session-based
process calculus, is equipped with an operator for session closures. Our termination
protocol, instead, is run whenever a try-block contains an inactive process, ensuring
liveness. [18] introduces a calculus for web services by extending the π-calculus with
service and request primitives and local exceptions, without asynchronous queues. An
interesting idea is context, a named tree-like structure where a process is located. They
do not have an explicit notion of session type. Their exceptions are the traditional local
exceptions, without supporting propagation, coordinated transfer to a different part of
a dialogue, nor the associated type abstraction, so that type checking protocols with
exceptions, such as Examples 1/2 in §2, would be difficult.

The central focus of the present work is to have basic high-level typed abstractions
for clear and flexible descriptions of conversation structures. Exceptions are asynchro-
nously raised by multiple communicating peers, for which the session compatibility
can guarantee type-safety in the presence of arbitrarily nested exceptions. These key as-
pects, backed up by safety and liveness properties relying on linearity of session-based
communications, have not been investigated in the existing studies.



Structured Interactional Exceptions in Session Types 415

Further Results. For the sake of simplicity, we have restricted programs so that in
∗c(λ)[P,Q] and c(λ)[κ̃, P,Q], the handler Q does not contain another try-catch at the
same λ (try-catch is only used at run-time). An extension of our formalism allowing
try-catch to occur in the handlers of (service) and (request) would allow a process to
“try” again after an exception has been thrown (cascading exceptions). For this purpose,
try-catch types should be extended such that in α{[β]} the type α is always plain while
β can be either plain or a try-catch type. Additionally, as it is now possible to have any
number of nested wraps (when an exception is thrown several times), the number n in
κ :nρ α becomes arbitrary natural numbers, generalising their composition with queue
types (n wraps). With essentially the same operational semantics, this generalised cal-
culus satisfies the subject reduction and liveness properties. Further generalisation to
existing session types is possible, including multiparty sessions [12] for flexible multi-
cast exception propagation.

Further Topics. The key idea of the presented operational semantics is the use of
exception levels in queues and their interplay with wrapped processes. In implemen-
tation, the queue level can be recorded in a header of each message which its receiver
can check efficiently. The wrapping level can be part of a process state, recording its
exception depth. Various optimisations are possible, for example dispensing with most
coordination protocols when the handler type is trivial, obtaining essentially the same
level of efficiency as local exception. In the near future, we plan to incorporate this
exception mechanism to our on-going implementation of Java with session types [13].

For simplicity, we omit session delegations: we formulated this extension by storing
frozen processes in queues. The type soundness holds by extending the typing rules
with those in [10]. However a construction of the invocation graphs which can guarantee
forest structures for the liveness property is left open.

Our liveness property, which involves the termination protocols, is similar to the
property found in e.g. [7]. Apart from presence of exceptions, the aims and approaches
of the two works are quite different: in the present work, the liveness is used for ensur-
ing consistency of the proposed exception mechanisms, and the proof method is more
operational, being applicable to any session-based calculus which has the service chan-
nel principle without delegation, without changing its typing system. On the other hand,
in [7], an effect-based typing system is used for progress with delegation. It is an in-
teresting further topic to incorporate our typing system with [7] for obtaining liveness
with both exceptions and delegations.

A significant future topic is the treatment of multiple kinds of exception types in the
present framework. Following [20], we may assume ordering on exception types (such
as the exception class hierarchy as found in Java) for coordinating exceptions among
multiple peers. Using a similar technique developed in our termination protocol, we
can exploit the tree-structure of an invocation graph for efficient resolution of excep-
tion types to handle the subtle interplay between multiple exception types and nested
exceptions for a more refined exception propagation.

With interactional exceptions, many practical scenarios can be accurately described
through session primitives, and type-checked by our type theory. The syntax and type
structures developed in this paper are being considered for use in a Web Services



416 M. Carbone, K. Honda, and N. Yoshida

language (WS-CDL [6,19]) and a language of message schemes for financial communi-
cations (ISO 20022 UNIFI [14]), throughout our collaborations with industry partners.
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Abstract. A multiparty session forms a unit of structured interactions among
many participants which follow a prescribed scenario specified as a global type
signature. This paper develops, besides a more traditional communication type
system, a novel static interaction type system for global progress in dynamically
interleaved multiparty sessions.

1 Introduction

Widespread use of message-based communication for developing network applications
to combine numerous distributed services has provoked urgent interest in structuring
series of interactions to specify and implement program communication-safe software.
The actual development of such applications still leaves to the programmer much of
the responsibility in guaranteeing that communication will evolve as agreed by all the
involved distributed peers. Multiparty session type discipline proposed in [12] offers a
type-theoretic framework to validate a message-exchange among concurrently running
multiple peers in the distributed environment, generalising the existing binary session
types [10,11]; interaction sequences are abstracted as a global type signature, which
precisely declares how multiple peers communicate and synchronise with each other.

The multiparty sessions aim to retain the powerful dynamic features from the origi-
nal binary sessions, incorporating features such as recursion and choice of interactions.
Among features, session delegation is a key operation which permits to rely on other
parties for completing specific tasks transparently in a type safe manner. When this
mechanism is extended to multiparty interactions engaged in two or more specifica-
tions simultaneously, further complex interactions can be modelled. Each multiparty
session following a distinct global type can be dynamically interleaved by other ses-
sions at runtime either implicitly via communications belonging to different sessions or
explicitly via session delegation.

Previous work on multiparty session types [12] has provided a limited progress prop-
erty ensured only within a single session, ignoring this dynamic nature. More precisely,
although the previous system assures that the multiple participants respect the protocol,
by checking the types of exchanged messages and the order of communications in a
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single session, it cannot guarantee a global progress, i.e, that a protocol which merges
several global scenarios will not get stuck in the middle of a session. This limitation
prohibits to ensure a successful termination of a transaction, making the framework
practically inapplicable to a large size of dynamically reconfigured conversations.

This paper develops, besides a more traditional communication type system (§ 3),
a novel static interaction type system (§ 4) for global progress in dynamically inter-
leaved multiparty, asynchronous sessions. High-level session processes equipped with
global signatures are translated into low-level processes which have explicit senders
and receivers. Type-soundness of low-level processes is guaranteed against the local,
compositional communication type system.

The new calculus for multiparty sessions offers three technical merits without sac-
rificing the original simplicity and expressivity in [12]. First it avoids the overhead of
global linearity-check in [12]; secondly it provides a more liberal policy in the use of
variables, both in delegation and in recursive definitions; finally it implicitly provides
each participant of a service with a runtime channel indexed by its role with which he
can communicate with all the other participants, permitting also broadcast in a natural
way. The use of indexed channels, moreover, permits to define a light-weight interac-
tion type system for global progress.

The interaction type system automatically infers causalities of channels for the low
level processes, ensuring the entire protocol, starting from the high-level processes
which consist of multiple sessions, does not get stuck at intermediate sessions also
in the presence of implicit and explicit session interleaving.

Full definitions and the proofs are at http://www.di.unito.it/ dezani/papers/bcdddy.pdf

2 Syntax and Operational Semantics

Merging Two Conversations: Three-Buyer Protocol. We introduce our calculus
through an example, the three-buyer protocol, extending the two-buyer protocol from
[12], which includes the new features, session-multicasting and dynamically merging
of two conversations. The overall scenario, involving a Seller (S), Alice (A), Bob (B)
and Carol (C), proceeds as follows.

1. Alice sends a book title to Seller, then Seller sends back a quote to Alice and Bob.
Then Alice tells Bob how much she can contribute.

2. If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts,
then sends his address, and Seller sends back the delivery date.

3. If the price exceeds the budget, Bob asks Carol to collaborate together by establish-
ing a new session. Then Bob sends how much Carol must pay, then delegates the
remaining interactions with Alice and Seller to Carol.

4. If the rest of the price is within Carol’s budget, Carol accepts the quote and notifies
Alice, Bob and Seller, and continues the rest of the protocol with Seller and Alice
transparently, as if she were Bob. Otherwise she notifies Alice, Bob and Seller to
quit the protocol.

Then multiparty session programming consists of two steps: specifying the intended
communication protocols using global types, and implementing these protocols using
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processes. The specifications of the three-buyer protocol are given as two separated
global types: one is Ga among Alice, Bob and Seller and the other is Gb between Bob
and Carol. We write principals with legible symbols though they will actually be coded
by numbers: in Ga we have S = 3, A = 1 and B = 2, while in Gb we have B = 2, C = 1.

Ga = Gb =
1. A −→ S : 〈string〉.
2. S −→ {A,B} : 〈int〉.
3. A −→ B : 〈int〉.
4. B −→ {S,A} : {ok :B−→ S : 〈string〉.
5. S−→ B : 〈date〉;end
6. quit : end}

1. B −→ C : 〈int〉.
2. B −→ C : 〈T 〉.
3. C −→ B : {ok : end, quit : end}.

T =
⊕({S,A},
{ok :!〈S,string〉; ?〈S,date〉;end,
quit : end})

The types give a global view of the two conversations, directly abstracting the scenario
given by the diagram. In Ga, line 1 denotes A sends a string value to S. Line 2 says S
multicasts the same integer value to A and B and line 3 says that A sends an integer to
B. In lines 4-6 B sends either ok or quit to S and A. In the first case B sends a string to S
and receives a date from S, in the second case there are no further communications.

Line 2 in Gb represents the delegation of the capability specified by the action type
T of channels (formally defined later) from B to C (note that S and A in T concern the
session on a).

We now give the code, associated to Ga and Gb, for S, A, B and C in a “user” syntax
formally defined in the following section:

S = ā[3](y3).y3?(title);y3!〈quote〉;y3&{ok : y3?(address);y3!〈date〉;0, quit : 0}
A = a[1](y1).y1!〈"Title"〉;y1?(quote);y1!〈quote div 2〉;y1&{ok : 0, quit : 0}
B = a[2](y2).y2?(quote);y2?(contrib);

if (quote - contrib< 100) then y2⊕ok;y2!〈"Address"〉;y2?(date);0
else b̄[2](z2).z2!〈quote - contrib - 99〉;z2!〈〈y2〉〉;z2&{ok : 0, quit : 0}

C = b[1](z1).z1?(x);z1?((t));
if (x< 100) then z1⊕ok;t⊕ok;t!〈"Address"〉; t?(date);0
else z1⊕quit;t⊕quit;0

Session name a establishes the session corresponding to Ga. S initiates a session involv-
ing three bodies as third participant by ā[3](y3): A and B participate as first and second
participants by a[1](y1) and a[2](y2), respectively. Then S, A and B communicate using
the channels y3, y1 and y2, respectively. Each channel yp can be seen as a port connect-
ing participant p with all other ones; the receivers of the data sent on yp are specified by
the global type (this information will be included in the runtime code). The first line of
Ga is implemented by the input and output actions y3?(title) and y1!〈"Title"〉. The last
line of Gb is implemented by the branching and selection actions z2&{ok : 0, quit : 0}
and z1⊕ok, z1⊕quit.

In B, if the quote minus A’s contribution exceeds 100e (i.e. quote - contrib ≥ 100),
another session between B and C is established dynamically through shared name b.
The delegation is performed by passing the channel y2 from B to C (actions z2!〈〈y2〉〉
and z1?((t))), and so the rest of the session is carried out by C with S and A. We can
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Table 1. Syntax for user-defined processes

P ::= ū[n](y).P Multicast Request
| u[p](y).P Accept
| y!〈e〉;P Value sending
| y?(x);P Value reception
| y!〈〈z〉〉;P Session delegation
| y?((z));P Session reception
| y⊕ l;P Selection
| y&{li : Pi}i∈I Branching

u ::= x | a Identifier
v ::= a | true | false Value

| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa)P Hiding
| def D in P Recursion
| X〈e,y〉 Process call

e ::= v | x
| e and e′ | not e . . . Expression

D ::= X(x,y) = P Declaration

further enrich this protocol with recursive-branching behaviours in interleaved sessions
(for example, C can repeatedly negotiate the quote with S as if she were B). What we
want to guarantee by static type-checking is that the whole conversation between the
four parties preserves progress as if it were a single conversation.

Syntax for Multiparty Sessions. The syntax for processes initially written by the user,
called user-defined processes, is based on [12]. We start from the following sets: service
names, ranged over by a,b, . . . (representing public names of endpoints), value vari-
ables, ranged over by x,x′, . . . , identifiers , i.e., service names and variables, ranged over
by u,w, . . . , channel variables, ranged over by y,z,t . . . , labels, ranged over by l, l′, . . .
(functioning like method names or labels in labelled records); process variables, ranged
over by X ,Y, . . . (used for representing recursive behaviour). Then processes, ranged
over by P,Q . . . , and expressions, ranged over by e,e′, . . . , are given by the grammar in
Table 1.

For the primitives for session initiation, ū[n](y).P initiates a new session through an
identifier u (which represents a shared interaction point) with the other multiple par-
ticipants, each of shape u[p](y).Qp where 1 ≤ p ≤ n−1. The (bound) variable y is the
channel used to do the communications. We call p, q,... (ranging over natural numbers)
the participants of a session. Session communications (communications that take place
inside an established session) are performed using the next three pairs of primitives: the
sending and receiving of a value; the session delegation and reception (where the for-
mer delegates to the latter the capability to participate in a session by passing a channel
associated with the session); and the selection and branching (where the former chooses
one of the branches offered by the latter). The rest of the syntax is standard from [11].

Global Types. A global type, ranged over by G,G′, .. describes the whole conversation
scenario of a multiparty session as a type signature. Its grammar is given below:

Global G ::= p → {pk}k∈K : 〈U〉.G′ Exchange U ::= S | T
| p → {pk}k∈K : {li : Gi}i∈I Sorts S ::= bool | . . . | G
| μt.G | t | end

We simplify the syntax in [12] by eliminating channels and parallel compositions, while
preserving the original expressivity (see § 5).
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Table 2. Runtime syntax: the other syntactic forms are as in Table 1

P ::= c!〈{pk}k∈K ,e〉;P Value sending
| c?(p,x);P Value reception
| c!〈〈p,c′〉〉;P Session delegation
| c?((q,y));P Session reception

| c⊕〈{pk}k∈K , l〉;P Selection
| c&(p,{li : Pi}i∈I) Branching
| (νs)P Hiding session
| s : h Named queue
| ...

c ::= y | s[p] Channel
m ::= (q,{pk}k∈K ,v) | (q,p,s[p′]) | (q,{pk}k∈K , l) Message in transit
h ::= m· h | � Queue

The global type p → {pk}k∈K : 〈U〉.G′ says that participant p multicasts a mes-
sage of type U to participants pk (k ∈ K) and then interactions described in G′ take
place. Exchange types U,U ′, ... consist of sorts types S,S′, . . . for values (either base
types or global types), and action types T,T ′, . . . for channels (discussed in §3). Type
p→ {pk}k∈K : {li : Gi}i∈I says participant p multicasts one of the labels li to participants
pk (k ∈ K). If l j is sent, interactions described in G j take place. Type μt.G is a recur-
sive type, assuming type variables (t, t′, . . . ) are guarded in the standard way, i.e. type
variables only appear under some prefix. We take an equi-recursive view of recursive
types, not distinguishing between μt.G and its unfolding G{μt.G/t} [18] (§21.8). We
assume that G in the grammar of sorts is closed, i.e., without free type variables. Type
end represents the termination of the session. We often write p → p′ for p → {p′}.

Runtime Syntax. User defined processes equipped with global types are executed
through a translation into runtime processes. The runtime syntax (Table 2) differs from
the syntax of Table 1 since the input/output operations (including the delegation ones)
specify the sender and the receiver, respectively. Thus, c!〈{pk}k∈K ,e〉 sends a value to
all the participants in {pk}k∈K ; accordingly, c?(p,x) denotes the intention of receiving a
value from the participant p. The same holds for delegation/reception (but the receiver
is only one) and selection/branching.

We call s[p] a channel with role: it represents the channel of the participant p in
the session s. We use c to range over variables and channels with roles. As in [12], in
order to model TCP-like asynchronous communications (message order preservation
and sender-non-blocking), we use the queues of messages in a session, denoted by h;
a message in a queue can be a value message, (q,{pk}k∈K ,v), indicating that the value
v was sent by the participant q and the recipients are all the participants in {pk}k∈K ;
a channel message (delegation), (q,p′,s[p]), indicating that q delegates to p′ the role
of p on the session s (represented by the channel with role s[p]); and a label message,
(q,{pk}k∈K , l) (similar to a value message). The empty queue is denoted by �. With
some abuse of notation we will write h ·m to denote that m is the last element included
in h and m · h to denote that m is the head of h. By s : h we denote the queue h of the
session s. In (νs)P all occurrences of s[p] and the queue s are bound. Queues and the
channel with role are generated by the operational semantics (described later).

We present the translation of Bob (B) in the three-buyer protocol with the runtime
syntax: the only difference is that all input/output operations specify also the sender and
the receiver, respectively.
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B = a[2](y2).y2?(3,quote);y2?(1,contrib);
if (quote - contrib < 100) then y2⊕〈{1,3},ok〉;y2!〈{3},"Address"〉;y2?(3,date);0
else b̄[2](z2).z2!〈{1},quote - contrib - 99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0}).

It should be clear from this example that starting from a global type and user-defined
processes respecting the global type it is possible to add sender and receivers to each
communication obtaining in this way processes written in the runtime syntax.

We call pure a process which does not contain message queues.

Operational Semantics. Table 3 shows the basic rules of the process reduction relation
P−→ P′. Rule [Link] describes the initiation of a new session among n participants that
synchronises over the service name a. The last participant ā[n](yn).Pn, distinguished by
the overbar on the service name, specifies the number n of participants. For this rea-
son we call it the initiator of the session. Obviously each session must have a unique
initiator. After the connection, the participants will share the private session name s,
and the queue associated to s, which is initialized as empty. The variables yp in each
participant p will then be replaced with the corresponding channel with role, s[p]. The
output rules [Send], [Deleg] and [Label] push values, channels and labels, respectively,
into the queue of the session s (in rule [Send], e ↓ v denotes the evaluation of the expres-
sion e to the value v). The rules [Recv], [Srec] and [Branch] perform the corresponding
complementary operations. Note that these operations check that the sender matches,
and also that the message is actually meant for the receiver (in particular, for [Recv], we
need to remove the receiving participant from the set of the receivers in order to avoid
reading the same message more than once).

Processes are considered modulo structural equivalence, denoted by ≡, and defined
by adding the following rules for queues to the standard ones [17]:

s : h1 · (q,{pk}k∈K ,z) · (q′,{pk}k∈K ′ ,z′) ·h2 ≡ s : h1 · (q′,{pk}k∈K ′ ,z′) · (q,{pk}k∈K ,z) ·h2

if K ∩K′ = /0 or q �= q′

s : (q, /0,v) ·h ≡ s : h s : (q, /0, l) ·h ≡ s : h

where z ranges over v, s[p] and l. The first rule permits rearranging messages when the
senders or the receivers are not the same, and also splitting a message for multiple re-
cipients. The last two rules garbage-collect messages that have already been read by all
the intended recipients. We use −→∗ and �−→ with the expected meanings.

Table 3. Selected reduction rules

a[1](y1).P1 | ... | ā[n](yn).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/yn} | s : �) [Link]

s[p]!〈{pk}k∈K ,e〉;P | s : h−→ P | s : h · (p,{pk}k∈K ,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉;P | s : h−→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈{pk}k∈K , l〉;P | s : h−→ P | s : h · (p,{pk}k∈K , l) [Label]

s[p j]?(q,x);P | s : (q,{pk}k∈K ,v) ·h −→ P{v/x} | s : (q,{pk}k∈K\ j,v) ·h ( j ∈ K) [Recv]

s[p]?((q,y));P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [Srec]

s[p j]&(q,{li : Pi}i∈I) | s : (q,{pk}k∈K , li0) ·h −→ Pi0 | s : (q,{pk}k∈K\ j, li0) ·h
( j ∈ K) (i0 ∈ I) [Branch]
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3 Communication Type System

The previous section defines the syntax and the global types. This section introduces
the communication type system, by which we can check type soundness of the commu-
nications which take place inside single sessions.

Types and Typing Rules for Pure Runtime Processes. We first define the local types
of pure processes, called action types. While global types represent the whole protocol,
action types correspond to the communication actions, representing sessions from the
view-points of single participants.

Action T ::= !〈{pk}k∈K ,U〉;T send
| ?(p,U);T receive
| ⊕〈{pk}k∈K ,{li : Ti}i∈I〉 selection
| &(p,{li : Ti}i∈I) branching

| μt.T recursive
| t variable
| end end

The send type !〈{pk}k∈K ,U〉;T expresses the sending to all pk for k ∈ K of a value
or of a channel of type U , followed by the communications of T . The selection type
⊕〈{pk}k∈K ,{li : Ti}i∈I〉 represents the transmission to all pk for k ∈ K of a label li cho-
sen in the set {li | i ∈ I} followed by the communications described by Ti. The receive
and branching are dual and only need one sender. Other types are standard.

The relation between action and global types is formalised by the notion of projec-
tion as in [12]. The projection of G onto q (G � q) is defined by induction on G:

(p → {pk}k∈K : 〈U〉.G′) � q =

⎧
⎪⎨

⎪⎩

!〈{pk}k∈K ,U〉;(G′ � q) if q = p,

?(p,U);(G′ � q) if q = pk for some k ∈ K,

G′ � q otherwise.
(p → {pk}k∈K : {li : Gi}i∈I) � q =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊕({pk}k∈K ,{li : Gi � q}i∈I) if q = p

&(p,{li : Gi � q}i∈I) if q = pk for some k ∈ K

G1 � q if q �= p,q �= pk∀k ∈ K and

Gi � q = G j � q for all i, j ∈ I.
(μt.G) � q = μt.(G � q) t � q = t end � q = end.

As an example, we list two of the projections of the global types Ga and Gb of the
three-buyer protocol:

Ga � 3 = ?〈1, string〉; !〈{1,2}, int〉;&(2,{ok :?〈2, string〉; !〈{2},date〉;end,quit : end})
Gb � 1 = ?〈2, int〉;?〈2,T 〉;⊕〈{2},{ok : end,quit : end}〉
where T =⊕〈{1,3},{ok :!〈{3}, string〉;?〈3,date〉;end, quit : end}〉.

The typing judgements for expressions and pure processes are of the shape:

Γ � e : S and Γ � P�Δ

where Γ is the standard environment which associates variables to sort types, service
names to global types and process variables to pairs of sort types and action types; Δ is
the session environment which associates channels to action types. Formally we define:

Γ ::= /0 | Γ ,u : S | Γ ,X : S T and Δ ::= /0 | Δ ,c : T
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Table 4. Selected typing rules for pure processes

Γ � u : 〈G〉 Γ � P�Δ ,y : G � n n = pn(G)
�MCAST�

Γ � ū[n](y).P�Δ

Γ � u : 〈G〉 Γ � P�Δ ,y : G � p
�MACC�

Γ � u[p](y).P�Δ

Γ � e : S Γ � P�Δ ,c : T
�SEND�

Γ � c!〈{pk}k∈K ,e〉;P �Δ ,c : !〈{pk}k∈K ,S〉;T

Γ ,x : S � P�Δ ,c : T
�RCV�

Γ � c?(q,x);P�Δ ,c :?(q,S);T

Γ � P�Δ ,c : T
�DELEG�

Γ � c!〈〈p,c′〉〉;P�Δ ,c : !〈p,T ′〉;T,c′ : T ′

Γ � P�Δ ,c : T,y : T ′

�SREC�
Γ � c?((q,y));P�Δ ,c :?(q,T ′);T

Γ � P�Δ Γ �Q�Δ ′ dom(Δ)∩dom(Δ ′) = /0
�CONC�

Γ � P | Q�Δ ∪Δ ′

assuming that we can write Γ ,u : S only if u does not occur in Γ , briefly u �∈ dom(Γ )
(dom(Γ ) denotes the domain of Γ , i.e. the set of identifiers which occur in Γ ). We use
the same convention for X : S T and Δ .

Table 4 presents the interesting typing rules for pure processes. Rule �MCAST� per-
mits to type a service initiator identified by u, if the type of y is the n-th projection of the
global type G of u and the number of participants in G (denoted by pn(G)) is n. Rule
�MACC� permits to type the p-th participant identified by u, which uses the channel
y, if the type of y is the p-th projection of the global type G of u. The successive six
rules associate the input/output processes to the input/output types in the expected way.
Note that, according to our notational convention on environments, in rule �DELEG�
the channel which is sent cannot appear in the session environment of the premise,
i.e. c′ �∈ dom(Δ)∪{c}. Rule �CONC� permits to put in parallel two processes only if
their sessions environments have disjoint domains. For example we can derive:

� t⊕〈{1,3},ok〉;t!〈{3},"Address"〉;t?(3,date);0 � {t : T}
where T =⊕〈{1,3},{ok :!({3}, string);?〈3,date〉;end, quit : end}〉.
In the typing of the example of the three-buyer protocol the types of the channels y3 and
z1 are the third projection of Ga and the first projection of Gb, respectively. By applying
rule �MCAST� we can then derive a : Ga � S � /0. Similarly by applying rule �MACC�
we can derive b : Gb � C� /0.

Types and Typing Rules for Runtime Processes. We now extend the communication
type system to processes containing queues.

Message T ::= !〈{pk}k∈K ,U〉 message send
| ⊕〈{pk}k∈K , l〉 message selection
| T;T′ message sequence

Generalised T ::= T action
| T message
| T;T continuation

Message types are the types for queues: they represent the messages contained in the
queues. The message send type !〈{pk}k∈K ,U〉 expresses the communication to all pk for
k ∈ K of a value or of a channel of type U . The message selection type ⊕〈{pk}k∈K , l〉
represents the communication to all pk for k ∈ K of the label l and T;T′ represents
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sequencing of message types. For example ⊕〈{1,3},ok〉 is the message type for the
message (2,{1,3},ok).

A generalised type is either an action type, or a message type, or a message type fol-
lowed by an action type. Type T;T represents the continuation of the type T associated
to a queue with the type T associated to a pure process. An example of generalised type
is ⊕〈{1,3},ok〉; !〈{3}, string〉;?〈3,date〉;end.

We start by defining the typing rules for single queues, in which the turnstile � is
decorated with {s} (where s is the session name of the current queue) and the ses-
sion environments are mappings from channels to message types. The empty queue has
empty session environment. Each message adds an output type to the current type of
the channel which has the role of the message sender.

In order to type pure processes in parallel with queues, we need to use generalised
types in session environments and further typing rules. The more interesting rules are:

Γ � P�Δ
�GINIT�

Γ � /0 P�Δ

Γ �Σ P�Δ Γ �Σ ′ Q�Δ ′ Σ ∩Σ ′ = /0
�GPAR�

Γ �Σ∪Σ ′ P | Q�Δ ∗Δ ′

where the judgement Γ �Σ P�Δ means that P contains the queues whose session names
are in Σ . Rule �GINIT� promotes the typing of a pure process to the typing of an arbitrary
process, since a pure process does not contain queues. When two arbitrary processes are
put in parallel (rule �GPAR�) we need to require that each session name is associated to
at most one queue (condition Σ ∩Σ ′ = /0). In composing the two session environments
we want to put in sequence a message type and an action type for the same channel with
role. For this reason we define the composition ∗ between local types as:

T ∗T′ =

⎧
⎨

⎩

T;T′ if T is a message type,
T′;T if T′ is a message type,
⊥ otherwise

where⊥ represents failure of typing. We extend ∗ to session environments as expected:
Δ ∗Δ ′ = Δ\dom(Δ ′)∪Δ ′\dom(Δ)∪{c : T ∗T′ | c : T ∈ Δ & c : T′ ∈ Δ ′}.

Note that ∗ is commutative, i.e. Δ ∗Δ ′ = Δ ′ ∗Δ . Also if we can derive message types
only for channels with roles, we consider the channel variables in the definition of ∗ for
session environments since we want to get for example {y : end} ∗ {y : end} = ⊥. An
example of derivable judgement is:

�{s} P | s : (3,{1,2},ok)� {s[3] :⊕〈{1,2},ok〉; !〈{1}, string〉;?〈1,date〉;end}
where P = s[3]!〈{1},"Address"〉;s[3]?(1,date);0.

Subject Reduction. Since session environments represent the forthcoming communi-
cations, by reducing processes session environments can change. This can be formalised
as in [12] by introducing the notion of reduction of session environments, whose rules
are:

– {s[p] : !〈{pk}k∈K ,U〉; T,s[p j] :?(p,U);T ′} ⇒ {s[p] : !〈{pk}k∈K\ j,U〉; T,s[p j] : T ′} if j ∈K
– {s[p] : T ;⊕〈{pk}k∈K ,{li : Ti}i∈I〉} ⇒ {s[p] : T ;⊕〈{pk}k∈K , li〉;Ti}
– {s[p] :⊕〈{pk}k∈K , l〉;T,s[p j] : &(p,{li : Ti}i∈I)} ⇒ {s[p] :⊕〈{pk}k∈K\ j, l〉;T,s[p j] : Ti}

if j ∈ K and l = li
– {s[p] : !〈 /0,U〉; T} ⇒ {s[p] : T} {s[p] :⊕〈 /0, l〉;T} ⇒ {s[p] : T}
– Δ ∪Δ ′′ ⇒ Δ ′ ∪Δ ′′ if Δ ⇒ Δ ′.
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The first rule corresponds to the reception of a value or channel by the participant p j,
the second rule corresponds to the choice of the label li and the third rule corresponds to
the reception of the label l by the participant p j. The fourth and the fifth rules garbage
collect read messages.

Using the above notion we can state type preservation under reduction as follows:

Theorem 1 (Type Preservation). If Γ �Σ P �Δ and P −→∗ P′, then Γ �Σ P′ �Δ ′ for
some Δ ′ such that Δ ⇒∗ Δ ′.

Note that the communication safety [12, Theorem 5.5] is a corollary of this theorem.
Thus the user-defined processes with the global types can safely communicate since
their runtime translation is typable by the communication type system.

4 Progress

This section studies progress: informally, we say that a process has the progress property
if it can never reach a deadlock state, i.e., if it never reduces to a process which contains
open sessions (this amounts to containing channels with roles) and which is irreducible
in any inactive context (represented by another inactive process running in parallel).

Definition 1 (Progress). A process P has the progress property if P −→∗ P′ implies
that either P′ does not contain channels with roles or P′ | Q −→ for some Q such that
P′ | Q is well typed and Q �−→.

We will give an interaction type system which ensures that the typable processes always
have the progress property.

Let us say that a channel qualifier is either a session name or a channel variable. Let
c be a channel, its channel qualifier �(c) is defined by: (1) if c = y, then �(c) = y; (2)
else if c = s[p], then �(c) = s. Let Λ , ranged over by λ , denote the set of all service
names and all channel qualifiers.

The progress property will be analysed via three finite sets: two sets N and B
of service names and a set R ⊆ Λ ∪ (Λ ×Λ). The set N collects the service names
which are interleaved following the nesting policy. The set B collects the service names
which can be bound. The Cartesian product Λ×Λ , whose elements are denoted λ ≺ λ ′,
represents a transitive relation. The meaning of λ ≺ λ ′ is that an input action involving
a channel (qualified by) λ or belonging to service λ could block a communication
action involving a channel (qualified by) λ ′ or belonging to service λ ′. Moreover R
includes all channel qualifiers and all service names which do not belong to N or B
and which occur free in the current process. This will be useful to easily extend R in
the assignment rules, as it will be pointed out below. We call N nested service set, B
bound service set and R channel relation (even if only a subset of it is, strictly speaking,
a relation). Let us give now some related definitions.

Definition 2. Let R ::= /0 | R,λ |R,λ ≺ λ ′.

1. B∪̄{e} =

{
B∪{a} if e = a is a session name

B otherwise.
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2. R \λ = {λ1 ≺ λ2 | λ1 ≺ λ2 ∈R & λ1 �= λ & λ2 �= λ}∪{λ ′ | λ ′ ∈R & λ ′ �= λ}

3. R \\λ =

{
R \λ if λ is minimal in R

⊥ otherwise.

4. R%R ′ = (R ∪R ′)+

5. pre(�(c),R) = R %{�(c)}%{�(c) ≺ λ | λ ∈R & �(c) �= λ}

where R+ is the transitive closure of (the relation part of) R and λ is minimal in R if
� ∃λ ′ ≺ λ ∈R.

Note, as it easy to prove, that % is associative. A channel relation is well formed if it is
irreflexive, and does not contain cycles. A channel relation R is channel free (cf(R)) if
it contains only service names.

In Table 5 we introduce selected rules for the interaction type system. The judge-
ments are of the shape: Θ � P � R ; N ; B where Θ is a set of assumptions of the
shape X[y] �R ; N ; B (for recursive definitions) with the variable y representing
the channel parameter of X .

We say that a judgement Θ � P � R ; N ; B is coherent if: (1) R is well formed;
(2) R∩ (N ∪B) = /0. We assume that the typing rules are applicable if and only if the
judgements in the conclusion are coherent.

We will give now an informal account of the interaction typing rules, through a set
of examples. It is understood that all processes introduced in the examples can be typed
with the communication typing rules given in the previous section.

Table 5. Selected interaction typing rules

Θ � P � R ; N ; B
{MCAST}

Θ � ā[n](y).P � R{a/y} ; N ; B

Θ � P � R ; N ; B
{MACC}

Θ � a[p](y).P � R{a/y} ; N ; B

Θ � P � R ; N ; B
{MCASTN}

Θ � ā[n](y).P � R \\y ; N ∪{a} ; B

Θ � P � R ; N ; B
{MACCN}

Θ � a[p](y).P � R \\y ; N ∪{a} ; B

Θ � P � R ; N ; B cf(R \\y)
{MCASTB}

Θ � ū[n](y).P � R \\y ; N ; B∪̄{u}

Θ � P � R ; N ; B cf(R \\y)
{MACCB}

Θ � u[p](y).P � R \\y ; N ; B∪̄{u}

Θ � P � R ; N ; B
{SEND}

Θ � c!〈{pk}k∈K ,e〉;P � {�(c)}∪R ; N ; B∪̄{e}

Θ � P � R ; N ; B
{RCV}

Θ � c?(q,x);P � pre(�(c),R) ; N ; B

Θ � P � R ; N ; B
{DELEG}

Θ � c!〈〈p′,c′〉〉;P � {�(c), �(c′), �(c)≺ �(c′)}%R ; N ; B

Θ � P � R ; N ; B R ⊆ {�(c), y, �(c)≺ y}
{SREC}

Θ � c?((q,y));P � {�(c)} ; N ; B

Θ � P � R ; N ; B Θ � Q � R ′ ; N ′ ; B′

{CONC}
Θ � P | Q � R %R ′ ; N ∪N ′ ; B∪B′

Θ � P � R ; N ; B a �∈R ∪N
{NRES}

Θ � (νa)P � R ; N ; B \a

{VAR}
Θ ,X [y] � R ; N ; B � X〈e,c〉 � R{�(c)/y} ; N ; B∪̄{e}

Θ ,X [y] � R ; N ; B � P � R ; N ; B Θ ,X [y] � R ; N ; B � Q � R ′ ; N ′ ; B′

{DEF}
Θ � def X(x,y) = P in Q � R ′ ; N ′ ; B′
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The crucial point to prove the progress property is to assure that a process, seen as
a parallel composition of single threaded processes and queues, cannot be blocked in a
configuration in which:

1. there are no thread ready for a session initialization (i.e. of the form ā[n](y).P or
a[p](y).P). Otherwise the process could be reactivated by providing it with the right
partners.
2. all subprocesses are either non-empty queues or processes waiting to perform an in-
put action on a channel whose associated queue does not offer an appropriate message.

Progress inside a single service is assured by the communication typing rules in § 3.
This will follow as an immediate corollary of Theorem 2. The channel relation is essen-
tially defined to analyse the interactions between services: this is why in the definition
of pre(�(c),R) we put the condition �(c) �= λ . A basic point is that a loop in R repre-
sents the possibility of a deadlock state. For instance take the processes:

P1 = b[1](y1).ā[2](z2).y1?(2,x);z2!〈1, false〉;0
P2 = b̄[2](y2).a[1](z1).z1?(2,x′);y2!〈1, true〉;0.

In process P1 we have that an input action on service b can block an output action on
service a and this determines b≺ a. In process P2 the situation is inverted, determining
a≺ b. In P1 | P2 we will then have a loop a≺ b≺ a. In fact P1 | P2 reduces to

Q = (νs)(νr) (s[1]?(2,x);r[1]!〈2, false〉;0 | r[2]?(1,x′);s[2]!〈1, true〉;0)

which is stuck. It is easy to see that services a and b have the same types, thus we could
change b in a in P1 and P2 obtaining P′1 and P′2 with two instances of service a and a
relation a≺ a. But also P′1 | P′2 would reduce to Q. Hence we must forbid also loops on
single service names (i.e. the channel relation cannot be reflexive).

Rule {RCV} asserts that the input action can block all other actions in P, while rule
{SEND} simply adds �(c) in R to register the presence of a communication action in
P. In fact output is asynchronous, thus it can be always performed. Rule {DELEG} is
similar to {SEND} but asserts that a use of �(c) must precede a use of �(c′): the relation
�(c)≺ �(c′) needs to be registered since an action blocking �(c) also blocks �(c′).

Three different sets of rules handle service initialisations. In rules {MCAST}-
{MACC}, which are liberal on the occurrences of the channel y in P, the service name a
replaces y in R. Rules {MCASTN}-{MACCN} can be applied only if the channel y as-
sociated to a is minimal in R .This implies that once a is initialised in P all communica-
tion actions on the channel with role instantiating y must be performed before any input
communication action on a different channel in P. The name a is added to the nested
service set. Remarkably, via rules {MCASTN}-{MACCN} we can prove progress when
services are nested, generalising the typing strategy of [6]. The rules {MCASTB} and
{MACCB} add u to the bound service set whenever u is a service name. These rules are
much more restrictive: they require that y is the only free channel in P and that it is min-
imal. Thus no interaction with other channels or services is possible. This safely allows
u to be a variable (since nothing is known about it before execution except its type) or
a restricted name (since no channel with role can be made inaccessible at runtime by a
restriction on u). Note that rule {NRES} requires that a occurs neither in R nor in N .
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The sets N and B include all service names of a process P whose initialisations is
typed with {MCASTN}-{MACCN}, {MCASTB}-{MACCB}, respectively. Note that for
a service name which will replace a variable this is assured by the (conditional) addition
of e to B in the conclusion of rule {SEND}. The sets N and B are used to assure, via the
coherence condition R∩(N ∪B) = /0, that all participants to the same service are typed
either by the first two rules or by the remaining four. This is crucial to assure progress.
Take for instance the processes P1 and P2 above. If we type the session initialisation on
b using rule {MACCN} or {MACCB} in P1 and rule {MCAST} in P2 no inconsistency
would be detected. But rule {CONC} does not type P1 | P2 owing to the coherence condi-
tion. Instead if we use {MACC} in P1, we detect the loop a≺ b≺ a. Note that we could
not use {MCASTN} or {MCASTB} for b in P2 since y2 is not minimal.

Rules {MCASTN}-{MACCN} are useful for typing delegation. An example is process
B of the three-buyer protocol, in which the typing of the subprocess

z2!〈{1},quote - contrib - 99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0})
gives z2 ≺ y2. So by using rule {MCAST} we would get first b≺ y2 and then the cycle
y2 ≺ b ≺ y2. Instead using rule {MCASTN} for b we get in the final typing of B either
{a};{b}; /0 or /0;{a,b}; /0 according to we use either {MCAST} or {MCASTN} for a.

Rule {SREC} avoids to create a process where two different roles in the same ses-
sion are put in sequence. Following [23] we call this phenomenon self-delegation. As
an example consider the processes

P1 = b[1](z1).a[1](y1).y1!〈〈2,z1〉〉;0
P2 = b̄[2](z2).ā[2](y2).y2?((1,x));x?(2,w);z2!〈1, false〉;0

and note that P1 | P2 reduces to (νs)(νr)(s[1]?(2,w);s[2]!〈1, false〉;0) which is stuck.
Note that P1 | P2 is typable by the communication type system but P2 is not typable by
the interaction type system, since by typing y2?((1,x));x?(2,w);z2!〈1, false〉;0 we get
y2 ≺ z2 which is forbidden by rule {SREC}.

A closed runtime process P is initial if it is typable both in the communication and
in the interaction type systems. The progress property is assured for all computations
that are generated from an initial process.

Theorem 2 (Progress). All initial processes have the progress property.

It is easy to verify that the (runtime) version of the three-buyer protocol can be typed in
the interaction type system with {a};{b}; /0 and /0;{a,b}; /0 according to which typing
rules we use for the initialisation actions on the service name a. Therefore we get

Corollary 1. The three-buyer protocol has the progress property.

5 Conclusions and Related Work

The programming framework presented in this paper relies on the concept of global
types that can be seen as the language to describe the model of the distributed commu-
nications, i.e., an abstract high-level view of the protocol that all the participants will
have to respect in order to communicate in a multiparty communication. The program-
mer will then write the program to implement this communication protocol; the system
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will use the global types (abstract model) and the program (implementation) to generate
a runtime representation of the program which consists of the input/output operations
decorated with explicit senders and receivers, according to the information provided in
the global types. An alternative way could be that the programmer directly specifies the
senders and the receivers in the communication operations as our low-level processes;
the system could then infer the global types from the program. Our communication and
interaction type systems will work as before in order to check the correctness and the
progress of the program. Thus the programmer can choose between a top-down and
a bottom-up style of programming, while relying on the same properties checked and
guaranteed by the system.

We are currently designing and implementing a modelling and specification language
with multiparty session types [19] for the standards of business and financial protocols
with our industry collaborators [20,21]. This consists of three layers: the first layer is a
global type which corresponds to a signature of class models in UML; the second one
is for conversation models where signatures and variables for multiple conversations
are integrated; and the third layer includes extensions of the existing languages (such
as Java [13]) which implement conversation models. We are currently considering to
extend this modelling framework with our type discipline so that we can specify and
ensure progress for executable conversations.

Multiparty sessions. The first papers on multiparty session types are [2] and [12]. The
work [2] uses a distributed calculus where each channel connects a master end-point
and one or more slave endpoints; instead of global types, they solely use (recursion-
free) local types. In type checking, local types are projected to binary sessions, so that
type safety is ensured using duality, but it loses sequencing information: hence progress
in a session interleaved with other sessions is not guaranteed.

The present calculus is an essential improvement from [12]; both processes and types
in [12] share a vector of channels and each communication uses one of these channels,
while our user processes and global types are simpler and user-friendly without these
channels. The global types in [12] have a parallel composition operator, but its pro-
jectability from global to local types limits to disjoint senders and receivers; hence it
does not increase expressivity.

The present calculus is more liberal than the calculus of [12] in the use of declara-
tions, since the definition and the call of recursive processes are obliged to use the same
channel variable in [12]. Similarly the delegation in [12] requires that the same channel
is sent and received for ensuring subject reduction, as analysed in [23]. Our calculus
solves this issue by having channels with roles, as in [9] (see the example at page 430).
As a consequence some recursive processes, which are stuck in [12], are type-sound
and reducible in our calculus, satisfying the interaction type system.

Different approaches to the description of service-oriented multiparty communica-
tions are taken in [3,4]. In [3], the global and local views of protocols are described
in two different calculi and the agreement between these views becomes a bisimula-
tion between processes; [4] proposes a distributed calculus which provides communi-
cations either inside sessions or inside locations, modelling merging running sessions.
The type-safety and progress in interleaved sessions are left as an open problem in [4].
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Progress. The majority of papers on service-oriented calculi only assure that clients
are never stuck inside a single session, see [1,7,12] for detailed discussions, including
comparisons between the session-based and the traditional behavioural type systems
of mobile processes, e.g. [22,15]. We only say here that our interaction type system
is inspired by deadlock-free typing systems [14,15,22]. In [1,7,12], structured session
primitives help to give simpler typing systems for progress.

The first papers considering progress for interleaved sessions required the nesting of
sessions in Java [8,6] and SOC [1,16,5]. The present approach significantly improves
the binary session system for progress in [7] by treating the following points:

(1) asynchrony of the communication with queues, which enhances progress;
(2) a general mechanism of process recursion instead of the limited permanent accepts;
(3) a more liberal treatment of the channels which can be sent; and
(4) the standard semantics for the reception of channels with roles, which permits to get
rid of process sequencing.

None of the previous work had treated progress across interfered, dynamically inter-
leaved multiparty sessions.

Acknowledgements. We thank Kohei Honda and the Concur reviewers for their com-
ments on an early version of this paper and Gary Brown for his collaboration on an
implementation of multiparty session types.
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Abstract. We present a polynomial-time algorithm deciding bisimilar-
ity between a normed BPA process and a normed BPP process. This
improves the previously known exponential upper bound by Černá,
Křet́ınský, Kučera (1999). The algorithm relies on a polynomial bound
for the “finite-state core” of the transition system generated by the BPP
process. The bound is derived from the “prime form” of the underlying
BPP system (where bisimilarity coincides with equality); we suggest an
original algorithm for the respective transformation.

Keywords: verification, equivalence checking, bisimulation equivalence,
Basic Process Algebra, Basic Parallel Processes.

1 Introduction

Decidability and complexity of bisimilarity on various classes of processes is a
classical topic in process algebra and concurrency theory; see, e.g., [1, 2] for
surveys.

One long-standing open problem is the decidability question for the class PA
(process algebra), which comprises “context-free” rewrite systems using both
sequential and parallel composition. For the subcase of normed PA, a procedure
working in doubly-exponential nondeterministic time was shown by Hirshfeld
and Jerrum [3].

More is known about the “sequential” subclass called BPA (Basic Process
Algebra) and the “parallel” subclass called BPP (Basic Parallel Processes).
In the case of BPA, the best known algorithm for deciding bisimilarity seems
to have doubly-exponential upper bound [1, 4]; the problem is known to be
PSPACE-hard [5]. In the case of BPP, the problem is PSPACE-complete [6, 7].
A polynomial-time algorithm for normed BPA was shown in [8] (with an upper
bound O(n13)); more recently, an algorithm with running time in O(n8polylog n)
was shown in [9]. For normed BPP, a polynomial time algorithm was presented
in [10] (without a precise complexity analysis), based on so called prime decom-
positions ; the upper bound O(n3) was shown in [11] by another algorithm, based
on so called dd-functions.
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The most difficult matter in the above mentioned algorithm for normed PA [3] is
the case when (a process expressed as) sequential composition is bisimilar with (a
process expressed as) parallel composition. A basic (sub)problem of this problem is
to analyze when a BPA process is bisimilar with a BPP process. Černá, Křet́ınský,
Kučera [12] have shown that this (sub)problem is decidable in the normed case;
their suggested algorithm is exponential. Decidability in the general (unnormed)
case was shown in [13] (without giving any complexity bound).

In this paper, we revisit the normed case, and we present a polynomial time
algorithm deciding whether a given normed BPA process α is bisimilar with a
given normed BPP process M . The main idea is to derive a polynomial bound
for the “finite-state core” of the transition system generated by the BPP process
M . To this aim we provide a new algorithm, based on dd -functions, with time
complexity O(n3), which transforms a given normed BPP process into a “prime
form”, where bisimilarity coincides with equality. Such a transformation could
be based on the prime decompositions in [10] but with worse complexity (which
was, in fact, not analyzed in [10]). If the constructed finite-state core exceeds the
derived bound, we answer negatively; otherwise we construct a BPA process α′

which is bisimilar with M , and the final step is to decide if BPA processes α and
α′ are bisimilar. This final step can be handled by referring to [8] or [9]. We also
sketch a simple self-contained algorithm which uses the fact that α′ is close to a
finite-state system. This should lead to a better complexity estimation, though
we provide no analysis here.

As a side result, our approach also shows a clear polynomial time algorithm
testing if there exists a bisimilar BPA process to a given BPP process. This is
an alternative to the respective polynomiality result in [12].

Remark. We hope that the new insight will also help to clarify the general (un-
normed) case BPA vs. BPP. E.g., the problem mentioned in the previous para-
graph seems to be PSPACE-complete in this case.

This paper has the following structure. After basic definitions in Section 2,
we describe a transformation of a normed BPP system into the prime form in
Section 3. Section 4 contains the crucial result showing the polynomial bound
on the “finite-state core”. Section 5 finishes the main polynomiality proof.

2 Definitions

We use N = {0, 1, 2, . . .} to denote the set of nonnegative integers, and we put
N−1 = N ∪ {−1}.

For a set X , |X | denotes the size of X , X+ denotes the set of nonempty
sequences of elements of X , and X∗ = X+ ∪ {ε} where ε is the empty sequence.
The length of a sequence x ∈ X∗ is denoted by |x| (|ε| = 0). We use xk (where
x ∈ X∗, k ∈ N) to denote the sequence xx · · ·x where x is repeated k times (in
particular x0 = ε).

A labelled transition system (LTS) is a triple (S,A,−→), where S is a set of
states, A is a finite set of actions, and −→⊆ S×A×S is a transition relation. We
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write s a−→ s′ instead of (s, a, s′) ∈−→ and we extend this notation to elements
of A∗ in the natural way. We write s −→ s′ if there is a ∈ A such that s a−→ s′

and s −→∗ s′ if s w−→ s′ for some w ∈ A∗. We write s w−→ if there is some s′

such that s w−→ s′.
Let (S,A,−→) be an LTS. A binary relation R ⊆ S × S is a bisimulation iff

for each (s, t) ∈ R and a ∈ A we have:

– ∀s′ ∈ S : s a−→ s′ ⇒ (∃t′ : t a−→ t′ ∧ (s′, t′) ∈ R), and
– ∀t′ ∈ S : t a−→ t′ ⇒ (∃s′ : s a−→ s′ ∧ (s′, t′) ∈ R).

Less formally, each transition s
a−→ s′ can be matched by a transition t

a−→ t′

where (s′, t′) ∈ R and vice versa.
States s and t are bisimulation equivalent (bisimilar), written s ∼ t, iff they

are related by some bisimulation. We can also relate states of two different LTSs
by taking their disjoint union.

A BPA (system) is given by a context-free grammar in Greibach normal form.
Formally it is a triple Σ = (VΣ ,AΣ , ΓΣ), where VΣ is a finite set of variables
(nonterminals), AΣ is a finite set of actions (terminals) and ΓΣ ⊆ VΣ×AΣ×V ∗

Σ

is a finite set of rewrite rules. We will use V,A, Γ for the sets of variables, actions
and rules if the underlying BPA is clear from context. Again, we write X a−→ α
instead of (X, a, α) ∈ Γ . A BPA process is a pair (α,Σ) where Σ is a BPA
system and α ∈ V ∗; we often write just α when Σ is clear from context. A BPA
Σ gives rise to the LTS SΣ = (V ∗,A,−→) where −→ is induced from the rewrite
rules by the following (deduction) rule: if X a−→ α then Xβ

a−→ αβ for every
β ∈ V ∗.

A BPP (system) is defined in a similar way, as a triple Δ = (VΔ,AΔ, ΓΔ).
The only difference is the deduction rule for the associated LTS SΔ: if X a−→ α
then γXδ

a−→ γαδ for any γ, δ ∈ V ∗ (thus any occurrence of a variable can be
rewritten, not just the first one). It is easy to observe that BPP processes α, β
with the same Parikh image (i.e., containing the same number of occurrences
of each variable) are bisimilar. Hence BPP processes can be read modulo com-
mutativity of concatenation and interpreted as multisets of variables; in the rest
of the paper we interpret BPP processes in this way whenever convenient. This
also suggests to identify a BPP system Δ with a BPP net, a labelled Petri net
in which each place corresponds to a variable and each transition corresponds
to a rewrite rule (and thus has a unique input place); we will freely do this in
our later considerations.

Formally, a BPP net is a tuple Δ = (PΔ,TrΔ, preΔ, FΔ,AΔ, lΔ) where PΔ is
a finite set of places (variables), TrΔ is a finite set of transitions, preΔ : TrΔ →
PΔ is a function assigning an input place to each transition, FΔ : (PΔ×TrΔ) →
N is a flow function, AΔ is a finite set of actions, and lΔ : TrΔ → AΔ is a
labelling function. We will use P,Tr , pre, F,A, l if the underlying BPP net is
clear from context. A rewrite rule p a−→ α of Δ is represented by a transition
t ∈ Tr such that pre(t) = p and F (t, p′) is the number of occurrences of p′ in
α, for each p′ ∈ P .
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A BPP process is thus, in fact, a marking, i.e. a function M : P → N which
associates a finite number of tokens to each place. Note that pk represents mark-
ing M where all k tokens are in one place p (M(p) = k and M(p′) = 0 for each
p′ �= p), p represents marking p1, and ε represents the zero marking (M(p) = 0
for all p ∈ P ).

A transition t is enabled at marking M if M(pre(t)) ≥ 1. An enabled transi-
tion t may fire from M , producing a marking M ′ defined by

M ′(p) =
{
M(p)− 1 + F (t, p) if p = pre(t)
M(p) + F (t, p) otherwise .

This is denoted by M
t−→ M ′; the notation is extended to M

σ−→ M ′ for
sequences σ ∈ T ∗. We write M σ−→ if M σ−→M ′ for some M ′.

In the above sence, a BPP Δ gives rise to the LTS SΔ = (MΔ,A,−→) where
MΔ is the set of all markings (of the respective BPP net), and M

a−→ M ′ iff
there is some t ∈ Tr such that l(t) = a and M

t−→M ′.
In the rest of the paper we use symbols α, β, . . . for both BPA processes and

BPP processes, and M1,M2, . . . only for the latter.
We say that a BPA system Σ (a BPP net Δ) is normed iff α −→∗ ε for each

state α of SΣ (SΔ). We will use nBPA (nBPP) for normed BPA (normed BPP).
Our central problem, denoted nBPA-nBPP-BISIM, is defined as follows:

Instance: A normed BPA-process (α0, Σ), a normed BPP-process (M0, Δ).
Question: Is α0 ∼M0 (in the disjoint union of SΣ and SΔ) ?

As the size n of an instance of nBPA-nBPP-BISIM we understand the
number of bits needed for its (natural) presentation; in particular we consider
the numbers F (t, p) in Δ and the numbers in M0 to be written in binary.

In the rest of this section we assume a fixed nBPA Σ and a fixed nBPP Δ.
By a state we generally mean a state in the disjoint union of SΣ and SΔ.

Let α be a state (of SΣ or SΔ). Norm of α, denoted ‖α‖, is the length of the
shortest w ∈ A∗ such that α w−→ ε. Note that this also defines norm ‖X‖ for
each variable (place) X . We now note some obvious properties of norms.

– If α �= ε then ‖α‖ > 0 for any state α.
– In each nBPA (or nBPP), there is at least one variable (place) with norm 1.
– If X a−→ α is used for a transition β

a−→ β′ then ‖β′‖ − ‖β‖ = ‖α‖ − ‖X‖.
– ‖αβ‖ = ‖α‖ + ‖β‖ (for BPP-net representation it induces ‖M1 + M2‖ =
‖M1‖+ ‖M2‖ where marking M = M1 +M2 is defined componentwise).

– If α ∼ β then ‖α‖ = ‖β‖.
– Let α1 ∼ α2, w ∈ A∗ and α1

w−→ α′
1. There must be a matching sequence

α2
w−→ α′

2 such that α′
1 ∼ α′

2 (and thus also ‖α′
1‖ = ‖α′

2‖).

Finally we note that all norms ‖X‖, ‖p‖ for X ∈ VΣ , p ∈ PΔ can be easily
computed in polynomial time (O(n3)) and written in polynomial space (O(n2)).

For two states α1, α2 we write α1 −→R α2 if α1 −→ α2 and ‖α2‖ = ‖α1‖− 1.
Such a step is called a norm-reducing step and the respective rule (transition)
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is also called norm reducing. We write α1 −→∗
R α2 if there is a sequence (called

norm reducing sequence) of norm reducing steps leading from α1 to α2. For
each variable (place) X there is at least one norm-reducing rule (transition)
X −→R α.

We finish by a few notions concerning the BPP net Δ.
For a marking M and a set Q ⊆ P we define ‖M‖Q as the length of the

shortest w ∈ A∗ such that M w−→M ′ where M ′(p) = 0 for all p ∈ Q.
A place p ∈ P is unbounded in (M0, Δ) iff for each c ∈ N there is a marking

M ′ such that M0 −→∗ M ′ and M ′(p) > c.
We define Tok (M) =

∑
p∈P M(p) and Car (M) = {p ∈ P |M(p) ≥ 1}.

A place p is called a single final place, an SF-place, if all transitions that take
a token from p are of the form p

a−→ pk (i.e., they can only put tokens back to
p). It is easy to see that ‖p‖ = 1 for every SF-place p (since Δ is normed). We
say that p is a non-SF-place if it is not an SF-place.

3 Normed BPP Systems in the Prime Form

We say that a BPP system Δ is in the prime form iff bisimilarity coincides with
identity on the generated LTS, i.e., M ∼M ′ iff M = M ′.

One way to transform a normed BPP system Δ into an equivalent Δ′ in the
prime form can be based on the algorithm in [10] which computes certain prime
decompositions of BPP-variables (i.e., BPP-net places); it is a polynomial algo-
rithm whose precise complexity has not been analyzed. We use another trans-
formation, which is based on the dd -functions and is achieved by an algorithm
with time complexity in O(n3).

In [11], the algorithm from [6] was applied to normed processes. Given a
normed BPP system Δ = (P,Tr , pre, F,A, l), the algorithm finishes in time
O(n3) and constructs a partition {T1, T2, . . . , Tm} of the set of transitions such
that

M ∼M ′ iff di(M) = di(M ′) for all i = 1, 2, . . . ,m

where di(M) is the distance to disabling Ti (i.e., the length of the shortest w
such that M w−→ M ′ and in M ′ all t ∈ Ti are disabled). Moreover, each class
Ti is characterized by the pair (ai, δi) where ai is the label of all t ∈ Ti and
δi = (δi1, δi2, . . . , δim) is a vector in (N−1)m such that the following holds for
any M,M ′:

if M t−→M ′ for t ∈ Ti then d(M ′) = d(M) + δi

where d(M) denotes the vector (d1(M), d2(M), . . . , dm(M)). The type (ai, δi)
determines Ti since (ai, δi) �= (aj , δj) for i �= j. For convenience, we will say
transition (of the type) ti when meaning any transition t ∈ Ti.

Remark. Space O(n) is sufficient for writing each element of a vector δi. There
are O(n) such elements in δi and O(n) vectors. It follows that space O(n3) is
sufficient for writing all pairs (ai, δi) in binary.
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Due to normedness, for every class Ti there is at least one transition tj which
decreases di (whenever enabled in M , which also entails di(M) > 0); this is
concisely captured by the next proposition.

Proposition 1. ∀i∃j : δji = −1.

We say that ti is a key transition if it decreases some component of d, i.e. some
dj . Formally we define

KEY = {i | δij = −1 for some j} .

Proposition 2. ∀i ∈ KEY : δii = −1.

Proof. If ti (an element of Ti) decreases some dj then for each M there is the

greatest � such that M
(ti)

�

−→. The last firing of ti necessarily decreases di. Hence
δii = −1. "#

Thus for each i ∈ KEY, di(M) is the greatest � such that M
(ti)

�

−→. (A shortest
way to disable ti is to fire it as long as possible.)

We say that ti reduces tj iff δij = −1. Formally we define the following relation
RED on KEY:

for i, j ∈ KEY we put i RED j iff δij = −1 .

Proposition 3. RED is an equivalence relation.

Proof. Reflexivity follows from Proposition 2.
To show symmetricity, assume i, j ∈ KEY (so δii = δjj = −1) such that δij = −1
but δji ≥ 0. Then firing tj from M with di(M) > 0 as long as possible results
in M ′ with dj(M ′) = 0 and di(M ′) > 0. Thus M ′ ti−→, which is a contradiction
since dj can not be decreased.

Transitivity follows similarly: Suppose i RED j and j RED k but
¬(i RED k). So all δii, δjj , δkk, δij , δji, δjk, δkj are −1 but δik ≥ 0. Starting
from M with dk(M) > 0, we fire ti as long as possible and thus get M ′ with
di(M ′) = dj(M ′) = 0 and dk(M ′) > 0. Thus M ′ tk−→, which is a contradiction
since dj can not be decreased. "#

Theorem 4. There is an algorithm, with time complexity in O(n3), which trans-
forms a given normed BPP system Δ into Δ′ in the prime form, and any given
state (marking) M of Δ into M ′ of Δ′ such that M ∼M ′.

Proof. In the first phase we compute the partition {T1, T2, . . . , Tm} as discussed
above. We put Qi = pre(Ti) (where pre(Ti) = {pre(t) | t ∈ Ti}) and note that
di(M) = ‖M‖Qi. We now easily verify that Qi = Qj for i, j ∈ KEY iff i RED j
(and so j RED i).

The crucial idea is that Δ′ will have a place pC for each class C of the equiv-
alence RED. For any M of Δ, the number M ′(pC) will be equal to ‖M‖Qi for
each i ∈ C.
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For every i ∈ KEY we add a transition t′i in Δ′ such that pre(t′i) = pC where
i ∈ C; t′i is labelled with ai and it realizes the (nonnegative) change on the other
places pC′ according to δi (restricted to KEY).

A non-key transition ti (with δi ≥ (0, 0, . . . , 0)) is enabled precisely when a
(key) transition decreasing di is enabled (recall Proposition 1). Thus for each pC

where C contains j with δji = −1 we add a transition t with label ai and pre(t) =
pC which (gives a token back to pC and) realizes the change δi (restricted to
KEY). "#

In the following text we only consider BPP systems in the prime form.

4 A Bound on the Number of the “Not-All-in-One-SF”
Markings

In this subsection we prove the following theorem.

Theorem 5. Assume a normed BPA system Σ, with the set V of variables,
and a normed BPP system Δ in the prime form, with the set P of places. The
number of markings M of Δ such that α ∼ M for some α ∈ V + and M does
not have all tokens in one SF-place is at most 4n2, where n = max{|V |, |P |}.

We start with a simple observation and then we bound the total number of
tokens in the markings mentioned in the theorem.

Proposition 6. If Aα ∼M where α ∈ V ∗ and |Car (M)| ≥ 2 then ‖A‖ ≥ 2.

Proof. From M with |Car (M)| ≥ 2 we can obviously perform two different
norm-reducing steps resulting in two different, and thus nonbisimilar, markings.
On the other hand, any Aα with ‖A‖ = 1 has a single outcome (namely α) of
any norm-reducing step. "#

Proposition 7. If |Car (M)| ≥ 2 and α ∼M for α ∈ V + then Tok (M) ≤ |V |.

Proof. In fact, we prove a stronger proposition. To this aim, we order the vari-
ables from V into a sequence A1, A2, . . . , A|V | so that ‖Ai‖ ≤ ‖Aj‖ for i ≤ j. We
now show the following claim: if Aiα ∼ M , where |Car (M)| ≥ 2 (and α ∈ V ∗),
then Tok (M) ≤ i.

For the sake of contradiction, suppose a counterexample Aiα ∼M , Tok (M) ≥
i+1, for minimal i. Proposition 6 shows that ‖Ai‖ ≥ 2, hence also i ≥ 2 (since nec-
essarily ‖A1‖ = 1); therefore Tok (M) ≥ i+1 ≥ 3. There is thus a norm-reducing
step M −→R M ′ such that |Car (M ′)| ≥ 2, Tok (M ′) ≥ i. This step is matched
by Aiα −→R Ajβα, Ajβα ∼ M ′, where necessarily ‖Aj‖ < ‖Ai‖ and thus j < i.
This is a contradiction with the minimality of our counterexample. "#

Since a token from any non-SF-place can be moved to another place (with the
total number of tokens non-decreasing), we get the following corollary.

Corollary 8. If α ∼M then M(p) ≤ |V | for every non-SF-place p.
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We now partition the markings in the theorem into four classes:

Class 1. Markings M with all tokens in one (non-SF) place (|Car (M)| = 1).
Class 2. MarkingsM with |Car (M)| ≥ 2 where at least two different places with

norm 1 are reachable; this necessarily means M −→∗ M ′ for some M ′

satisfyingM ′(p1) ≥ 1,M ′(p2) ≥ 1 for some p1 �= p2 and ‖p1‖ = ‖p2‖=1.
Class 3. Markings M with |Car (M)| ≥ 2 and with exactly one reachable

(“sink”) place p with norm 1, where p is a non-SF-place.
Class 4. Markings M with |Car (M)| ≥ 2 and with exactly one reachable

(“sink”) place p with norm 1, where p is an SF-place.

We will show that each class contains at most n2 markings by which we
prove the theorem. (In fact, our bound is a bit generous, allowing to avoid some
technicalities).

Proposition 9. The number of markings in Class 1 is bounded by |V |·|P | ≤ n2.

Proof. According to Corollary 8 there can be at most |V | tokens in any non-SF-
place and there are at most |P | non-SF-places. It follows that Class 1 contains
at most |V | · |P | ≤ n2 markings. "#

Proposition 10. If α ∼ M for M from Class 2 then α = A for some A ∈ V .
Thus the number of markings in Class 2 is at most |V | ≤ n.

Proof. For the sake of contradiction, suppose Aα ∼M where α ∈ V + and M is
from Class 2. We take a counterexample with the minimal length � of a sequence
v such that M v−→ M ′ where M ′(p1) ≥ 1, M ′(p2) ≥ 1 for two different p1, p2

with norm 1. We note that ‖A‖ ≥ 2 by Proposition 6, and first suppose � > 0.
It is easy to verify that there is a move M −→ M ′′, matched by Aα −→ Bβα,
Bβα ∼ M ′′, where |Car (M ′′)| ≥ 2 and the respective length � decreased; this
would be a contradiction with the assumed minimality. Thus � = 0, which means
M(p1) ≥ 1, M(p2) ≥ 1. But then M certainly allows M −→∗

R M1, M −→∗
R M2

where ‖M1‖ = ‖M2‖ = ‖α‖ ≥ 1 and M1 �= M2, and thus M1 �∼ M2. On the
other hand, Aα can offer only α as the result of matching such sequences; hence
Aα �∼M . "#

Proposition 11. If Aα ∼ M for α ∈ V + and M from Class 3 or 4 then
M −→∗

R p‖α‖ where p is the sink place. Thus α ∼ p‖α‖.

Proof. We prove the claim by induction on the norm ‖A‖. Suppose Aα ∼M as
in the statement. Proposition 6 implies ‖A‖ ≥ 2. M necessarily has a token in
a place p′ �= p with the least norm greater than 1. Performing a norm-reducing
transition with this token corresponds to some M −→R M ′, and this must be
matched by Aα −→R Bβα, Bβα ∼M ′, where ‖B‖ < ‖A‖. Either |Car (M ′)| =
1, in which case necessarily M ′ = p‖Bβα‖, or |Car (M ′)| ≥ 2, and then M ′ −→∗

R

p‖βα‖ due to the induction hypothesis. Since obviously p‖Bβα‖ −→∗
R p‖βα‖ −→∗

R

p‖α‖, we are done. "#
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Proposition 12. If Aα ∼ M where ‖α‖ ≥ 2 and M is from Class 3 or 4 then
the sink place p is an SF-place. Hence M is from Class 4.

Proof. For the sake of contradiction, suppose Aα ∼ M with ‖α‖ ≥ 2, M from
Class 3, the sink place p thus being a non-SF-place, and assume ‖A‖ minimal
possible; ‖A‖ ≥ 2 by Proposition 6.

If there was a step M −→R M ′ with |Car(M ′)| ≥ 2, the matching Aα −→R

Bβα would lead to a contradiction with minimality of ‖A‖. Since |Car (M)| ≥ 2,
the only remaining possibility is the following: Tok(M) = 2, M(p) = 1 and
M(p′) = 1 where p′ −→R pk for k = ‖A‖+ ‖α‖ − 2 ≥ 2.

Since the sink place p is a non-SF-place, it must be in a cycle C with at
least two places. Moving a token along C cannot generate new tokens, due to
Corollary 8, so p′ is not in C. On the other hand, C contains some p′′ with
‖p′′‖ = 2. Starting in M , we can move the token from p to p′′, the norm being
greater than ‖M‖ = ‖Aα‖ along the way. For the resulting M ′ we obviously
have M ′ −→∗

R M ′′ for M ′′ satisfying M ′′(p′′) = 1 and ‖M ′′‖ = ‖α‖. Aα can
match this only by reaching α but α ∼ p‖α‖ according to Proposition 11 and
thus α �∼M ′′. "#

We can thus have Aα ∼ M for M from Class 3 only when ‖α‖ ≤ 1, and it is
thus easy to derive the following corollary.

Corollary 13. The number of markings in Class 3 is at most |V |2 ≤ n2.

Proposition 14. The number of markings in Class 4 is at most |V | · |P | ≤ n2.

Proof. Let Aα ∼ M for M from Class 4, p being the respective SF-sink place.
Using Proposition 11, we derive α ∼ Ik where k = ‖α‖ and I ∈ V , I ∼ p (such
I must exist since M −→∗ p). Thus AIk ∼ M but AIk �∼ Im for any m since
Im ∼ pm and pm �∼M (note that pm �= M and Δ is in the prime form).

Since M −→∗
R pm for some m, there must be a (shortest) norm-reducing se-

quence A w−→ Bβ where β ∼ I‖β‖, B �∼ I‖B‖ but all norm-reducing transitions
B

a−→ γ satisfy γ ∼ I‖γ‖. The sequence Aα w−→ Bβα (where Bβα ∼ BI‖βα‖)
must be matched by some M v−→M ′ where M ′ does not have all tokens in p but
every norm-reducing transition fromM ′ results in M ′′ with all tokens in p ; it fol-
lows that M ′ has a single token (so we have at most |P | possibilities for M ′).

This easily implies that there are at most |V | · |P | ≤ n2 markings in Class 4. "#

5 Problem nBPA-nBPP-BISIM Is in PTIME

We first note that if moving a token along a cycle C in a BPP system Δ gener-
ates new tokens in a place p and C is reachable (markable) from M0 then p is
primarily unbounded (in M0). Any place which is unbounded is either primarily
unbounded, or secondarily unbounded, which means reachable from a primarily
unbounded place. Thus any unbounded place has at least one corresponding
pumping cycle.



Normed BPA vs. Normed BPP Revisited 443

We now characterize when there is no nBPA bisimilar with a given nBPP. We
say that SF-place p is growing if there is a transition p

a−→ pk for k ≥ 2.

Lemma 15. For (M0, Δ), Δ being a normed BPP in the prime form, there is
no normed BPA process (α0, Σ) such that α0 ∼ M0, iff one of the following
conditions holds:

1. a non-SF-place is unbounded,
2. M0 −→∗ M with |Car (M)| ≥ 2 and M(p) ≥ 1 for some growing SF-place p,
3. a non-growing SF-place p is unbounded.

Proof. If 1. is satisfied then we cannot have α ∼ M0 (for any Σ with a [finite]
variable set V ) due to Corollary 8. If 2. or 3. is satisfied then, for any c ∈ N,
M0 −→∗ M with |Car (M)| ≥ 2 and Tok (M) > c. (Any pumping cycle for p in
3. contains p′ �= p.) Hence we cannot have α ∼M0 due to Proposition 7.

If none of 1.,2.,3. is satisfied, an appropriate (α,Σ) can be constructed as
described below. "#

We note that the conditions in Lemma 15 can be checked by straightforward
standard algorithms, linear in the size of Δ.

5.1 Construction

Suppose now that a given (M0, Δ) satisfies none of the conditions 1., 2., 3. in
Lemma 15. Thus only growing SF-places can be unbounded. Moreover, if some
growing SF-place is reachable from M0 then Tok(M0) = 1 and each transition
sequence reaching p just moves the token into p without creating new tokens on
the way.

We can construct the usual reachability graph for M0, with the exception
that the “all-in-one-SF” markings pk are taken as “frozen” – we construct no
successors for them. The thus arising basic LTS is necessarily finite, and we
can view its states as BPA-variables; each unfrozen marking M is viewed as a
variable AM , with the obvious rewriting rules.

To finish the construction, we introduce a variable Ip for each SF-place p
together with appropriate rewriting rules.

More formally, for (M0, Δ) we could construct nBPA system Σ′ = (F ∪
I,A, Γ ′) where F = {AM |M ∈ Muf } (where Muf = {M1,M2, . . . ,Mm} is the
set of unfrozen markings reachable from M0), I = {Ip | p ∈ PSF } (where PSF =
{p1, p2, . . . , p�} is the set of SF-places of Δ), and Γ ′ contains corresponding
rewriting rules.

Note that each rule in Γ ′ is of one of the following three forms: AM
a−→ AM ′ ,

AM
a−→ (Ip)k, or Ip

a−→ (Ip)k where AM , AM ′ ∈ F , Ip ∈ I, and k ∈ N (this
includes also rules of the form AM

a−→ ε and Ip
a−→ ε). Configuration α′

0

corresponding to M0 will be AM0 (or (Ip0 )k when all k tokens in M0 are in one
SF-place p0). Note that each configuration α reachable from α′

0 is either of the
form AM or (Ip)k, and we have (α′

0, Σ
′) ∼ (M0, Δ).
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Note that the size of (α′
0, Σ

′) can be exponential with respect to the size of
(M0, Δ), so we will not construct it explicitly in the algorithm.

Assume an instance of nBPA-nBPP-BISIM, i.e., nBPA (α0, Σ) and nBPP
(M0, Δ). The polynomial algorithm for nBPA-nBPP-BISIM works as follows.

It first transforms (M0, Δ) to bisimilar (M ′
0, Δ

′) where Δ′ is in the prime
form; recall Theorem 4. Then it starts to build the nBPA Σ′ for (M ′, Δ′) as
described above by building the set Muf of unfrozen states. If it founds out
that the number of elements of Muf exceeds 4n2, where n is the maximum of
{|VΣ |, |PΔ′ |}, then the algorithm stops with the answer α0 �∼M0; this is correct
due to Theorem 5.

If the number of elements of Muf does not exceed 4n2, the algorithm finishes
the construction of Σ′. However, it does not construct Σ′ explicitly but rather
a succinct representation of it where right hand sides of rules of the form (Ip)k

are represented as pairs (Ip, k) where k is written in binary. (It can be easily
shown that the number of bits of every possible k is in O(n2) where n is the size
of (M ′

0, Δ
′)).

Our aim is to apply the polynomial time algorithm from [8] or [9] to decide
if α0 ∼ α′

0. However, there is a small technical difficulty since this algorithm
expects “usual” nBPA, not nBPA in the succinct form described above. This
can be handled by adding special variables I1

p , I2
p , I4

p , I8
p , . . . I2m

p for each Ip ∈ I
and sufficiently large m (in O(n2)); the rules are adjusted in a straightforward
way (note that there will be at most O(m) variables on the right hand side of
each rewriting rule after this transformation).

The size of the constructed nBPA is surely polynomial with respect to the
size of the original instance of the problem and the algorithm from [8] or [9] can
be applied.

So we obtained our main theorem:

Theorem 16. There is a polynomial-time algorithm deciding whether (α0, Σ) ∼
(M0, Δ) where Σ is a normed BPA and Δ a normed BPP.

Since (α′
0, Σ

′) is in a very special form (it is a finite state system (FS) extended
with “SF-tails”), it is in fact not necessary to use the above mentioned gen-
eral algorithms. Instead we can use a specialized (and probably more efficient)
algorithm sketched in the next subsection.

5.2 Specialized Algorithm

The presented algorithm is an adaptation of the standard technique for deciding
bisimilarity for a given BPA (or PDA) and a finite-state system used for example
in [14, 15].

Assume we have nBPAs (α0, Σ) and (α′
0, Σ

′) where (α0, Σ) is the nBPA from
the instance of nBPA-nBPP-BISIM and (α′

0, Σ
′) is the nBPA described in the

previous subsection (with VΣ′ = F ∪I) stored using the succinct representation
described above (right hand sides of the form (Ip)k are stored as pairs (Ip, k)
with k represented in binary). Let Vall = VΣ ∪ VΣ′ .
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At first we note that the set of configurations from V ∗
all bisimilar with (Ip)k

where Ip ∈ I can be easily characterized. For each Ip ∈ I we construct a
set Class(Ip) as the maximal subset of Vall such that each X ∈ Class(Ip) can
perform exactly the same actions with the same changes on norm as Ip, and
can be rewritten only to variables from Class(Ip) (i.e., X a−→ β implies β ∈
(Class(Ip))∗, and Ip

a−→ (Ip)k iff X
a−→ β for some β ∈ (Class(Ip))∗ such that

‖β‖ − ‖X‖ = k − 1).
The classes Class(Ip) for Ip ∈ I can be easily computed in polynomial time.

It is not difficult to show that for any α ∈ V ∗
all and Ip ∈ I we have α ∼ (Ip)k iff

α ∈ Class(I)∗ and ‖α‖ = k. Using this fact and precomputed classes Class(Ip),
we have a fast (polynomial) test for α ∼ (Ip)k.

The crucial observation used in the algorithm is the following. Suppose we
want to check if α ∼ AM for some α ∈ V ∗

all and AM ∈ F where α = Xα′ for
some X ∈ Vall . If Xα′ ∼ AM then any norm reducing sequence Xα′ −→∗

R α′

must be matched by some norm reducing sequence AM −→∗
R β such that α′ ∼ β.

Obviously, β is either of the form AM ′ (for some AM ′ ∈ F) or (Ip)k (for some
Ip ∈ I). Suppose β = AM ′ (the case β = (Ip)k is similar). Then α′ ∼ AM ′ . Since
∼ is a congruence, we have XAM ′ ∼ AM . On the other hand, if we know that
XAM ′ ∼ AM and α′ ∼ AM ′ , we know that Xα′ ∼ AM .

By repeating the same approach we can reduce the problem if α ∼ AM to
subproblems of testing if XAM ′ ∼ AM , resp. X(Ip)k ∼ AM . Since ‖α‖ �= ‖β‖
implies α �∼ β, in testing if X(Ip)k ∼ AM we can consider only those cases where
k = ‖AM‖ − ‖X‖. It is obvious that the total number of such subproblems is
polynomial with respect to the size of the instance.

The algorithm works by computing the solution for all these subproblems.
It approximates from above the set of all such pairs (α, β), where α ∼ β, by
computing a fixpoint. It starts with the set of all possible pairs where ‖α‖ = ‖β‖
and refines it by checking for each pair if it satisfies expansion, i.e., if each
transition possible in α is matched by the corresponding transition in β (with
respect to the current approximation) and vice versa. (In this checking it also
uses the above mentioned test for α ∼ (Ip)k).

Obviously the fixed point is reached after polynomial number of iterations. It
is not difficult to check that the resulting fixpoint represents the correct set of
pairs which then can be used for computing the answer to the original question
if α0 ∼ AM0 .
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446 P. Jančar, M. Kot, and Z. Sawa

3. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process
algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

4. Burkart, O., Caucal, D., Steffen, B.: An elementary decision procedure for arbitrary
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Abstract. We propose a rule format that guarantees associativity of bi-
nary operators with respect to all notions of behavioral equivalence that
are defined in terms of (im)possibility of transitions, e.g., the notions
below strong bisimilarity in van Glabbeek’s spectrum. The initial format
is a subset of the De Simone format. We show that all trivial generaliza-
tions of our format are bound for failure. We further extend the format
in a few directions and illustrate its application to several formalisms in
the literature. A subset of the format is studied to obtain associativity
with respect to graph isomorphism.

1 Introduction

Structural Operational Semantics (SOS) [15] provides a convenient and intuitive
way of specifying behavior of systems in terms of states and (labeled) transitions.
There are essential properties that must be repeatedly proven for each instance
of SOS specification, and the proofs of such properties often follow standard
yet tedious lines of reasoning. To facilitate such proofs, many rule formats have
been developed for SOS (for an overview, see [1,14]), each with their own syn-
tactic features such as predicates, data stores, and negative formulae. Around
each of these formats different meta-theorems have been formulated and proven.
These meta-theorems aim at providing a quick and syntactical way of prov-
ing the aforementioned properties for the semantics specified by the deduction
rules. Examples of such meta-theorems include those concerning congruence of
behavioral equivalences [7] and commutativity of operators [12].

Associativity (with respect to a given notion of equivalence) is an interesting
property of binary operators, which does not lend itself easily to such syntac-
tic checks. Proofs of associativity are usually much more laborious than proofs
of both congruence and commutativity. For example, proofs of congruence, by
and large, make use of induction on the proof structure for transitions and are
confined to look at the proof-tree up to depth one. Thus, they can be performed
by looking at deduction rules individually. Proofs of associativity, however, are
usually concerned with proof-trees of depth two and hence, if there are n de-
duction rules for a certain binary operator each with m premises, the number
of case-distinctions in its associativity proof are nm in the worst case (for each
deduction rule and each premises, there are n possible deduction rules responsi-
ble for the transition mentioned in the premise). This is why in [12, Section 5],
we report that our initial attempt to devise a property for associativity did not
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lead to a concrete rule format. We are not aware of any other rule format for
associativity to date. In [10], an abstract 2-categorical framework is presented,
which guarantees algebraic properties such as commutativity and associativity.
Deriving concrete rule formats from this abstract framework is mentioned as
future research in [10].

In this paper we revisit this problem and propose a syntactic rule format
that guarantees associativity of a binary operator with respect to any notion of
behavioral equivalence that is specified in terms of transitions, e.g., all notions
below strong bisimilarity in van Glabeek’s spectrum [9,8]. We take the De Simone
format [7] as our starting point and add a number of other ingredients, such as
predicates [3], to it. Our choice of De Simone format is motivated by the inherent
complexity of associativity proofs and is thus aimed to reduce the size and the
number of the proof trees as much as possible. The extensions are motivated
by practical examples as illustrated in the remainder of this paper. Despite the
simple setting of our format, as we show in this paper, our format is widely
applicable to most practical examples we encountered so far. Moreover, we show
that dropping any of these restrictions jeopardizes the meta-result, even for
associativity with respect to the weaker notions of behavioral equivalence, e.g.,
trace equivalence.

The rest of this paper is structured as follows. We start in Section 2 by present-
ing some preliminary notions concerning associativity and SOS, used throughout
the rest of the paper. In Section 3, we present our basic rule format for asso-
ciativity and state and prove our associativity meta-theorem with respect to all
notions of equivalence that are weaker than (i.e., contain) strong bisimilarity.
Section 4 extends our rule format in various directions. In Section 5, we impose
some constraints on our format in order to obtain associativity with respect to
isomorphism (and all weaker notions). Finally, Section 6 concludes the paper
and points out possible directions for future research.

2 Preliminaries

For sake of completeness, we quote standard definitions from concurrency theory
and the meta-theory of SOS, which are used in the rest of this paper. A reader
familiar with these standard definitions may skip this section altogether.

Definition 1 (Signature and terms). We assume an infinite set of variables
V (with typical members x, y, x′, y′, xi, yi, . . .). A signature Σ is a set of func-
tion symbols (operators) with fixed arities. Functions with zero arity are called
constants. A term t ∈ T(Σ) is defined inductively as follows:

• A variable x ∈ V is a term.
• If t1, . . . , tn are terms then for all f ∈ Σ with arity n, f(t1, . . . , tn) is a term.

Terms are typically denoted by t, t′, ti, t′i, . . .. Syntactic equality on terms is denoted
by ≡. A closed term p ∈ C(Σ), is a term which does not contain any variables. A
substitution σ is a function from V to T(Σ). The domain of substitution σ is lifted
naturally to terms. The range of a closing substitution σ is C(Σ).
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Definition 2 (Transition System Specification (TSS), formula). A tran-
sition system specification (TSS) is a tuple (Σ,Rel,D) where

• Σ is a signature
• Rel is a set of relation symbols, where for all −→∈ Rel and t, t′ ∈ T(Σ).

We define that (t, t′) ∈−→ is a formula.
• D is a set of deduction rules. A deduction rule is defined as a tuple (H, c), where
H is a set of formulae and c is a formula. The formula c is called the conclusion
and the formulae from H are called the premises of the deduction rule.

A formula (also called transition) (t, t′) ∈−→ is usually denoted by the more
intuitive notation t −→ t′. We refer to t as the source and to t′ as the target
of the transition. Mostly, in case there is more than one relation symbol, we
use Rel = { l−→ | l ∈ L} for some set of labels L. A deduction rule (H, c) is

usually denoted by
H

c
. Such a deduction rule is an (f, l)-defining rule of an n-ary

operator f ∈ Σ and label l ∈ L if and only if c is of the form f(x1, · · · , xn) l−→ t.
A deduction rule is an f -defining rule if it is an (f, l)-defining rule for some l ∈ L.

Definition 3 (De Simone format [7]). A deduction rule is in the De Simone
format if it is of the form

{xi
li−→ yi | i ∈ I}

f(x1, . . . , xn) l−→ t
, P

where f ∈ Σ has arity n, I ⊆ {1, . . . , n} is a finite set of indices, P is a predicate
on the labels in the deduction rule and moreover,

• for 1 ≤ i < j ≤ n, xi and xj are different variables and for 1 ≤ i ≤ n and
j ∈ I, xi and yj are distinct variables,

• t is a term in which the variables from {xi | i �∈ I} ∪ {yi | i ∈ I} occur at
most once.

A TSS is in the De Simone format if and only if all of its deduction rules are.

Definition 4 (Provability). A derived deduction rule
P

c
, also written as the

tuple (P, c), is provable from a TSS T , denoted T � (P, c), when there exists
a proof structure, i.e., well-founded upwardly branching tree with formulae as
nodes and of which

• the root node is labeled by c,
• if a node is labeled by ψ and the labels of the nodes above it form the set K

then either
• ψ ∈ P ∧K = ∅ or

• K
ψ

is an instance of a deduction rule of T .

A formula ϕ is provable from T , denoted T � ϕ if and only if T � (∅, ϕ).
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Definition 5 (Bisimulation). Let T be a TSS with signature Σ. A relation
R ⊆ C(Σ)× C(Σ) is a bisimulation relation if and only if R is symmetric and
for all p0, p1, p′0 ∈ C(Σ) and l ∈ L

(p0R p1 ∧ T � p0
l−→ p′0) ⇒ ∃p′

1∈C(Σ)(T � p1
l−→ p′1 ∧ p′0R p′1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔ p1 when there
exists a bisimulation relation R such that p0Rp1.

It is easy to check that bisimilarity is indeed an equivalence. Bisimilarity can
be extended to open terms by requiring that t0 ↔ t1 when σ(t0) ↔ σ(t1) for
all closing substitutions σ : V → C(Σ). In the remainder of this paper, we
restrict our attention to the notions of equivalence on closed terms that contain
strong bisimilarity. However, all our results carry over (without any change) to
the notions on open terms that contain strong bisimilarity on open terms in the
above sense. Another notion of equivalence that we use in the remainder of this
paper is isomorphism, as defined below.

Definition 6. (Isomorphism) Two closed terms p and q are isomorphic, denoted
by p ∼i q, when there exists a bijective function h : reach(p) → reach(q) such
that h(p) = q and if h(p0) = q0 and h(p1) = q1, then p0

l−→ p1 if and only
if q0

l−→ q1, where reach(p) is the smallest set satisfying p ∈ reach(p) and if
p′ ∈ reach(p) and p′ l−→ q′, then q′ ∈ reach(p) (i.e., the set of closed terms
reachable from p).

Definition 7 (Associativity). A binary operator f ∈ Σ is associative w.r.t.
an equivalence ∼ on closed terms if and only if for each p0, p1, p2 ∈ C(Σ), it
holds that f(p0, f(p1, p2)) ∼ f(f(p0, p1), p2).

3 The ASSOC-De Simone Format

In this section, we first specify a limited number of rule types from the De Simone
format. Then, we define a number of constraints on the occurrences of rules of
such types that guarantee associativity of operators defined by such rules. The
format is illustrated by means of a number of examples from the literature. The
constraints are obtained by analyzing all proof structures that can be constructed
using this restricted set of rule types. The proof of the meta-result, which is a
detailed analysis of the proof structures described above, is given next.

3.1 Format

Definition 8 (The ASSOC-De Simone Rule Format). Consider the follow-
ing types of rules which are all in the De Simone format. Let γ : L× L → L be
an associative partial function (w.r.t. syntactic equality).
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1l. Left-conforming rules 2l. Right-conforming rules
x

l−→ x′

f(x, y) l−→ f(x′, y)

y
l−→ y′

f(x, y) l−→ f(x, y′)

3l. Left-choice rules 4l. Right-choice rules
x

l−→ x′

f(x, y) l−→ x′

y
l−→ y′

f(x, y) l−→ y′

5l. Left-choice axioms 6l. Right-choice axioms 7(l0,l1). Communicating rules

f(x, y) l−→ x f(x, y) l−→ y

x
l0−→ x′ y

l1−→ y′

f(x, y)
γ(l0,l1)−→ f(x′, y′)

A TSS is in the ASSOC-De Simone format with respect to f ∈ Σ when for each
l ∈ L, each f -defining rule is of a type given above and the set of all f -defining
rules satisfies the following constraints. (Each proposition P in the following
constraints should be read as “there exists a deduction rule of type P in the set
of f -defining rules”. To avoid repeated uses of parentheses, we assume that ∨
and ∧ take precedence over ⇒ and ⇔.)

1. 5l ⇒ 2l ∧ 3l,
2. 6l ⇒ 1l ∧ 4l,
3. 7(l,l′) ⇒ (1l ⇔ 2l′) ∧ (3l ⇔ 4l′)

∧ (2l ⇔ 2γ(l,l′)) ∧ (4l ⇔ 4γ(l,l′)) ∧ (1l′ ⇔ 1γ(l,l′)) ∧ (3l′ ⇔ 3γ(l,l′)),
4. 1l ∧ 3l ⇔ ∃l′ γ(l, l′) = l ∧ 7(l,l′) ∧ 5l′ ∧ 6l′ ,
5. 2l ∧ 4l ⇔ ∃l′ γ(l′, l) = l ∧ 7(l,l′) ∧ 5l′ ∧ 6l′ ,
6. (1l ∨ 4l) ∧ (2l ∨ 3l) ⇒ (5l ⇔ 6l).

The types of rules presented above give us a nice starting point while covering
many practical applications. These rule types cover all rules that are in the De
Simone format with four additional restrictions: Firstly, the target of the con-
clusion can contain at most one (binary) operator, secondly, the aforementioned
operator is the same as the one appearing in the source, thirdly, the labels of
the premises and the conclusion coincide (apart from the communicating rule),
and finally testing is disallowed.

The main sources of complication in our format are pairs 1l ∧ 3l and 2l ∧
4l. If no such pairs are present in the TSS under consideration and moreover,
label l generated by 5l or 6l cannot synchronize with other labels, i.e., �l,l′(5l ∨
6l) ∧ (7(l,l′) ∨ 7(l′,l)), then the last three constraints need not be checked. (The
last constraint can be dropped in the light of the above-mentioned facts and
constraints 1 and 2.) In all practical cases that we have encountered thus far,
these conditions hold. Moreover, for each operator with a rule of type 7(l0,l1), if
the presence of an f -defining rule Xl, for X ∈ {1, 2, 3, 4}, implies the presence
of Xl′ for all l′, then for such an operator, constraint 3 can be simplified to
7(l,l′) ⇒ ((1l′′ ⇔ 2l′′) ∧ (3l′′ ⇔ 4l′′)). The former assumption on Xl holds for
most associative operators in practice but fails for few, such as CSP’s parallel
composition [16, Chapter 7]. Obviously for operators without defining rules of
type 7(l0,l1), constraint 3 is trivially satisfied.
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Theorem 1. For a TSS in the ASSOC-De Simone format with respect to f ∈ Σ,
it holds that f is associative for each notion of equivalence ∼ containing strong
bisimilarity.

3.2 Examples

In this section we illustrate the ASSOC-De Simone format by means of operators
from the literature.

Example 1 (Alternative composition). In most process languages for the descrip-
tion of sequential and parallel systems a form of alternative composition or choice
is present. Here we present nondeterministic alternative composition as present
in CCS [11] and ACP [4].

x
l−→ x′

x+ y l−→ x′

y
l−→ y′

x+ y l−→ y′

In this example we find deduction rules of types 3 and 4. Therefore, the re-
quirements are met and it can be concluded that alternative composition is
associative.

Example 2 (Parallel composition). Another frequently occurring associative op-
erator is parallel composition. It appears in amongst others ACP, CCS, and
CCS. Here we discuss parallel composition with communication in the style of
ACP [4], for which the others are special cases. It is assumed that an associative
(and commutative) partial function γ on labels is given that defines the result of
communication and determines the absence or presence of the right-most rule.

x
l−→ x′

x ‖ y l−→ x′ ‖ y
y

l−→ y′

x ‖ y l−→ x ‖ y′
x

l−→ x′ y
l′−→ y′

x ‖ y γ(l,l′)−→ x′ ‖ y′

Thus, in terms of the types of deduction rules, we have deduction rules of type
1, 2, and 7. Therefore, the requirements are met and it can be concluded that
parallel composition is associative.

Example 3 (Disrupt). The disrupt is originally introduced in the language LO-
TOS [6], where it is used to model for example exception handling. Also, it is
used, for example in [2], for the description of mode switches.

x
l−→ x′

x � y
l−→ x′ � y

y
l−→ y′

x � y
l−→ y′

Here we see that only deduction rules of types 1 and 4 are present. As a conse-
quence also disrupt is associative.
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Example 4 (External choice). The external choice operator � from CSP [16] has
the following deduction rules:

x
τ−→ x′

x � y
τ−→ x′ � y

y
τ−→ y′

x � y
τ−→ x � y′

x
a−→ x′

x � y
a−→ x′

y
a−→ y′

x � y
a−→ y′

These are of the types 1, 2, 3 and 4, respectively. The constraints of the ASSOC-
De Simone format are satisfied since the rules of type 1 and 3 (and 2 and 4) are
only there for different labels. Therefore, external choice is associative.

3.3 Proof of Theorem 1

We start with the following auxiliary definition, which will be used in the re-
mainder of our proof.

Definition 9. (Syntactic Equality Modulo Associativity) Equality modulo asso-
ciativity of an operator f , denoted by ,f , is the smallest reflexive and symmetric
relation satisfying f(p0, f(p1, p2)) ,f f(f(p0, p1), p2), for each p0, p1, p2 ∈ C(Σ).

The following lemma gives us a stronger thesis from which the theorem follows.

Lemma 1. An operator f ∈ Σ is associative w.r.t. ∼ if ,f is a bisimulation
relation.

Proof. If we prove that ,f is a bisimulation relation, then the theorem follows,
because we then have that f(p0, f(p1, p2))↔ f(f(p0, p1), p2) and from ↔ ⊆∼, it
follows that f(p0, f(p1, p2)) ∼ f(f(p0, p1), p2).

To obtain that ,f is a bisimulation relation, we construct all possible proof

structures Pr with f(p0, f(p1, p2))
l−→ p′ as conclusion using only rules of the

types given in Definition 8. We then show that for each such proof, there is a
proof Pr′ with f(f(p0, p1), p2)

l−→ p′′ as a conclusion for some p′′ such that
p′ ,f p

′′ and that Pr′ uses the premises of Pr. We do the same thing the other
way around, so we may conclude that ,f is a bisimulation. By lemma 1 we then
conclude that f is associative.

To be able to show the results in a compact way, we introduce the following
acronym for proof structures. Let us denote the instantiation of rule r (r ∈
{1, . . . , 7}) with n premises with r(r1, r2, . . . , rn), where ri is the rule that is
instantiated on premise i. Furthermore, if no rule is instantiated then we denote
this with the symbol ‘−’, to indicate that no rule is used.

Now the proof for a transition t l−→ c can be denoted with an expression
r · (r1, r2, . . . , rn) when the conclusion of r matches t l−→ c and premise i of
rule r matches the conclusion of rule ri. When the rule used to derive a proof
for premises ri is not relevant, we may write r · (r1, . . . , ri−1,−, . . . , rn). For
readability and when no confusion may arise, we write r ·r1 for r(−, r1), r(r1,−)
or r · (r1), and write r for r.(−,−), r · (−), or r · ().
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Example 5. A proof for the derived deduction rule

x
l0−→ x′ z

l1−→ z′

f(x, f(y, z))
γ(l0,l1)−→ f(x′, f(y, z′))

is the following

x
l0−→ x′

z
l1−→ z′

f(y, z) l1−→ f(y, z′)

f(x, f(y, z))
γ(l0,l1)−→ f(x′, f(y, z′)) .

It consists of an instantiation of rule type 7(l0,l1) and one of type 2l1 , and may
therefore be written as 7(l0,l1) · (−, 2l1) or simply 7(l0,l1) · 2l1 .

Table 1. All proofs with f(x, f(y, z)) or f(f(x, y), z) in the source of the conclusion

Tr Tl cr cl further req.

1l 1l · 1l f(x′, f(y, z)) f(f(x′, y), z)
2l · 1l 1l · 2l f(x, f(y′, z)) f(f(x, y′), z)
2l · 2l 2l f(x, f(y, z′)) f(f(x, y), z′)
2l · 3l 3l · 2l f(x, y′) f(x, y′)
2l · 4l 7(l′,l) · 5l′ f(x, z′) f(x, z′) γ(l′, l) = l
2l · 5l 5l f(x, y) f(x, y)
2l · 6l 1l · 5l f(x, z) f(x, z)
2γ(l,l′) · 7(l,l′) 7(l,l′) · 2l f(x, f(y′, z′)) f(f(x, y′), z′)
3l 3l · 3l x′ x′

4l · 1l 1l · 4l f(y′, z) f(y′, z)
4l · 2l 7(l′,l) · 6l′ f(y, z′) f(y, z′) γ(l′, l) = l
4l · 3l 3l · 4l y′ y′

4l · 4l 4l z′ z′

4l · 5l 3l · 6l y y
4l · 6l 6l z z
4γ(l,l′) · 7(l,l′) 7(l,l′) · 4l f(y′, z′) f(y′, z′)
5l 3l · 5l x x
6l 1l · 6l f(y, z) f(y, z)
7(l,l′) · 1l′ 1γ(l,l′) · 7(l,l′) f(x′, f(y′, z)) f(f(x′, y′), z)
7(l,l′) · 2l′ 7(l,l′) · 1l f(x′, f(y, z′)) f(f(x′, y), z′)
7(l,l′) · 3l′ 3γ(l,l′) · 7(l,l′) f(x′, y′) f(x′, y′)
7(l,l′) · 4l′ 7(l,l′) · 3l f(x′, z′) f(x′, z′)
7(l,l′) · 5l′ 3l · 1l f(x′, y) f(x′, y) γ(l, l′) = l
7(l,l′) · 6l′ 1l · 3l f(x′, z) f(x′, z) γ(l, l′) = l
7(l,γ(l0,l1)) · 7(l0,l1) 7(γ(l,l0),l1) · 7(l,l0) f(x′, f(y′, z′)) f(f(x′, y′), z′) γ(l, γ(l0, l1)) =

γ(γ(l, l0), l1)

Table 1 shows all the mentioned proofs in an abbreviated way. Column Tr

lists the proof structure of proofs with the source of the conclusion f(x, f(y, z)),
Tl lists the proof structures of those with source of the conclusion f(f(x, y), z).
The corresponding targets of the conclusions are listed in columns cr and cl.
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What is not listed in the table, but what is relevant to the proof of correctness,
are the labels of the conclusion transition. These labels are always equal except
for the last row, where the labels are γ(l, γ(l0, l1)) and γ(γ(l, l0), l1), respectively.
By associativity of the function γ these labels are also equal.

We have proved f to be associative if our format guarantees that whenever
the rules needed for a proof in the Tr column are present, then the rules needed
for the corresponding proof in Tl are present too and the other way around.
This is trivially true for those rows in the table where the sets of rules used
to construct the proof are the same. In Table 2 we have eliminated these rows.
This yields the requirements, listed in the column ‘To Prove’, on the presence
of certain rules. In the column ‘Follows From’, we indicate which constraints in
Definition 8 discharge the proof obligations in the ‘To Prove’ column.

Table 2. Table 1 without the trivial cases

Tr Tl To Prove Follows From

2l · 4l 7(l′,l) · 5l (2l ∧ 4l) ⇔ (∃l′7(l′,l) ∧ 5l′) Constraint 5
2l · 5l 5l 5l ⇒ 2l Constraint 1
2l · 6l 1l · 5l (2l ∧ 6l) ⇔ (1l ∧ 5l) ⇒ Constraints 6, 2

⇐ Constraints 6, 1
2γ(l,l′) · 7(l,l′) 7(l,l′) · 2l 7(l,l′) ⇒ (2l ⇔ 2γ(l,l′)) Constraint 3
4l · 2l 7(l′,l) · 6l′ (2l ∧ 4l) ⇔ (7(l′,l) ∧ 6l′) Constraint 5
4l · 5l 3l · 6l (4l ∧ 5l) ⇔ (3l ∧ 6l) ⇐ Constraints 6, 1

⇒ Constraints 6, 2
4l · 6l 6l 6l ⇒ 4l Constraint 2
4γ(l,l′) · 7(l,l′) 7(l,l′) · 4l 7(l,l′) ⇒ (4l ⇔ 4γ(l,l′)) Constraint 3
5l 3l · 5l 5l ⇒ 3l Constraint 1
6l 1l · 6l 6l ⇒ 1l Constraint 2
7(l,l′) · 1l′ 1γ(l,l′) · 7(l,l′) 7(l,l′) ⇒ (1l′ ⇔ 1γ(l,l′)) Constraint 3
7(l,l′) · 2l′ 7(l,l′) · 1l 7(l,l′) ⇒ (1l ⇔ 2l′) Constraint 3
7(l,l′) · 3l′ 3γ(l,l′) · 7(l,l′) 7(l,l′) ⇒ (3l′ ⇔ 3γ(l,l′)) Constraint 3
7(l,l′) · 4l′ 7(l,l′) · 3l 7(l,l′) ⇒ (3l ⇔ 4l) Constraint 3
7(l,l′) · 5l′ 3l · 1l 7(l,l′) · 5l′ ⇔ 3l · 1l Constraint 4
7(l,l′) · 6l′ 1l · 3l 7(l,l′) · 6l′ ⇔ 1l · 3l Constraint 4
7(l,γ(l0,l1)) · 7(l0,l1) 7(γ(l,l0),l1) · 7(l,l0) 7(l,γ(l0,l1)) ∧ 7(l0,l1) ⇔ Associativity of γ

7(γ(l,l0),l1) ∧ 7(l,l0)

3.4 Counter-Examples

The seven basic types of rules that are allowed by the ASSOC-De Simone for-
mat are more restrictive than arbitrary rules in the De Simone format in two
respects. First, the De Simone format allows for complex terms as the target of
the conclusion. However, we only allow for either a variable or applications of
the operator being defined (i.e., appearing in the source of the conclusion) on
variables. Second, for rules of the first six types, the premise has the same label
as the conclusion. In this section, we show that dropping the first restriction
jeopardizes our associativity meta-result even with respect to trace equivalence,
which is one of the weakest notions of behavioral equivalence. The following two
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counter-examples witness that we cannot trivially relax this condition. The first
counter-example uses an unary function and the second one uses an associative
binary operator (different from the one being defined).

Example 6 (Complex target, I). Consider the terms f(a, f(a, a)) and f(f(a, a), a)
w.r.t. the following TSS

f(x, y) a−→ g(x) g(x) b−→ x

The term f(a, f(a, a)) can make an a-transition followed by a b-transition and
then it deadlocks. However, the f(f(a, a), a) term can make two consecutive
ab-traces: f(f(a, a), a) a−→ g(f(a, a)) b−→ f(a, a) a−→ g(a) b−→ b.

Example 7 (Complex target, II). Consider the following TSS with the signature
containing two constants 0 and a and binary operators f and g (which respec-
tively represent left-merge and parallel-composition operators).

(a)
a

a−→ 0
(f)

x
a−→ x′

f(x, y) a−→ g(x′, y)

(g0)
x

a−→ x′

g(x, y) a−→ g(x′, y)
(g1)

y
a−→ y′

g(x, y) a−→ g(x, y′)

Consider the terms f(a, f(0, a)) and f(f(a, 0), a). The former term can only
make an a-transition into g(0, f(0, a)) (by the proof structure f ·a); the target of
this transition, in turn, deadlocks. The latter term can only make an a-transition
into g(g(0, 0), a) (by the proof structure g0 · g0 · a); however the target of this
transition can make one further a-transition into g(g(0, 0), 0).

The restriction of the treatment to deduction rules without relabeling (excluding
the communicating rule) is not essential, but allows for a simpler presentation
of the format. It remains future work to formulate and prove a rule format for
associativity in the presence of relabeling.

In Section 4, we extend our format by introducing testing in the premises and
predicates.

4 Possible Extensions

In this section, we investigate extensions of our format in various directions.

4.1 Testing Rules

De Simone format does not allow for premises of which the targets do not appear
in the target of the conclusion. This phenomenon is called testing in the SOS
literature and, albeit disallowed by De Simone format, is of practical relevance,
e.g., in modeling predicates. Thus, in this section, we introduce the concept of
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testing to our ASSOC-De Simone format to cover these practical cases. The only
relevant type of testing which allows us to model predicates is given by the
following type of rules. As we demonstrate in Section 4.3, other sorts of testing
(predicate) rules can be coded using a combination of rules already present in
our ASSOC-De Simone format.

8(l,l′). Left-choice + test 9(l′,l). Right-choice + test

x
l−→ x′ y

l′−→ y′

f(x, y) l−→ x′

x
l′−→ x′ y

l−→ y′

f(x, y) l−→ y′

The constraints we give next for the above two types of testing rules can be
generalized to arbitrary testing rules (with relabeling and changing operators).

Definition 10 (The ASSOC-De Simone Rule Format with Testing). A
TSS is in the ASSOC-De Simone format with testing w.r.t. f , when each defining
rule is of one of the previously given types, the rules of types {1l, . . . , 6l, 7(l,l′)}
satisfy the constraints of the ASSOC-De Simone format w.r.t. f and moreover,
the following constraints hold for the rules of types 8(l,l′) and 9(l,l′):

1. 8(l,l′) ∧ Xp ⇒ 3l and 9(l′,l) ∧ Xp ⇒ 4l, for each Xp ∈ {1l′ , . . . , 6l′ , 7(l0,l1), |
γ(l0, l1) = l′ ∧ l0 �= l′ ∨ l1 �= l′},

2. (8(l,l′) ∧ 1l) ⇒ ∃l′′γ(l′′, l) = l ∧ 7(l′′,l) ∧ 5l′′ and (9(l′,l) ∧ 2l) ⇒ ∃l′′γ(l′′, l) =
l ∧ 7(l′′,l) ∧ 5l′′ ,

3. 8(l,l′) ∧ 6l ⇒ 5l and 9(l′,l) ∧ 5l ⇒ 6l,
4. 7(l0,l1) ⇒ (8(l1,l′) ⇔ 8(γ(l0,l1),l′))∧ (8(l0,l′) ⇔ 9(l′,l1))∧ (9(l′,γ(l0,l1)) ⇔ 9(l′,l0)),
5. 8(l,l′) ∧ 8(l,l′′) ⇒ 8(l′,l′′) ∨ (7(l′,l′′) ∧ 8(l,γ(l′,l′′))) and 9(l′,l) ∧ 9(l′′,l) ⇒ 9(l′,l′′) ∨

(7(l′,l′′) ∧ 9(γ(l′,l′′),l)).

Theorem 2. For a TSS in the ASSOC-De Simone format with testing w.r.t.
f ∈ Σ, it holds that f is associative for each notion of equivalence ∼ containing
strong bisimilarity.

Due to space limitations, proof of the theorem is omitted. Later in Section 4.3,
we show how rules of type 8 and 9 can be used to obtain associativity of operators
in the definition of which predicates are involved, e.g., sequential composition
operator.

4.2 Changing Operators

In the ASSOC-De Simone format, the only operator that may appear in the
target of the conclusion is the same as the operator appearing in the source.
This assumption may not hold in practice and is not essential to our meta-
result, either. Thus, in this section, we relax this assumption and allow for rules
of the following shape.

1l. Left-conf. rules 2l. Right-conf. rules 7(l0,l1). Comm. rules

x
l−→ x′

f(x, y) l−→ g(x′, y)

y
l−→ y′

f(x, y) l−→ g(x, y′)

x
l0−→ x′ y

l1−→ y′

f(x, y)
γ(l0,l1)−→ g(x′, y′)
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Note that if g is taken to be the same as f , then we recover the original types
of rules allowed in the ASSOC-De Simone format.

Definition 11 (The ASSOC-De Simone Rule Format with Changing Op-
erators). Let Σ′ ⊆ Σ. A TSS is in the ASSOC-De Simone format with changing
operators w.r.t. Σ′ when for each f ∈ Σ′ the following constraints are satisfied:

• the f -defining rules are in the ASSOC-De Simone format (with relaxed targets
of conclusions as described above),

• for each l ∈ L, the (f, l)-defining rules of type 7 all have the same operator
g ∈ Σ′ in the target of the conclusion, and there are no (f, l)-defining rules
of type 1 or 2 with f �= g, where g is the operator appearing in the target of
the conclusion.

Theorem 3. For a TSS in the ASSOC-De Simone format with changing oper-
ators w.r.t. Σ′ ∈ Σ, it holds that each f ∈ Σ′ is associative for each notion of
equivalence ∼ containing strong bisimilarity.

Proof. The proof is obtained by adapting Table 1 for those occurrences of rules of
types 1, 2 and 7 with a changing operator, say g. The targets of the conclusions,
i.e., cl and cr then stay the same terms with all occurrences of f replaced by g.

Example 8 (Communication merge). Consider the communication merge oper-
ator | from ACP [4] with the following deduction rule

x
l−→ x′ y

l′−→ y′

x | y γ(l,l′)−→ x′ ‖ y′

and additionally those of the parallel composition operator from Example 2.
Recall that the communication function γ is assumed to be associative. Note
that this rule is of type 7(l,l′). The constraints of the ASSOC-De Simone fromat
with changing operators are satisfied. Thus, as a consequence, communication
merge is associative.

4.3 Predicates

Assume that a predicate P is given by deduction rules of the following form.

Px

Pf(x,y)

Py

Pf(x,y)

Px Py

Pf(x,y)

In order to accommodate such predicates in our framework and our format, we
use a translation inspired by [17]. The following deduction rules of types 1P , 2P ,
and 7(P,P), respectively, code predicate P in the ASSOC-De Simone format.

x
P−→ x′

f(x, y) P−→ f(x′, y)

y
P−→ y′

f(x, y) P−→ f(x, y′)

x
P−→ x′ y

P−→ y′

f(x, y) P−→ f(x′, y′)
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Other possible types of rules for defining predicates can be coded similarly inside
the ASSOC-De Simone rule format. The major difficulty here is in combining
predicates with transitions. This can be done in our framework, using either
communicating rules (type 7(l,l′)) or testing rules (types 8(l,l′) or 9(l,l′)). The
following example illustrates this.

Example 9 (Sequential Composition). Consider the following deduction rules
defining the sequential composition operator.

x
l−→ x′

x · y l−→ x′ · y
x ↓ y

l−→ y′

x · y l−→ y′
x ↓ y ↓
x · y ↓

The second deduction rule uses the termination predicate as a premise. Trans-
lation of the later two deduction rules to a setting without predicates gives

x
↓−→ x′ y

l−→ y′

x · y l−→ y′

x
↓−→ x′ y

↓−→ y′

x · y γ(↓,↓)−→ x′ · y′

with γ(↓, ↓) =↓ and undefined otherwise. These rules are of type 1l, 9(↓,l), and
7(↓,↓). In Definition 10, the only constraints of which the left-hand-side of the
implications hold are 4 and 5. Thus, we only need to check that (8(↓,l′) ⇔
8(↓,l′)) ∧ (8(↓,l′) ⇔ 9(l′,↓)) ∧ (9(l′,↓) ⇔ 9(l′,↓)) and 9(↓,↓) ∨ (7(↓,↓) ∧ 9(↓,l)). The
former holds trivially since none of the propositions appearing in the three bi-
implications hold. The latter holds, as well, because we have that 7(↓,↓) ∧ 9(↓,l).
Thus, we can conclude that all constraints of the ASSOC-De Simone format with
testing are satisfied and hence sequential composition is associative.

5 Associativity for Isomorphism

Although associativity w.r.t. strong bisimilarity provides us with a strong meta-
result that is capable of dealing with all applications in practice, an even stronger
result can be obtained, if we prove associativity w.r.t. isomorphism as given in
Definition 6.

In this section, we first show that our meta-result does not trivially carry over
to the case where isomorphism is considered as the notion of equivalence. Then,
we seek extra conditions under which associativity w.r.t. isomorphism indeed
holds. The following example shows why the ASSOC-De Simone format cannot
be used as is for proving associativity w.r.t. isomorphism.

Example 10 (Associativity w.r.t. Isomorphism). Consider the following TSS.

(ai)
ai

ai−→ ai

(α, β)
x

α−→ x′ y
β−→ y′

f(x, y)
γ(α,β)−→ f(x′, y′)

(la0)
x

a0−→ x′

f(x, y) a0−→ x′
(ra0)

y
a0−→ y′

f(x, y) a0−→ y′

α β γ(α, β)
a0 a1 a′

a1 a2 a′

a0 a
′ a0

a′ a2 a0
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where rule (ai) is present only for i = 0, 1, 2 and rule (α, β) is only defined for all
pairs of α and β for which the table on the right provides an entry. Next, the LTS’s
of the terms f( f( f(a0, f(a1, a2)), a1), a2) ,f f( f(a0, f(a1, a2)), f(a1, a2))
are depicted. Note that these two LTS’s are not isomorphic since one of them com-
prises three states and the other one comprises four states.

f( f( f(a0, f(a1, a2)), a1), a2)

f(a0, f(a1, a2))

a0

a0

a0

f(a0, f(a1, a2))

a0

a0

a0a0

a0

f( f(a0, f(a1, a2)), f(a1, a2))

f(a0, f(a1, a2))

a0

a0

a0

a0

a0

a0

Theorem 4 gives sufficient conditions for associativity w.r.t. isomorphism.

Theorem 4. For a TSS in the ASSOC-De Simone format w.r.t. f ∈ Σ such
that, disregarding the labels, the set of all f -defining rules satisfies (1∨ 2∨ 7) ⇔
¬(3∨ 4∨ 5∨ 6∨ 8∨ 9) (all f -defining rules are either of types 1, 2 and 7, or are
all of the other types), then f ′ is associative w.r.t. isomorphism.

Proof. The proviso of Theorem 4 requires that the f -defining rules are either of
the types 1,2,7 or of the types 3,4,5,6,8,9. We call the deduction rules of the first
type f -preserving and those of the second type f -eliminating.

If all f -defining rules are f -preserving, then all states in the LTS of f(p0,
f(p1, p2)) are of the form f(q0, f(q1, q2)). Then, define h(f(q0, f(q1, q2)))

.=
f(f(q0, q1), q2). Then, it is straightforward to check (by consulting the correspond-
ing rows of Table 1) that h is the bijective function satisfying the constraints of
Definition 6.

If all f -defining rules are f -eliminating, then define h(f(p0, f(p1, p2)))
.=

f(f(p0, p1), p2) (for the initial state) and f(p′) = p′ for all nodes reachable from
the initial state. Note that the initial state cannot have a self-loop, because the
size of the term strictly decreases in each transition. Thus, the above definition
gives rise to a (function and a) bijection. It is also straightforward to check that
in the rows of Table 1 when the applied rules are all f -eliminating, then the
targets of the transitions are syntactically equal and thus our bijection satisfies
the constraints of Definition 6.

6 Conclusions

In the context of binary operators specified by means of deduction rules in the well-
known De Simone format, we developed a rule format guaranteeing associativity
w.r.t. any notion of behavioral equivalence containing strong bisimilarity. The for-
mat is adapted for the setting with predicates, testing rules and ‘changing opera-
tors’. Applicability of the format is shown by means of examples from literature.

We plan to extend the ASSOC-De Simone format to deal with relabeling and
negative premises [5]. Another direction for future research is a more general for-
mat in the setting of weak equivalences such as branching bisimilarity and weak



A Rule Format for Associativity 461

bisimilarity. An extension of the ASSOC-De Simone format to deal with a notion
of state/date is also anticipated (see [13]).

Acknowledgment. Insightful comments of CONCUR’08 reviewers led to a
number of improvements and are gratefully acknowledged.
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Deriving Structural Labelled Transitions for

Mobile Ambients
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Abstract. We present a new labelled transition system (lts) for the
ambient calculus on which ordinary bisimilarity coincides with contex-
tual equivalence. The key feature of this lts is that it is the fruit of
ongoing work on developing a systematic procedure for deriving ltss
in the structural style from the underlying reduction semantics and ob-
servability. Notably, even though we have derived our lts for ambients
systematically it compares very favourably with existing transition sys-
tems for the same calculus.

Introduction

Since the introduction of the archetypal process calculi, CCS [20], CSP [14] and
ACP [2], and the π-calculus [9, 21] some years ago there has been a prolifera-
tion of calculus extensions and variants which address assorted computational
features. One concern that is often voiced regarding these extended calculi is
that their semantics, particularly their labelled transition semantics, are often
ad hoc and heavily locally optimised. This state of affairs is unsatisfactory and
initial attempts to address the issue were made in [17, 26] where it was proposed
that labelled transitions should be derived (rather than defined) by means of
considering underlying reduction rules for the language and taking labels to
be suitably minimal contexts which induce reductions. The rationale for this is
that for any new computational feature, its reduction rules are generally eas-
ier to define uncontentiously and can be taken to be definitional. Consequently
the derived labelled transitions would be given without further design. This ap-
proach is appealing but Sewell’s early results [26] were limited in their scope.
Leifer and Milner generalised the approach with some degree of success [17]. A
general definition of contexts-as-labels was provided using the universal prop-
erty of (relative) pushouts to obtain a suitable notion of minimality. Even so,
this work still has its problems, the chief of which is that the derived labelled
transition systems are not presented in an inductive manner and are therefore
often difficult to describe and reason with.

It is easy to lose sight of the fact that the original intention of structural oper-
ational semantics [23] and labelled transition systems [20] was to provide an in-
ductive definition of the reduction relation for a language. Their subsequent use
as points of comparison of interaction in bisimulation equivalences has allowed fo-
cus to drift away from inductively defined labelled transition systems and on to
� Research partially supported by EPSRC grant EP/D066565/1.
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labels as the contextually observable parts of interaction.Our general researchgoal
is to provide a method by which structurally defined labelled transition systems
can be derived from an underlying reduction semantics. For this derived transition
system, bisimulation equivalence must also correspond to a contextually defined
equivalence. This task is difficult and we have begun by evaluating our ideas for
simple process calculi. The results of such an experiment for the π-calculus appear
in [24].

In this paper we apply our method to the ambient calculus of Cardelli and
Gordon [7]. The ambient calculus has enjoyed success as a foundational model of
distributed processes. It essentially comprises hierarchically arranged processes
which can migrate, as well as dynamically modify the structure of their location.
Our interest is not in the ambient calculus as a model of distributed comput-
ing per se but simply as a small calculus with an interesting set of reduction
rules for which it has thus far proven difficult to provide a definitive labelled
transition system and bisimulation equivalence [5, 18]. Our purpose is not nec-
essarily to improve or undermine the existing labelled transition systems but to
systematically derive one.

The approach we take is to consider the underlying ground rewrite rules of
the language as structural rewrites supplied with suitable ground parameters.
For any term which partially matches the left-hand-side (lhs) of a rewrite, we
identify the parameters supplied by the term to the match. A label represents
the remaining structure of the lhs of the rewrite rule along with the missing
parameters which will be supplied by an interacting context. This separation of
the structure of the rewrite and the parameters to the rule allows us to build our
labelled transition systems in three steps: we define the process-view transitions,
whose main purpose is to provide an inductively defined reduction relation, then
the context-view transitions, which allows for a context to supply parameters to
an interaction, and finally rules to combine them. Technically, we make use of
the simply typed λ-calculus as a meta-language for abstracting parameters.

Structure of the paper. We present the syntax and semantics of the ambient calcu-
lus, along with a suitable contextually defined equivalence, in the next section. We
then give an account of our method of deriving labelled transitions and show its
instantiation for the ambient calculus in Section 2. Section 3 lists the properties
of the lts: bisimulation equivalence is proved to be sound for reduction barbed
congruence and, after the addition of Honda-Tokoro [15, 25] style rules to account
for unobservability of certain actions, complete. We include a comparison with re-
lated work in Section 4 and close with some concluding remarks regarding future
work. Due to space constraints, detailed proofs have been omitted.

1 Ambients: Syntax, Metasyntax and Inductive
Semantics

The grammars for types and terms, together with the type rules are given in
Fig. 1. Note that the λ-calculus operators are part of the meta-language. They
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σ ::= N | Pr | σ→σ

M ::= X | m | 0 | M‖M | M[ M ] | νmM | out M.M | in M.M | open M.M | [λX:σ. M | M(M)]

(:Nm)

Γ � m : N

Γ (X)=σ

(:Var)

Γ � X : σ

(:0)

Γ � 0 : Pr

Γ � M : Pr Γ � N : Pr

(:‖)
Γ � M‖N : Pr

Γ � k : N Γ � M : Pr

(:Amb)

Γ � k[ M ] : Pr

Γ � k : N Γ � M : Pr

(:ν)

Γ � νkM : Pr

Γ � k : N Γ � M : Pr

(:OuPr)

Γ � out k.M : Pr

Γ � k : N Γ � M : Pr

(:InPr)

Γ � in k.M : Pr

Γ � k : N Γ � M : Pr

(:OpPr)

Γ � open k.M : Pr

Γ,X:σ � M : σ′

(:λ)

Γ � λX:σ. M : σ→σ′

Γ � M : σ→σ′ Γ � N : σ

(:App)

Γ � M(N) : σ′

Fig. 1. Types, syntax and type rules

(P‖Q)‖R ≡ P‖(Q‖R) P‖Q ≡ Q‖P P‖0 ≡ P νmP ≡ νnP [n/m] νmνnP ≡ νnνmP

νm0 ≡ 0 νm(P‖Q) ≡ P‖νmQ (m/∈fr(P )) νm(n[ P ]) ≡ n[ νmP ] (m�=n)

(λX:σ. M)(N) ≡ M[N/X] λX:σ. M ≡ λY :σ. M[Y/X] (Y /∈fr(M))

Fig. 2. Structural congruence

m[ in n.P‖Q ]‖n[ R ] → n[ m[ P‖Q ]‖R ] n[ m[ out n.P‖Q ]‖R ] → m[ P‖Q ]‖n[ R ]

open n.P‖n[ Q ] → P‖Q

P → P ′

P‖Q → P ′‖Q

P → P ′

νnP → νnP ′

P → P ′

n[ P ] → n[ P ′ ]

Fig. 3. Reduction semantics, inductively

M ::= ... | −σ | (M,...,M) (:Hole)

Γ � −σ : σ

� V1 : σ1 ... � Vn : σn (n∈N)

(:Tup)

� (V1,...,Vn) : [σ1...σn]

.

Fig. 4. Interface types

Skin
n

def
= ( linn

def
= 1N[ in n.2Pr‖3Pr ]‖n[ 4Pr ], rin

n
def
= n[ 1N[ 2Pr‖3Pr ]‖4Pr ] )

Skout
n

def
= ( loutn

def
= n[ 1N[ out n.2Pr‖3Pr ]‖4Pr ], rout

n
def
= 1N[ 2Pr‖3Pr ]‖n[ 4Pr ] )

Skopen
n

def
= ( lopenn

def
= open n.1Pr‖n[ 2Pr ], ropen

n
def
= 1Pr‖2Pr )

Fig. 5. Skeletons linn ,rin
n :[N,Pr3]→[Pr], loutn ,rout

n :[N,Pr3]→[Pr] and lopenn ,ropen
n :[Pr2]→[Pr]
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are used here solely to define the labelled transition system and should not
be considered as a language extension. We assume distinct countable supplies
of names (ranged over by n,m) and variables (ranged over by X,Y, x, y). By
convention, we will use x, y for variables of type N, X,Y for variables of type
Pr, k, l for terms of type N and P , Q, R for closed terms of type Pr. M , N
will be used for arbitrary terms of type Pr. A type context Γ is a finite map
from variable names to types. We consider only typeable terms. The axioms of
structural congruence are given in Fig. 2. It is straightforward to show that any
term N structurally congruent to M is typeable iff M is and that they have the
same type.

Our transition systems are presented in the structural style. We make one
non-standard assumption: we always assume the implicit presence of the rule

P ′≡P P
α−→Q Q≡Q′

(StrCng)

P ′ α−→Q′
.

The reduction semantics is given in Fig. 3. It is easy to show that subject reduc-
tion holds.

Before we proceed it is worth pointing out that our language does not contain
any replication or recursion operator and is thus finite. This however is not a
significant restriction though as the crafting of a labelled transition system relies
on a study of the immediate interactions of a process with a context. We could
easily, but pointlessly, include a replication operator with negligible impact on
the lts rules. Given an lts L the only labelled equivalence we shall consider is
standard strong bisimilarity ∼L, which is defined as the largest bisimulation on
L. Because we wanted to focus on the systematic derivation procedure of ltss,
we have not considered weak equivalences in this paper; our feeling is that the
study of weak equivalences examines largely orthogonal issues. We will come
back to this issue in the section on future work.

To explain our derivation procedure we will need a general notion of context.
Contexts are defined in two stages.

Definition 1 (Precontext). For each type σ, we add σ-annotated holes −σ

and n-tuples (for any n ∈ N) to the syntax, together with two additional type
rules, given in Fig. 4, where [−→σ ] is called an interface type. A precontext is a
typeable term of the form (V1,...,Vn). Note that each Vi is a closed term in that it
does not contain free variables; holes and variables are separate syntactic entities.

Definition 2 (Context). Suppose that a precontext (
−→
V ):[−→σ1] contains m holes.

A 1-1 enumeration of the holes with numbers from 1 to m uniquely determines
a word −→σ2 over types, where σ2,i is the type of the ith numbered hole. Syntac-
tically replacing each hole with its number yields a context of type [−→σ2] → [−→σ1].
Ordinary terms of type Pr will be identified with contexts of type [] → [Pr]. Given
contexts f : [−→σ1] → [−→σ2] and g : [−→σ2] → [−→σ3], there is a context g ◦ f : [−→σ1] → [−→σ3]

which is obtained by substitution of the ith component of f for the ith hole of
g. This operation may be capturing. Given f : [−→σ1] → [−→σ2] and g : [−→σ3] → [−→σ4] let
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f⊗g : [−→σ1
−→σ3] → [−→σ2

−→σ4] be the context which puts f and g “side-by-side”, where the
numbering of all the holes in g are incremented by the length of −→σ1. Moreover:

– for any word −→σ =σ1...σk, the identity context id[−→σ ] : [−→σ ] → [−→σ ] is (1σ1 ,...,kσk
);

– if, given −→σ and −→
σ′, there exists a permutation ρ : k → k such that ∀1 ≤

i ≤ k. σρi = σ′
i, it induces a permutation context ρ : [−→σ1] → [−→σ2] of the form

(ρ1σ′
1
,...,ρkσ′

k
);

– a language context is a context which does not contain instances of the
metalanguage; those of type [Pr] → [Pr] will be denoted by C;

For language contexts we will write C[M ] for C ◦M .

Definition 3 (Barbs). We say that a term P barbs on an ambient m, written
P ↓m, if there is an instance of an ambient m at the “top level”. More formally,
P ≡ ν−→n (m[Q ] ‖ R) for some −→n ,Q,R such that m does not appear in −→n .

Definition 4 (Reduction barb congruence). Reduction barb congruence
(,) is the largest symmetric relation R such that if P R Q then:

(i) If P → P ′ then there exists Q → Q′ such that P ′ R Q′;
(ii) if P ↓m then Q↓m;
(iii) for all language contexts C we have that C[P ] R C[Q].

2 Derivation of a Structural LTS

The chief novelty of our paper is the systematic presentation of a novel lts for
the ambient calculus. Therefore, before we present the lts we give an account
of our derivation procedure. First, we consider the reduction rules of Fig. 3 as
parameterised rules. Fig. 5 contains a rendering of these parameterised reduction
rules, referred to as skeletons. Essentially, a skeleton is a pair of contexts (lαn , r

α
n)

which describe the structural changes in passing from lαn to rα
n .

Our lts is organised into three components: the process-view, in Fig. 6, the
context-view, in Fig. 7, and the combined system in Fig. 8. The context-view is
the simplest of these and consists of a single “applicative” rule. In the remainder
of this section we describe how to analyse the skeletons in order to obtain the
process-view rules and how this combines with the context-view.

2.1 Derivation Procedure: Axioms

Treating the skeletons of Fig. 5 as syntax trees, we say that a match for Skα
n is

a subtree with root of type Pr of the lhs lαn . More formally, if lαn : [−→σ ] → [Pr] is
the lhs of a skeleton, a match is a term μα

n : [−→σ1] → [Pr] such that there exists −→σ2

so that −→σ1
−→σ2 is a permutation of −→σ , and there exists a context χ : [Pr,−→σ2] → [Pr]

satisfying (†) where ρ : [−→σ1
−→σ2] → [−→σ ] is the permutation context. A match is said

to be active if there does not exist a context χ′ : [Pr,−→σ2] → [Pr] satisfying (‡).

χ ◦ (μα
n ⊗ id[−→σ2]) = lαn ◦ ρ (†) χ′ ◦ (μα

n ⊗ id[−→σ2]) = rα
n ◦ ρ (‡)
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Intuitively, an active match is a part of the lhs of the skeleton that is modified
as a result of the reduction. Clearly any match which has an active match as a
subtree is itself active. Of particular interest are those active matches which are
locally minimal with respect to the subtree relation.

Observation 5. The minimal active matches for the skeletons in Fig. 5 are:

– for Sk in
n : inn.1Pr and n[ 1Pr ];

– for Skout
n : outn.1Pr;

– for Skopen
n : openn.1Pr and n[ 1Pr ].

The axioms of our process-view lts are determined by the minimal active
matches. Indeed, their lhss are the instantiated minimal active matches: given a
minimal active match μα

n : [−→σ ] → [Pr] they are the terms μα
n ◦ ι where ι : [] → [−→σ ].

The result is then the rhs of the skeleton instantiated with the parameters ι of
the minimal match together with that remaining parameters ι′ required by χ:

μα
n ◦ ι

χ◦(1Pr⊗ι′)−−−−−−→ rα
n ◦ ρ ◦ (ι⊗ ι′). (1)

This is clearly an rpo-like observation: the context provides χ◦(1Pr⊗ι′) and enables
a reduction χ◦(1Pr⊗ι′)◦μα

n◦ι = χ◦(μα
n⊗id)◦(ι⊗ι′)= lαn◦ρ◦(ι⊗ι′)→ rα

n◦ρ◦(ι⊗ι′).
Note that each χ is uniquely determined by the particular minimal active

match μn
α. For this reason in the label of the transition we will use a textual

abbreviation αin↓
−→
M where αin represents the ith minimal active match of Skα

i , and
−→
M the list of the remaining parameters (cf ι′ in (1)). Following this procedure,
we obtain the following labelled transitions:

in n.P
in1 n↓QkR−−−−−−→n[ k[ P‖Q ]‖R ] n[ P ]

in2 n↓QRk−−−−−−→n[ k[ Q‖R ]‖P ] (2)

out n.P
out1 n↓QkR−−−−−−−→ k[ P‖Q ]‖n[ R ] (3)

open n.P
open1 n↓Q−−−−−−→P‖Q n[ P ]

open2 n↓Q−−−−−−→Q‖P (4)

The main obstacle in giving a structural derivation of an lts with labels of the
kind given above is that in the results of the above transitions, the distinction be-
tween the parts provided by the process and the parts provided by the context is
lost. Our solution is to delay the instantiation of the context components. Tech-
nically this is done with the use of the meta-syntax – the context contributions
are initially replaced with lambda abstracted variables.

The sos rules are thus naturally divided into three parts - rules for the process-
view lts C for deriving the part of the label to the left of the ↓ symbol, rules
for the context-view lts A for deriving the remainder of the label, and rules for
the combined lts CA which juxtapose the two contributions to form “complete”
labelled transitions. Following this nomenclature, the process-view contribution
to the transitions in (2) is

(In1)

in n.P
in1 n−−−→λXxY. n[ x[ P‖X ]‖Y ]

(In2)

n[ P ]
in2 n−−−→ λXYx. n[ x[ X‖Y ]‖P ]

(5)
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while the context parts are given by rule (Inst) of Fig. 7. The rule which juxtaposes
them is (Cλ) of Fig. 8. We take (In1), (In2) (cf. 5), (Ou1) (obtained from (3)), (Op1),
(Op2) (obtained from (4)) as provisional axioms for the process-view lts.

2.2 Derivation Procedure: Structure

Once the axioms are determined, we can attempt to provide the structural rules.
There are three kinds:

(i) a substructural modification: the added structure takes part in the reduc-
tion but the match, and therefore the label, remain unchanged. The struc-
ture is added to the appropriate parameter in the rhs. A particular kind of
substructural transition used here concerns the situation where the current
match is in parallel with a hole of type Pr in the skeleton; e.g. the minimal
active match of Skout

n . Using the fact that structural congruence ensures
that (‖, 0) is a commutative monoid, introducing a parallel component does
not mean that we must expand the match, instead we add the component
to the parameter representing the aforementioned hole;

(ii) a superstructural modification: the match, and therefore the label, remain
unchanged and the added structure does not take part in the reduction; it
is added to the result at top level. This situation is common and therefore
we will make use of the following abbreviations which deal with lambda
abstractions T=λ

−→
X .P :

T‖Q
def
= λ

−→
X .(T (

−→
X )‖Q) and νmT

def
= λ

−→
X .νmT (

−→
X );

(iii) an observational modification: the extra structure forces the enlargement
of the match as a subtree of its skeleton – here the label itself has to
be changed. Once enough structure is added to cover the entire lhs of
a skeleton, a τ -labelled transition should be derived. This can occur in
two ways, depending on the number of the minimal active matches in the
skeleton. These two cases are analysed in the two paragraphs below for the
setting of the ambient calculus.

In Skout
n which has only one minimal active match, the procedure is relatively

straightforward. The axiom (Ou) in Fig. 6 is just (Ou1) as described previously,
with the numeral omitted. The rule (‖Ou) is a substructural modification as de-
scribed above. The rule (νOu) is a superstructural modification since the ν binder
has to first migrate outside, using structural congruence, before the reduction can
take place. The side condition enables this emigration. Note that because sub-
stitution that is part of β-reduction is capture avoiding, the binder in the result
will not bind any names when instantiated by combining with the context-view;
the correct behaviour. The rule (OuAmb) is an observational modification, here
the structure (the ambient n) forces us to expand the match within the skeleton,
meaning that we can now instantiate the first two parameters. The rule (‖OuAmb)

is substructural while (νOuAmb) is superstructural. Finally, (OuTau) is an obser-
vational modification which completes the skeleton, meaning that we derive a
τ -labelled transition.
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(In)

in n.P
in n−−→λXxY. n[ x[ P‖X ]‖Y ]

P
in n−−→ T

(‖In)

P‖Q
in n−−→ λX.T (Q‖X)

P
in n−−→ T m�=n

(νIn)

νmP
in n−−→ νmT

P
in n−−→ T

(InAmb)

m[ P ]
[in n]−−−→T (0)(m)

P
[in n]−−−→U

(‖InAmb)

P‖Q
[in n]−−−→U‖Q

P
[in n]−−−→U m�=n

(νInAmb)

νmP
[in n]−−−→ νmU

(coIn)

n[ P ]
[in n]−−−→λZ.Z(P )

P
[in n]−−−→A

(‖coIn)

P‖Q
[in n]−−−→A‖Q

P
[in n]−−−→A m�=n

(νcoIn)

νmP
[in n]−−−→ νmA

(Ou)

out n.P
out n−−−→λXxY. x[ P‖X ]‖n[Y ]

P
out n−−−→T

(‖Ou)

P‖Q
out n−−−→λX.T (Q‖X)

P
out n−−−→T m�=n

(νOu)

νmP
out n−−−→ νmT

P
out n−−−→ T

(OuAmb)

m[ P ]
[out n]−−−−→T (0)(m)

P
[out n]−−−−→U

(‖OuAmb)

P‖Q
[out n]−−−−→λY.U(Q‖Y)

P
[out n]−−−−→U m�=n

(νOuAmb)

νmP
[out n]−−−−→ νmU

(Op)

open n.P
open n−−−→λX. P‖X

P
open n−−−→U

(‖Op)

P‖Q
open n−−−→U‖Q

P
open n−−−→U m�=n

(νOp)

νmP
open n−−−→ νmU

(coOp)

n[ P ]
open n−−−→λZ.Z(P )

P
open n−−−→A

(‖coOp)

P‖Q
open n−−−→A‖Q

P
open n−−−→A m�=n

(νcoOp)

νmP
open n−−−→ νmA

P
[in n]−−−→U Q

[in n]−−−→A

(InTau)

P‖Q
τ−→A(U)

P
[out n]−−−−→U

(OuTau)

n[ P ]
τ−→U(0)

P
open n−−−→U Q

open n−−−→A

(OpTau)

P‖Q
τ−→A(U)

P
τ−→P ′

(‖Tau)

P‖Q
τ−→P ′‖Q

P
τ−→P ′

(νTau)

νmP
τ−→ νmP ′

P
τ−→P ′

(TauAmb)

n[ P ]
τ−→n[ P ′ ]

Fig. 6. Process-view fragment (C). By convention T : Pr → N → Pr → Pr, U : Pr → Pr,
A : (Pr → Pr) → Pr.

−→
M:−→σ

(Inst)

λ
−→
X :−→σ .P

−→
M↓−−→ (λ

−→
X :−→σ .P )(

−→
M)

Fig. 7. Context-view fragment (A)
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P
α−→C A A

M↓−−→A P ′

(Cλ)

P
α↓M−−−→P ′

P
[in n]−−−→C A A(λXYZx. n[ x[ Y‖Z ]‖X ])

QRk↓−−−−→A P ′

(coInλ)

P
[in n]↓QRk−−−−−−→P ′

P
τ−→C P ′

(CTau)

P
τ−→P ′

P
open n−−−→C A A(λXY. Y‖X)

Q↓−−→A P ′

(coOpλ)

P
open n↓Q−−−−−→P ′

Fig. 8. Combined system of complete actions (CA)

Skeletons with two (or more) minimal active matches lead to a more compli-
cated situation. Indeed, consider the two minimal active matches of Sk in

n and
the two corresponding provisional axioms given in (5). Starting with either one,
structure can be added extending the match. Indeed, consider (In) of Fig. 6 which
is obtained from (In1) of (5) by omitting the numeral. The rule (‖In) is substruc-
tural and (νIn) superstructural. The rule (InAmb) is observational and extends
the minimal match with the surrounding ambient. No further extension of the
match is possible without including the contribution of the second minimal ac-
tive match. The structural approach requires the combination of observations of
the two matches in order to cover the entire lhs of the skeleton and derive a τ .
However, in our two provisional axioms (In1), (In2) we have included the rhs of the
skeleton in result of the transitions, and it is not obvious how to “merge” the
two, collecting the appropriate parameters. Our solution is to use co-actions,
borrowing continuation-passing style. Indeed, we discard (In2) and instead use
the axiom (coIn) of Fig. 6. The idea is that instead of using the actual skeleton
in the result, we use an abstract skeleton and apply that to the parameter (of
the minimal active match). Merging actions and co-actions is now easy as the
abstract skeleton can be replaced by the the actual skeleton provided by the
action. Superstructural rules (‖coOp) and (νcoOp) are straightforward and we are
able to use (InTau) to collect the parameters to the rhs of the skeleton using a
simple application. A similar approach is used to deal with the open reduction.

The use of co-actions gives one final complication. Because the result of a
co-action transition does not have the shape which would result from using the
rhs of the skeleton, we cannot simply use the the combination of (Inst) of Fig. 7
and (Cλ) of Fig. 8. Instead, we use the rules (coInλ) and (coOpλ) which insist that
the context provided by the environment conforms to the skeleton.

It is worth clarifying as to what extent the procedure, as described above,
is systematic. As we have explained, we have chosen to include the rhs in the
right hand side of (In1), resulting in (In). Differently, and in seemingly ad-hoc
fashion, we have not done this for (In2), using instead a co-action (CoIn). A more
systematic presentation would consist in using the co-action style for all the
labels. Following this approach, the actual skeleton would never actually be
instantiated in the rhs of the process-view transitions. The main price for this
is that the rule (Inst) needs to be replaced with specific rules for each co-action,
in the spirit of (CoInλ) and (CoOpλ) of Fig. 8. Such an “all-co-action” sos rule set
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would derive the same lts as the rule set presented in this paper. We believe
that this approach could be mechanised. We have chosen to present the rules
as in Fig. 6 because we believe that they are easier to understand, and more
importantly, they correspond more closely to rules in previously published sos

rule sets for the ambient calculus (cf. Section 4).
The following lemma provides a sanity-check for our lts which ensures that

the transitions obtained from our structural rules are justified by a reduction in
a context; the point with which we started our discussion in (1) on page 467.

Lemma 6. If P
α↓−→M−−−→ CAP ′, then there exists a context χα such that χα◦(1Pr,

−→
M)◦

P →P ′. We list the corresponding χαs below:

χin n
def
= 3N[ 1Pr‖2Pr ]‖n[ 4Pr ] χ[in n],χopen n

def
= 1Pr‖n[ 2Pr ] χ[in n]

def
= 4N[ in n.2Pr‖3Pr ]‖1Pr

χopen n
def
= open n.2Pr‖1Pr χout n

def
= n[ 3N[ 1Pr‖2Pr ]‖4Pr ] χ[out n]

def
= n[ 1Pr‖2Pr ] χτ

def
= 1Pr

3 Soundness and Completeness

Having presented our new labelled transition system we must demonstrate that
it is fit for purpose. Specifically, the τ labelled transitions must characterise
the reductions. Moreover, we also require that bisimulation equivalence is sound
for reduction barb congruence. The fact that τ−→ ⊆→ is implied already by
the conclusion of Lemma 6. The converse follows by a straightforward inductive
analysis of the structural forms of processes which may generate τ transitions.

Proposition 7 (Tau and Reduction). P τ−→P ′ iff P → P ′. "#

The chief property that needs to be established for the latter requirement (the
soundness of ∼CA with respect to ,) is congruence of bisimilarity with respect
to language contexts. As a consequence of the fact that the lts follows from
the construction outlined in §2, this is straightforward to establish. The case of
observational modifications which combine two separate derivations is the most
interesting; here this concerns the rules (InTau) and (OpTau). Because the combi-
nation occurs via the ‖ operator, these rules are considered within a sub-case
of the proof that bisimilarity is a congruence with respect to 1Pr ‖ P contexts.
The argument is roughly the following: the target of the derived τ -labelled tran-
sition, an application of the targets of two process-view transitions, can also be
obtained by completing one of the transitions with the result of the other. The
inductive hypothesis can then used in order to match this complete transition,
resulting in a bisimilar state, which can then be again deconstructed.

Proposition 8 (Congruence). If P ∼CA Q then C[P ] ∼CA C[Q] for all lan-
guage contexts C. "#

Theorem 9 (Soundness). P ∼CA Q implies P , Q. "#
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P
τ−→P ′

(a[In])

P
[in n]↓R−−−−→P ′‖n[ R ]

P
τ−→P ′

(a[Out])

P
[out n]↓R−−−−−→n[ P ′‖R ]

Fig. 9. Honda-Tokoro rules HT for unobservable actions

With soundness of bisimilarity established, it is a natural question as to whether
the converse property of completeness holds. This is complicated by the issue of
observability of actions. As encapsulated by the statement of Lemma 6, the labels
of our lts have corresponding underlying context-triggered reductions. Complete-
ness relies on the converse relationship; a context-triggered reduction (or series of
reductions and barb-observations) implying the existence of a transition.

Completeness needs to be checked manually; our systematic derivation tech-
nique as outlined in §2 does not guarantee that it holds. To prove it, one needs
to show that each kind of label has a context which characterises it. This is a
stronger requirement then that of Lemma 6 which exhibits a relationship be-
tween contexts and labels in one direction only: every labelled transition has
a corresponding context in which there is a reduction to the right hand side.
However, a reduction in this context does not necessarily imply the existence
of the labelled transition. In order to do this, contexts have to contain more
information.

It is unclear whether the lts is complete with respect to reduction barb congru-
ence in our finite language. Simply adding replication to the language does result
in a language for which the lts is not complete. Indeed, in the full ambient calcu-
lus, an ambient’s ability to migrate is unobservable. This fact has been observed in
[18] and a suitable adaptation of the definition of bisimulation is given to account
for this. For aesthetic reasons we prefer to use ordinary bisimulation and thus use,
a suitable modification of the Honda-Tokoro [15] style rules for strong equivalences
instead. We have began a more general investigation of such rules in [25]. Inter-
estingly, here they are needed for [inn] and [outn] transitions only (cf. Fig. 9) and
account for the following situation: the context provides the appropriate χ (cf.
Lemma 6) but the process does not make use of it, thus χ is retained in the result.
The rules are added to the combining rules of Fig. 8. Bisimilarity ∼(C+HT )A on
the obtained lts remains sound for contextual equivalence.

As an example of the necessity of the HT rules for completeness, consider:

T1
def= !n[ 0 ] ‖ νk( k[ inn.0 ] ) and T2

def= !n[ 0 ] ‖ τ

where τ def= νm(openm.0 ‖ m[ 0 ]). Processes T1 and T2 are reduction barb con-
gruent. It is not difficult to check this directly using the fact that νk k[ 0 ] ∼CA 0.

Nevertheless T1 	CA T2 because the T1 can do a [inn] ↓R transition which
cannot be matched by T2. Instead, it does hold that T1 ∼(C+HT )A T2:

T1
[in n]↓R−−−−→!n[ 0 ] ‖ νk(n[ k[ 0 ] ‖ R ] ) is matched by T2

[in n]↓R−−−−→!n[ 0 ] ‖ n[R ].
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Concerning the remaining possible labels not considered by HT -rules, we
need to show that each complete labelled transition can be characterised by a
predicate which is stable under reduction barbed congruence. For example, to
characterise the transition labelled with openn↓R we use the context ξ def= 1Pr ‖
n[ i[ 0 ] ‖ open i.R ] (with i fresh) and then show that P

open n↓R−−−−−→P ′ iff there exists
P ′′ such that ξ[P ] → P ′′ with P ′′ ↓i and P ′′ → P ′ with P ′ � ↓i.

Theorem 10 (Completeness). P , Q implies P ∼(C+HT )A Q. "#

4 Conclusions, Related and Future Work

The introduction of the ambient calculus in [7] has spawned an enormous amount
of research on the topic regarding variants of the calculus (e.g. [3, 10, 11]), type
systems (e.g. [4, 6, 19]) and implementation details (e.g. [13, 22]). However, there
has been relatively little work on labelled characterisations. An early attempt by
Cardelli and Gordon [5] was abandoned in favour of a simpler approach in [8].
Interestingly, the structural rules and use of abstractions in the meta-language
was already present in [5] where the authors seemed to encounter difficulty lay
in relating their structural labels to contexts. This was particularly true for
co-actions. The approach that we take in this paper resolves this issue.

Subsequent to [5, 8], Merro and Zappa-Nardelli [18] designed an lts and
established a full abstraction result using a form of context bisimilarity. Their
paper is ostensibly the approach most closely related to ours in terms of results
but the emphasis in our research is on a systematic derivation of the lts model
to achieve a similar result. We were fortunate in having had the model in [18] to
use as a comparison and sanity check for our own semantics.

We hope that the benefits of our approach will become clear once one has
compared the two lts models: Merro and Zappa-Nardelli produced an lts which
built on the initial attempts by Cardelli and Gordon [5] (which already contained
a reasonable account of the structural transitions towards an inductive definition
of the τ -reduction relation) by analysing the contextual interactions provided by
an arbitrary environment. Doing this necessitated a restriction to system level
ambients – that is, ambients which were all boxed at top level – and a use
of a piece of meta-syntax ◦ to allow arbitrary environmental processes to be
re-inserted into terms. The latter of these requirements resurfaces in our work
through the use of the λ-calculus meta-language but the former, the restriction
to systems, is avoided by providing context-oriented structural transitions in the
lts C. The effect of this is that all of our (completed) labelled transitions are
suitable for use in the definition of bisimulation as opposed to only the class
of env-actions in [18]. Notice, for example, that our base rules (In) and (Ou) of
Fig. 6 retain the structure of the interacting context and term. This structure
is carried in the rules (InAmb) and (OuAmb) whereas Merro and Zappa-Nardelli’s
related rules, (Enter Shh) and (Exit Shh), in [18] serve primarily to recover this
necessary structure. Our treatment of co-actions, in rules (coInλ) and (coOpenλ) of
Fig. 8, by completing them with skeletal structure as well as missing parameters,
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is mirrored in the rules (Co-Enter) and (Open) of [18] although the restriction to
systems complicates the latter of those. The remaining difference lies in the use
of the name enclosing the migrating ambient in the (Enter) and (Exit) rules. They
are included as part of the label in [18] and therefore reflect a slightly finer
analysis of observability in ambients. However, rules (Enter Shh) and (Exit Shh)

are then necessary because this name is not always observable. Our equivalent
rules (InAmb) and (OutAmb) do not record the name of the enclosing ambient in
the label because this information is not determined by the context and the
visibility of this name to be discovered by context parameter processes instead.
Unlike [18] we deal with the unobservability of [inn] and [outn] actions using
Honda Tokoro style [15] rules in Fig. 9 rather than adopting a non-standard
definition of bisimulation in the style of [1]. In conclusion, our derived lts is
pleasingly similar to, and, we believe, conceptually cleaner than its counterpart
in [18] which represents the state of the art for this language to date.

In addition to the work mentioned above there have been a number of lts

models for variants of the ambient calculus [3, 10, 11, 12]. These models all use
a variant of the language for which the contextual observations of co-actions
are much clearer than in the pure ambient model and therefore the co-action
labelled transitions are more easily defined. It will be interesting to see how our
methodology fares when applied to these variants.

Finally, it is interesting to note that Sewell has already considered applying
his contexts-as-labels approach [26] to the ambient calculus. We note that this
work already suggests using (non-inductive versions of) our rules (In), (Out), and
(Open). Similarly, Jensen and Milner [16] use the context-as-labels approach to
provide a derived lts for the ambient calculus via an encoding to bigraphs. This
lts is also non-inductive and the lack of a detailed analysis of the resulting
RPOs in [16] makes it difficult for us to find any striking similarities with our
sos rule-set and lts.

In this paper and in [24] we have considered strong bisimilarity. It is interest-
ing to observe that because Proposition 7 holds and because our bisimulation
equivalence is defined over complete actions CA, in principle it should be possi-
ble to smoothly lift our soundness and completeness results to weak bisimilarity.
Notably, for weak transitions

P
τ−→CA · · · α−→CA · · · τ−→CA P

′

we will only ever need to decompose the strong α transition in to its Process
and Context views. In particular, to characterise the weak equivalences, it is
not the case that we will need to consider weak transitions from the C and
A transitions systems separately. The difficulties which may arise in the weak
case lie in providing contexts which witness weak transitions for the proof of
completeness. We do not anticipate problems here but we have not yet checked
the details of this.

The separation of process- and context-views in our approach means that our
bisimulation equivalences are context bisimulations. This is due to the comple-
tion of labels by considering arbitrary context processes. As shown in [24], it is
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sometimes possible to exploit this separation in order to refine the context-view
so that only certain archetypal context processes need be supplied. It would be
interesting to attempt to design an analogous refinement for ambients and we
believe that our lts serves as a good basis from which to do this.

Having experimented on the π-calculus [24] and the ambient calculus, we now
intend to develop our method for deriving transition systems in a general setting
and establish soundness and completeness results for a wide range of calculi.

Acknowledgment. We would like to thank the anonymous referees for their useful
comments which have helped to improve the presentation of the paper.
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Abstract. We consider nondeterministic and probabilistic termination
problems in a process algebra that is equivalent to basic chemistry. We
show that the existence of a terminating computation is decidable, but
that termination with any probability strictly greater than zero is un-
decidable. Moreover, we show that the fairness intrinsic in stochastic
computations implies that termination of all computation paths is unde-
cidable, while it is decidable in a nondeterministic framework.

1 Introduction

We investigate the question of whether basic chemical kinetics (kinetics of unary
and binary chemical reactions), formulated as a process algebra, is capable of
general computation. In particular, we investigate nondeterministic and proba-
bilistic termination problems in the Chemical Ground Form (CGF): a process
algebra recently proposed for the compositional description of chemical systems,
and proved to be both stochastically and continuously equivalent to chemical
kinetics (see [2] for the formal proof of equivalence between CGF and chemical
kinetics). The answers to those termination problems reveal a surprisingly rich
picture of what is decidable and undecidable in basic chemistry.

We consider three variants of the termination problem: existential, universal,
and probabilistic termination. By existential termination we mean the existence
of a terminating computation, by universal termination we mean that all possible
computations terminate (in a probabilistic setting, by possible computation we
mean that the computation has probability > 0), by probabilistic termination
we mean that with probability strictly greater than a given ε, with 0 < ε < 1,
a terminating computation is executed. We prove that, in the stochastic seman-
tics of CGF, existential termination is decidable, while both probabilistic and
universal termination are undecidable. In contrast, in a nondeterministic inter-
pretation of the CGF that abstracts from reaction rates, both existential and
universal termination are decidable. This means that: (a) chemical kinetics is
not Turing complete, (b) chemical kinetics is Turing complete up to any degree
of precision, (c) existential termination is equally hard (decidable) in stochastic
and nondeterministic systems, (d) universal termination is harder (undecidable)
in stochastic systems than in nondeterministic systems, (e) the fairness implicit
in stochastic computations makes checking universal termination undecidable.

In recent work, Soloveichik et al. [8], prove the non-Turing completeness of
Stochastic Chemical Reaction Networks (which are equivalent to the CGF [2])

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 477–491, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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by reduction to the decidability of chemical state coverability, which they call
reachability. We prove more strongly that exact chemical state reachability is
also decidable, as well as that existential termination and boundedness are de-
cidable. (All these argument are based on decidability results in Petri Nets.)
The same authors also prove the possibility of approximating RAM and Turing
Machine computations up to an arbitrarily small error ε. Their encodings allow
them to prove the undecidability of probabilistic coverability. We prove the un-
decidability of probabilistic termination, probabilistic reachability, probabilistic
boundedness, and of universal termination. There are technical differences in
our RAM encodings that guarantee the stronger results. For example, terminat-
ing computations are still terminating in our encoding of RAMs, while in [8] a
“clock” process keeps running even after termination of the main computation.

2 Chemical Ground Form

In the CGF each species has an associated definition describing the possible
actions for the molecules of that species. Each action π(r) has an associated
stochastic rate r (a positive real number) which quantifies the expected execution
time for the action π. Action τ(r) indicates the possibility for a molecule to be
engaged in a unary reaction. For instance, the definition A = τ(r); (B|C) says
that one molecule of species A can be engaged in a unary reaction that produces
two molecules, one of speciesB and one of species C (the operator “|” is borrowed
from process algebras such as CCS [6], where it represents parallel composition,
and corresponds here to the chemical “+”). Binary reactions have two reactants.
The two reactants perform two complementary actions ?a(r) and !a(r), where a is
a name used to identify the reaction; both the name a and the rate r must match
for the reaction to be enabled. For instance, given the definitions A =?a(r);C
and B =!a(r);D, we have that two molecules of species A and B can be engaged
in a binary reaction that produces two molecules, one of species C and one of
species D. If the molecules of one species can be engaged in several reactions,
then the corresponding definition admits a choice among several actions. The
syntax of choice is as follows: A = τ(r);B⊕?a(r′);C, meaning that molecules of
species A can be engaged in either a unary reaction, or in a binary reaction with
another molecule able to execute the complementary action !a(r′).

Definition 1 (Chemical Ground Form (CGF)). Consider the following de-
numerable sets: Species ranged over by variables X, Y , · · ·, Channels ranged over
by a, b, · · ·, Moreover, let r, s, · · · be rates (i.e. positive real numbers).

The syntax of CGF is as follows (where the big
∣
∣ separates syntactic alterna-

tives while the small | denotes parallel composition):

E ::= 0
∣
∣ X=M,E Reagents

M ::= 0
∣
∣ π;P ⊕M Molecule

P ::= 0
∣
∣ X |P Solution

π ::= τ(r)

∣
∣ ?a(r)

∣
∣ !a(r) Internal, Input, Output prefix

CGF ::= (E,P ) Reagents and initial Solution
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Given a CGF (E,P ), we assume that all variables in P occur also in E. More-
over, for every variable X in E, there is exactly one definition X = M in E.

In the following, trailing 0 are left implicit, and we use | also as an operator
over the syntax: if P and P ′ are 0-terminated lists of variables, according to
the syntax above, then P |P ′ means appending the two lists into a single 0-
terminated list. Thus, if P is a solution, then 0|P , P |0, and P are syntactically
equal. The solution composed of k instances of X is denoted with

∏
k X .

We consider the discrete state semantics for the CGF defined in [2] in terms
of Continuous Time Markov Chains (CTMCs). The states of the CTMCs are
solutions in normal form denoted with P †: for a solution P , we indicate with
P † the normalized form of P where the variables are sorted in lexicographical
order (with 0 at the end), possibly with repetitions. The CTMC associated
to a chemical ground form is obtained in two steps: we first define the Labeled
Transition Graph (LTG) of a chemical ground form, then we show how to extract
a CTMC from the labeled transition graph.

We use the following notation. Let E.X be the molecule defined by X in E,
andM.i be the i-th summand in a molecule of the form M = π1;P1⊕· · ·⊕πn;Pn.
Given a solution in normal form P †, with P †.m we denote the m-th variable in
P †, with P †\(m1, · · · ,mn) we denote the solution obtained by removing from
P † the mi-th molecule for each i ∈ {1, · · · , n}.

A Labeled Transition Graph (LTG) is a set of quadruples 〈l : S† r→ T †〉 where
the transition labels l are either of the form {m.X.i} or {m.X.i, n.Y.j}, where
m,n, i, j are positive integers, X,Y are species names, m.X.i are ordered triples
and {· · · , · · ·} are unordered pairs.

Definition 2 (Labeled Transition Graph (LTG) of a Chemical Ground
Form). Given the Chemical Ground Form (E,P ), we define Next(E,P ) as the
set containing the following kinds of labeled transitions:

– 〈{m.X.i} : P † r→ T †〉 such that P †.m = X and E.X.i = τ(r);Q and T =
(P †\m)|Q;

– 〈{m.X.i, n.Y.j} : P † r→ T †〉 such that P †.m = X and P †.n = Y and m �= n
and E.X.i =?a(r);Q and E.Y.j =!a(r);R and T = (P †\m,n)|Q|R.

The Labeled Transition Graph of (E,P ) is defined as follows:

LTG(E,P ) =
⋃

n Ψn

where Ψ0 = Next(E,P ) and Ψn+1 =
⋃
{Next(E,Q) | Q is a state of Ψn}

We now define how to extract from an LTG the corresponding CTMC.

Definition 3 (Continuous Time Markov Chain associated to an LTG).
If Ψ is an LTG, then |Ψ | is the associated CTMC, defined as the set of the triples
P

r�→ Q with P �= Q, obtained by summing the rates of all the transitions in Ψ

that have the same source and target state: |Ψ | = {P r�→ Q s.t. ∃〈l : P r′
→ Q〉 ∈

Ψ with P �= Q, and r =
∑
ri s.t. 〈li : P ri→ Q〉 ∈ Ψ}.
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It is worth noting that two solutions Q† and R† are connected by a transition in
LTG(E,P ) if and only if they are connected by a transition in |LTG(E,P )|. In
fact, the transitions of the latter are achieved by collapsing into one transition
those transitions of the former that share the same source and target solutions.
The rate of the new transition is the sum of the rates of the collapsed transitions.

Given a CGF (E,P ), a computation is a sequence of transitions in the CTMC
|LTG(E,P )| starting with a transition with source solution P †, and such that
the target solution of one transition coincides with the source state of the next
transition. We say that a solution Q is reachable in (E,P ) if there exists a
computation with Q† as the target solution of the last transition. A solution Q
is terminated in |LTG(E,P )| if Q† has no outgoing transitions.

The CTMC semantics of CGF defines a probabilistic interpretation of the
behavior of a CGF (E,P ): given any solution T † of |LTG(E,P )|, if it has n
outgoing transitions labeled with r1, · · ·, rn, the probability that the j-th tran-
sition is taken is rj/(

∑
i ri). Thus, we can associate probability measures (we

consider the standard probability measure for Markov chains —see e.g. [5]) to
computations in |LTG(E,P )|. We use this technique to define the three variants
of the termination problem we consider in this paper.

Definition 4 (Existential, universal andprobabilistic termination). Con-
sider a CGF (E,P ) and its CTMC |LTG(E,P )|. Let p be the probability measure
associated to the computations in |LTG(E,P )| leading to a terminated solution.
We say that (E,P ) existentially terminates if p > 0, (E,P ) universally termi-
nates if p = 1, (E,P ) probabilistically terminates with probability higher than ε
(for 0 < ε < 1) if p > ε.

We will consider also probabilistic variants of other properties. Consider a CGF
(E,P ), its CTMC |LTG(E,P )|, and a real number ε such that 0 ≤ ε < 1. We say
that a solution Q is ε-reachable if the probability measure of the computations in
|LTG(E,P )| leading to Q† is > ε. We say that (E,P ) is ε-bound if the set of ε-
reachable solutions is finite. We say that (E,P ) is ε-terminating if the probability
measure of the computations in |LTG(E,P )| leading to a terminated solution is
> ε. We say that (E,P ) is ε-diverging if the probability measure of the infinite
computations in |LTG(E,P )| is > ε.

It is worth noting that, in a probabilistic setting, existential termination coin-
cides with 0-termination, universal termination with the negation of 0-divergence,
and probabilistic termination with ε-termination for ε > 0.

3 Decidability Results

In this section we resort to a Place/Transition Petri net (P/T net) semantics for
CGF, that can be interpreted as a purely nondeterministic semantics of CGF
that abstracts away from the stochastic rates. In this purely nondeterministic
framework several properties are decidable. In fact, in P/T nets, properties such
as reachability (the existence of a computation leading to a given state), bound-
edness (the finiteness of the set of reachable states), termination (reachability of
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a deadlocked state), and divergence (the existence of an infinite computation)
are decidable (see [4] for a survey on decidable properties for Petri Nets).

Definition 5 (Place/Transition Net). A P/T net is a tuple N = (S, T )
where S is the set of places, Mfin(S) is the set of the finite multisets over S
(each of which is called a marking) and T ⊆ Mfin(S) ×Mfin(S) is the set
of transitions. A transition (c, p) is written c⇒ p. The marking c, represents
the tokens to be “consumed”; the marking p represents the tokens to be “pro-
duced”. A transition c⇒ p is enabled at a marking m if c ⊆ m. The execution
of the transition produces the marking m′ = (m \ c)⊕ p (where \ and ⊕ are the
difference and the union operators on multisets). This is written as m[〉m′. A
dead marking is a marking in which no transition is enabled. A marked P/T
net is a tuple N(m0) = (S, T,m0), where (S, T ) is a P/T net and m0 is the ini-
tial marking. A computation in N(m0) leading to the marking m is a sequence
m0[〉m1[〉m2 · · ·mn[〉m.

Given a CGF (E,P ), we define a corresponding P/T net N = (S, T ) and a
corresponding marked P/T net N(m0). We first need to introduce an auxiliary
function Mark(P ) that associates to a solution P the multiset of its variables:

Mark(P ) =
{
∅ if P = 0
{X} ⊕Mark(P ′) if P = X |P ′

Definition 6 (Net of a CGF). Given a CGF (E,P ), with Net(E,P ) we denote
the corresponding P/T net (S, T ) where:

S = {X | X occurs in E}
T =

{
{X}⇒Mark(X1| · · · |Xn) |

E.X.i = τ(r); (X1| · · · |Xn)
}
∪{

{X,Y }⇒Mark(X1| · · · |Xn)⊕Mark(Y1| · · · |Ym) |
E.X.i =?a(r); (X1| · · · |Xn) and E.Y.j =!a(r); (Y1| · · · |Ym)

}

The corresponding marked P/T net is Net(E,P )(Mark(P )).

Note that the set of places S corresponds to the set of variables X defined in
E, the transitions represents the possible actions, and the initial marking is the
multiset of variables in the solution P . It is also worth observing that in the net
semantics we do not consider the rates (r) of the actions.

We now formalize the correspondence between the behaviors of a CGF and
of its corresponding P/T net.

Theorem 1. Consider a CGF (E,P ) and the corresponding P/T net Net(E,P )=
(S, T ). We have that:

1. if 〈l : P † r→ Q†〉 is in Next(E,P ) (for some l and r) then we have also that
Mark(P )[〉Mark(Q) in Net(E,P );

2. if there exists m such that Mark(P )[〉m in Net(E,P ), then there exist l, r
and Q such that 〈l : P † r→ Q†〉 is in Next(E,P ) and Mark(Q) = m.
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Proof (sketch). The proofs of the two statements are by case analysis on the
possible transitions in Next(E,P ) as defined in the Definition 2 —for the first
statement— or on the possible transitions enabled in Mark(P ) as defined in the
Definition 6 —for the second statement. "#

This theorem allows us to conclude that the P/T net semantics faithfully repro-
duces the standard CGF transitions. The only difference is that it abstracts away
from the stochastic rates. For this reason, we consider the P/T net semantics
as a purely nondeterministic interpretation of CGF. Reachability, boundedness,
termination, and divergence are decidable for P/T nets; thus we can conclude
that all these properties are decidable also in the CGF under a purely nondeter-
ministic interpretation.

As a consequence of Theorem 1, existential termination is decidable.

Theorem 2. Consider a CGF (E,P ). We have that (E,P ) existentially termi-
nates if and only if a dead marking is reachable in the Net(E,P )(Mark(P )).

Proof. It is easy to see from the definition of LTG(E,P ) and |LTG(E,P )| that
the latter contains all and only those solutions (in normal form) reachable in
(E,P ) with a finite number of transitions, each one having a probability > 0 to
be chosen. Thus a solution is reachable with probability > 0 if and only if it is
in |LTG(E,P )|. As a consequence of Theorem 1 we have that a solution Q† is in
|LTG(E,P )| if and only if Mark(Q) is reachable in Net(E,P )(Mark(P )). More-
over, Theorem 1 also guarantees that Q is terminated if and only if Mark(Q) is
a dead marking in Net(E,P ) (this proves the theorem). "#

As a corollary of Theorem 1 we have that also the probabilistic variants of
reachability and boundedness can be reduced to the corresponding properties in
the nondeterministic setting. On the contrary, this does not hold for divergence.
(This will be discussed in the next section.) We can summarize the results of
this section simply saying that ε-termination, ε-reachability, and ε-boundedness
are decidable when ε = 0.

4 Undecidability Results

This section is divided in two parts. In the first one we prove that probabilistic
termination (i.e. ε-termination with ε > 0) is undecidable. (We also comment
on how to show that also ε-divergence, ε-boundedness, and ε-reachability are
undecidable when ε > 0.) In the second part we prove the undecidability of
universal termination (thus also of 0-divergence).

4.1 Undecidability of Probabilistic Termination

We prove the undecidability of probabilistic termination showing how to approxi-
mately model in CGF the behavior of any Random Access Machines (RAMs) [7],
a well known register based Turing powerful formalism. More precisely, we reduce
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the termination problem for RAMs to the probabilistic termination with proba-
bility higher than any ε such that 0 < ε < 1.

We first recall the definition of Random Access Machines.

Definition 7 (Random Access Machines (RAMs)). A RAM R is com-
posed of a set of registers r1, · · · , rm that contain non negative integer numbers
and a set of indexed instructions I1, · · · , In of two possible kinds:

– Ii = Inc(rj) that increments the register rj and then moves to the execution
of the instruction with index i+ 1 and

– Ii = DecJump(rj, s) that attempts to decrement the register rj; if the reg-
ister does not hold 0 then the register is actually decremented and the next
instruction is the one with index i+ 1, otherwise the next instruction is the
one with index s.

We use the following notation: (Ii, r1 = l1, · · · , rm = lm) represents the state
of the computation of the RAM which is going to execute the instruction Ii
with registers that contain l1, · · · , lm, respectively; (Ii, r1 = l1, · · · , rm = lm) �→
(Ij , r1 = l′1, · · · , rm = l′m) describes one step of computation of the RAM;
(Ii, r1 = l1, · · · , rm = lm) ↓ denotes final states of the computation in which
Ii is undefined. Without loss of generality, we assume the existence of a spe-
cial index halt such that all final states contain an instruction with that index,
namely (Ii, r1 = l1, · · · , rm = lm) ↓ if and only if i = halt.

The basic idea that we follow in modeling RAMs in CGF is to use one species
Ii for each instruction Ii, and one species Rj for each register rj . The state
(Ii, r1 = l1, · · · , rm = lm) of the RAM is modeled by a solution that contains
one molecule of species Ii, l1 molecules of species R1, · · ·, and lm molecules of
species Rm (plus a certain amount of inhibitor molecules of species Inh, whose
function will be discussed below). The behavior of the molecules of species Ii

is to update the register according to the corresponding instruction Ii, and to
activate the execution of the next instruction Ij by producing the molecule of
species Ij .

An Inc(rj) instruction simply produces one molecule of species Rj . On the
other hand, a DecJump(rj , s) instruction should test the absence of molecules
of species Rj before deciding whether to execute the jump, or to consume one of
the available molecules of that species. As it is not possible to verify the absence
of molecules, we admit the execution of the jump even if molecules of species
Rj are available. In this case, we say that a wrong jump is executed. In order to
reduce the probability of wrong jumps, we put their execution in competition
with alternative behaviors involving the inhibitor molecules in such a way that
the greater is the quantity of inhibitor molecules in the solution, the smaller is
the probability to execute a wrong jump.

We are now ready to formally define our encoding of RAMs.

Definition 8. Given a RAM R and one of its states (Ii, r1 = l1, · · · , rm = lm),
let [[(Ii, r1 = l1, · · · , rm = lm)]]h denote the solution:

Ii |
∏

l1

R1 | · · · |
∏

lm

Rm |
∏

h

Inh
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where:

Ii =

⎧
⎨

⎩

τ ; (Ii+1|Rj) if Ii = Inc(rj)
!rj ; (Ii+1|Inh) ⊕ τ ;C2

i,s if Ii = DecJump(rj , s)
0 if Ii = Ihalt

C2
i,s = !inh; Ii ⊕ τ ;C1

i,s C1
i,s = !inh; Ii ⊕ τ ; Is

Rj = ?rj ;0 Inh = ?inh; Inh

Note that h is used to denote the number of occurrences of the molecules of
species Inh. We take all subscripts action rates equal to 1 and we omit them
(this choice allows us to simplify the proof of Proposition 1). In the following,
we use ER for the set of the above definitions of species Ii, C2

i,s, C1
i,s, Rj, Inh.

Note that before actually executing a jump, two internal τ actions must be
executed in sequence (those in the definition of the species C2

i,s and C1
i,s), and

both of them are in competition with the action !inh willing to perform an
interaction with one of the inhibitor molecules of species Inh. Thus, the higher
is the number of inhibitor molecules, the smaller is the probability to perform
this sequence of two internal actions.

We now formalize the correspondence between the behavior of a RAM and of
its encoding in CGF.

Proposition 1. Let R be a RAM. Given one of its states (Ii, r1 = l1, · · · , rm =
lm) and [[(Ii, r1 = l1, · · · , rm = lm)]]h, for any h, we have:

1. if Ii = Ihalt then (Ii, r1 = l1, · · · , rm = lm) ↓ and Next(ER, [[(Ii, r1 =
l1, · · · , rm = lm)]]h) has no transitions;

2. if Ii = Incrj or Ii = DecJump(rj , s) with lj = 0 and (Ii, r1 = l1, · · · , rm =
lm) �→ (Ij , r1 = l′1, · · · , rm = l′m), then the solution [[(Ij , r1 = l′1, · · · , rm =
l′m)]]†h is reachable in (ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) with probability = 1;

3. if Ii = DecJump(rj , s) with lj > 0 and (Ii, r1 = l1, · · · , rm = lm) �→ (Ij , r1 =
l′1, · · · , rm = l′m), then the solution [[(Ij , r1 = l′1, · · · , rm = l′m)]]†h+1 is reach-
able in (ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) with probability > 1− 1

h2 .

Proof. If Ii = Ihalt or Ii = Inc(rj) the corresponding statements (the first one
and the first part of the second one) are easy to prove. We detail the proof only
for Ii = DecJump(rj, s).

If rj is empty, the probability measure for the computations in (ER, [[(Ii, r1 =
l1, · · · , rm = lm)]]h) passing through [[(Ij , r1 = l′1, · · · , rm = l′m)]]†h is (see
Figure 1):

∞∑

i=0

( h

h+ 1
+

1
h+ 1

× h

h+ 1
)i × 1

(h+ 1)2
= 1

If rj is not empty, i.e. lj > 0, the standard probability measure for the com-
putations passing through [[(Ij , r1 = l′1, · · · , rm = l′m)]]†h+1 is (see Figure 1):

∞∑

i=0

( 1
lj + 1

× h

h+ 1
+

1
lj + 1

× 1
h+ 1

× h

h+ 1
)i × lj

lj + 1
> 1− 1

h2 "#
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1

1

1

1

1
lj

(a) (b)

1h

h

h

h

[[(Ii, r1 = l1, · · · , rm = lm)]]†h [[(Ii, r1 = l1, · · · , rm = lm)]]†h

[[(Ij, r1 = l
0
1, · · · , rm = l0m)]]†h+1

[[(Ij, r1 = l
0
1, · · · , rm = l0m)]]†h

Fig. 1. Fragment of the CTMC |LTG(ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h)| in case Ii =
DecJump(rj , s) with lj = 0 (a) or lj > 0 (b)

The above proposition states the correspondence between a single RAM step and
the corresponding encoding in CGF. We conclude that a RAM terminates its
computation if and only if a terminated solution is reachable with a probability
that depends on the initial number of inhibitor molecules in the encoding.

Theorem 3. Let R be a RAM. We have that the computation of R starting
from the state (Ii, r1 = l1, · · · , rm = lm) terminates if and only if the CGF
(ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) probabilistically terminates with probability
higher than 1−

∑∞
k=h

1
k2 .

Proof. In the light of Proposition 1 we have that only decrement operations are
not reproduced with probability = 1, but with probability > 1 − 1

h2 . More-
over, after the execution of a decrement operation, the value h of inhibitor
molecules is incremented by one. Thus, a RAM computation including d decre-
ment operations is faithfully reproduced with probability strictly greater than∏h+d

k=h

(
1− 1

k2

)
> 1−

∑h+d
k=h

1
k2 . Henceforth, any terminating computation is re-

produced with probability strictly greater than 1−
∑∞

k=h
1
k2 . "#

It is well known that the series
∑∞

h=1
1
h2 is convergent (to π2

6 ), thus for every
small value δ > 0 there exists a corresponding initial amount h of inhibitor mole-
cules such that

∑∞
k=h

1
k2 < δ. Henceforth, in order to reduce RAM termination

to probabilistic termination with probability higher than any 0 < ε < 1, it is
sufficient to consider an initial value h such that

∑∞
k=h

1
k2 < (1− ε).
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The RAM encoding presented in Definition 8 reproduces also unbounded
RAM computations with any degree of precision. Thus also ε-divergence is un-
decidable when ε > 0. On the contrary, such encoding does not allow us to prove
the undecidability of ε-boundedness and ε-reachability.

We first show how to reduce the RAM divergence problem to ε-boundedness.
This does not hold for the encoding in the Definition 8 because there exists
divergent RAMs with a bounded corresponding CGF. Consider, for instance,
the RAM composed of only the instruction I1 = DecJump(r1, 1) that performs
an infinite loop if the register r1 is initially empty. It is easy to see that the
corresponding CGF is bounded.

In order to guarantee that an infinite RAM computation generates an un-
bounded CGF, we can simply add a new molecule of a new species A every time
a jump is performed. As an infinite RAM computation executes infinitely many
jump operations, an unbounded amount of molecules of species A will be gener-
ated. The new encoding is defined as in the Definition 8 replacing the definition
of the species C1

i,s with the following one: C1
i,s = !inh; Ii ⊕ τ ; (Is|A).

We conclude this section observing how to reduce RAM termination to ε-
reachability. This does not hold for the above encodings because the solution
representing the final state of a RAM computation is not known beforehand. In
fact, besides the fact that the final contents of the registers is not known, we have
that the final solution will contain a number of inhibitor molecules that depends
on the number of decrement operations executed during the computation (as
each decrement adds one molecule of species Inh). In order to know beforehand
the final solution, we allow the molecule Ihalt to remove the register molecules
of species Rj as well as all the inhibitor molecules of species Inh. In this way, if
the computation terminates, we have that the final solution surely contains only
the molecule Ihalt.

Namely, we modify in the Definition 8 the definitions of the species Ihalt and
Inh as follows:

Ihalt =
⊕m

j=1!rj ; I
halt ⊕ !remove; Ihalt

Inh = ?inh; Inh ⊕ ?remove;0.

4.2 Undecidability of Universal Termination

The undecidability of universal termination (thus also of 0-divergence) is proved
introducing an intermediary nondeterministic computational model, that we call
finitely faulting RAMs (FFRAMs). This model corresponds to RAMs in which
the execution of DecJump instructions is nondeterministic when the tested reg-
ister is not empty: an FFRAM can either decrement the register or execute
a wrong jump. The peculiarity of FFRAMs is that in an infinite computation
only finitely many wrong jumps are executed. We first show that it is possible
to define an encoding of FFRAMs in CGF such that the universal termina-
tion problem for FFRAMs coincides with the universal termination problem
for the corresponding CGF. Then we prove the undecidability of the universal
termination problem for FFRAMs showing how to reduce the RAM termina-
tion problem to the verification of the existence of an infinite computation in
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FFRAMs (which corresponds to the complement of the universal termination
problem). We start defining finitely faulting RAMs.

Definition 9 (Finitely Faulting RAMs (FFRAMs)). Finitely Faulting
RAMs are defined as traditional RAMs (see Definition 7) with the only differ-
ence that given an instruction Ii = DecJump(rj , s) and a RAM state (Ii, r1 =
l1, · · · , rj = lj, · · · , rm = lm) with lj > 0, two possible computation steps are
permitted: (Ii, r1 = l1, · · · , rj = lj, · · · , rm = lm) �→ (Ii+1, r1 = l1, · · · , rj =
lj − 1, · · · , rm = lm) and (Ii, r1 = l1, · · · , rj = lj , · · · , rm = lm) �→ (Is, r1 =
l1, · · · , rj = lj, · · · , rm = lm). The second computation step is called wrong jump
because a jump is executed even if the tested register is not empty. The peculiar
property of FFRAMs is that in every computation (also infinite ones), finitely
many wrong jumps are executed.

We now show how to define an encoding of FFRAMs in CGF such that infi-
nite computations in the FFRAMs computational model corresponds to infinite
computation with probability > 0 in the corresponding CGF.

The FFRAM encoding is defined as in Definition 8 adding a transition to
a terminated state which can be selected with probability ≥ 1

2 while executing
wrong jumps. In this way, we guarantee that in an infinite computation infi-
nitely many wrong jumps cannot be executed because the new transition to the
terminated state cannot be avoided indefinitely.

Definition 10 (FFRAM Modeling). Given a FFRAM R and one of its
states (Ii, r1 = l1, · · · , rm = lm), [[(Ii, r1 = l1, · · · , rm = lm)]]h is defined as in
Definition 8. Also the species Ii, Rj, Inh, and C2

i,s are defined as in Definition 8,
while C1

i,s is defined as follows:

C1
i,s = !inh; Ii ⊕ τ ;C0

s C0
s = !rj ; Ihalt ⊕ τ ; Is

In the following, we use ER for the new set of definitions of species Ii, C2
i,s,

C1
i,s, C0

s , Rj, and Inh.

We now revisit the Proposition 1 adapting it to the new encoding.

Proposition 2. LetR be aFFRAM. Given one of its states (Ii, r1 = l1, · · · , rm =
lm) and [[(Ii, r1 = l1, · · · , rm = lm)]]h, for any h, we have:

1. (as in Proposition 1);
2. (as in Proposition 1);
3. if Ii = DecJump(rj , s) with lj > 0 then with probability 1 one of the following

states are reachable in (ER, [[(Ii, r1 = l1, · · · , rj = lj , · · · , rm = lm)]]h):

– [[(Ii+1, r1 = l1, · · · , rj = lj − 1, · · · , rm = lm)]]†h+1 (with prob. > 1− 1
h2 );

– [[(Ihalt, r1 = l1, · · · , rj = lj, · · · , rm = lm)]]†h;
– [[(Is, r1 = l1, · · · , rj = lj, · · · , rm = lm)]]†h (with probability 0 < p < 1

2).
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1

1

1
lj

lj

1

h

h

[[(Is, r1 = l1, · · · , rj = lj, · · · , rm = lm)]]†h

[[(Ihalt, r1 = l1, · · · , rj = lj, · · · , rm = lm)]]†h

[[(Ii+1, r1 = l1, · · · , rj = lj 1, · · · , rm = lm)]]†h+1

[[(Ii, r1 = l1, · · · , rj = lj, · · · , rm = lm)]]†h

Fig. 2. Fragment of the CTMC |LTG(ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h)| in case Ii =
DecJump(rj , s) with lj > 0

Proof. The first two statements are proved as in Proposition 1. We sketch the
proof for the third statement. The probability measure for the computations
in (ER, [[(Ii, r1 = l1, · · · , rj = lj , · · · , rm = lm)]]h) passing through [[(Ii+1, r1 =
l1, · · · , rj = lj − 1, · · · , rm = lm)]]†h+1 is computed as in Proposition 1.

The probability measure p for the computations passing through [[(Is, r1 =
l1, · · · , rj = lj, · · · , rm = lm)]]†h is (see Figure 2):

∞∑

i=0

( 1
lj + 1

× h

h+ 1
+

1
lj + 1

× 1
h+ 1

× h

h+ 1
)i ×

( 1
lj + 1

)2 ×
( 1
h+ 1

)2

It is easy to see that as lj > 0, then p < 1
2 . Finally, we observe that the probability

measure of the computations leading to [[(Ihalt, r1 = l1, · · · , rj = lj , · · · , rm =
lm)]]†h is equal to 1 minus the probability measure of the computations passing
through either [[(Ii+1, r1 = l1, · · · , rj = lj − 1, · · · , rm = lm)]]†h+1 or [[(Is, r1 =
l1, · · · , rj = lj, · · · , rm = lm)]]†h. "#

The above proposition states the correspondence between a single computation
step of a FFRAM and that of the corresponding CGF. We conclude that a
FFRAM has an infinite computation if and only if there exists an infinite com-
putation with probability > 0 in the corresponding CGF.

Theorem 4. Let R be a FFRAM. We have that R has an infinite computa-
tion starting from the state (Ii, r1 = l1, · · · , rm = lm) if and only if the CGF
(ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) has an infinite computation for some initial
amount h of inhibitor molecules.
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Proof. We first consider the only if part. Assume the existence of an infinite
computation of R starting from the state (Ii, r1 = l1, · · · , rm = lm). This compu-
tation will execute infinitely many DecJump instructions, but only finitely many
wrong jumps. We now consider the CGF (ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h) for a
generic h. According to the Proposition 2, it can reproduce the same infinite com-
putation with probability strictly greater than

∏∞
k=h

(
1− 1

k2

)
×
∏w

k=1 pk where w
is the number of wrong jumps, and pk is the probability for the k-th wrong jump
computed as in Proposition 2. Let pmin be the minimum among p1, · · · , pw. We
have that the above probability is strictly greater than

(
1−
∑∞

k=h
1
k2

)
×
(

1
pmin

)w.
We have already discussed, after Theorem 3, that the series

∑∞
h=1

1
h2 is conver-

gent, thus there exists h such that
∑∞

k=h
1
k2 < 1. If we consider this particular

value h, the overall probability for the infinite computation is > 0.
We now consider the if part. Assume the existence of an infinite compu-

tation with probability > 0 in the CGF (ER, [[(Ii, r1 = l1, · · · , rm = lm)]]h)
for some h. This computation corresponds to an infinite computation of R for
the two following reasons. We first observe that the infinite computation repro-
duces infinitely many correct computation steps (Ii, r1 = l1, · · · , rm = lm) �→
(Ij , r1 = l′1, · · · , rm = l′m) of R. In fact, the unique wrong computation step
could be the one described in the second item of the third statement of Propo-
sition 2. This computation step leads to the encoding of the terminated state
(Ihalt, r1 = l1, · · · , rj = lj , · · · , rm = lm), but in this case the computation cannot
be infinite. Then, we observe that the number of wrong jumps is finite. In fact,
if we assume (by contradiction) that the computation contains infinitely many
wrong jumps, we have that (in the light of the third item of the third statement
of Proposition 2) the probability of the infinite computation is smaller than∏∞

i=1
1
2 , thus it cannot be > 0. "#

We now prove that the existence of an infinite computation in FFRAMs is
undecidable by defining an encoding that reduces the termination problem for
RAMs to the divergence problem for FFRAMs. As it is not restrictive, we
consider only RAMs starting with all registers empty. Our technique has been
inspired by a similar one used in [3]. We initially assume that an arbitrary number
k of wrong jumps occurs and, as a consequence, the number k is introduced in a
special register. Then we let the FFRAM repeat indefinitely the simulation of
the behavior of the corresponding RAM, but if this simulation requires more than
k steps, the encoding blocks (this is ensured by decrementing the special register
before simulating every computational step). In this way, if a RAM terminates,
then the corresponding FFRAM (with k greater than the length of the RAM
computation) can diverge. On the other hand, if an infinite computation of the
FFRAM exists, this has an infinite suffix that does not contain wrong jumps. In
this correct part of the computation, the encoding faithfully simulates the RAM
computation infinitely often; this is possible only if the RAM terminates.

Theorem 5. Given a RAM R, there exists a corresponding FFRAM [[R]] such
that the computation of R (starting with all registers empty) terminates if and
only if [[R]] has an infinite computation (starting with all registers empty).
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Proof. Given a RAM R with instructions I1, · · · , In (assuming In = Ihalt) and
registers r0, · · · , rm, with [[R]] we denote the FFRAM composed of the registers
r0, r1, · · · , rm, rm+1, rm+2, rm+3 and of the following instructions:

J1 = Inc(rm+1)
J2 = DecJump(rm+1, 1)
J3i = DecJump(rm+1, halt) (for 1 ≤ i < n)
J3i+1 = Inc(rm+2) (for 1 ≤ i < n)

J3i+2 =
{
Inc(rj) if Ii = Inc(rj)
DecJump(rj , 3s) if Ii = DecJump(rj , s)

(for 1 ≤ i < n)

J3n+2j = DecJump(rj , 3n+ 2j + 2) (for 1 ≤ i ≤ m)
J3n+2j+1 = DecJump(rm+3, 3n+ 2j) (for 1 ≤ i ≤ m)
J3n+2m+2 = DecJump(rm+2, 3)
J3n+2m+3 = Inc(rm+1)
J3n+2m+4 = DecJump(rm+3, 3n+ 2m+ 2)

We prove that the computation ofR starting from the state (I1, r0 = 0, · · · , rm =
0) terminates if and only if [[R]] has an infinite computation starting from the
state (J1, r0 = 0, · · · , rm+3 = 0).

We first consider the only-if part. We assume that the RAM R terminates
after the execution of k steps. The corresponding FFRAM [[R]] has the following
infinite computation which contains exactly k wrong jumps. The wrong jumps
are all executed at the beginning of the computation in order to introduce in
rm+1 the value k. Then the computation proceeds simulating infinitely many
times the computation of R. Note that at the end of each simulation, all the
registers r1, · · · , rm are emptied, and the value k (which is introduced in rm+2

during the computation, is moved back in rm+1). Note also that the register
rm+3 is always empty, and that it is simply tested for zero by instructions that
must always perform a jump.

We now consider the if part. Assume that the FFRAM [[R]] has an infinite
computation. This computation starts with k executions of the instructions J1

and J2. The loop between these two instructions cannot proceed indefinitely as it
contains a wrong jump. At the end of this first phase, the register rm+1 contains
k. Then the computation continues by simulating the behavior of the RAM R,
and before executing every instruction the register rm+1 is decremented and the
register rm+2 is incremented. If (by contradiction) the register rm+1 becomes
empty before completing the simulation of R, the computation should block.
Thus, the simulation completes before simulating k steps. After, all the registers
r0, · · · , rm are emptied, the value k is reintroduced in rm+1, and a new simulation
is started. This part of the computation, i.e. simulation ofR and subsequent reset
of the registers, surely terminates because the simulation of R includes at most
k steps, and the subsequent reset of the registers cannot proceed indefinitely. We
can conclude that an infinite computation includes infinitely many simulations
of the computation of R and, as an FFRAM can perform only finitely many
wrong jumps, infinitely many of these simulations are correct. This implies that
the RAM R terminates within k computation steps. "#
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5 Conclusion

In this paper we have investigated the decidability of termination problems in
CGF, a process algebra proposed in [2] for the compositional description of
chemical systems. In particular, we have proved that existential termination is
decidable, probabilistic termination is undecidable, and universal termination is
decidable under a purely nondeterministic interpretation of CGF while it turns
to be undecidable under the stochastic semantics.

It is worth saying that similar results hold also for lossy channels: universal
termination is decidable in lossy channels while it turns out to be undecidable
in their probabilistic variant [1]. Nevertheless, the result on lossy channels is not
comparable with ours. In fact, in CGF process communication is synchronous (in
lossy channels synchronous communication is not admitted) while in the lossy
channel model it is asynchronous through unbounded FIFO buffers (that cannot
be directly encoded in CGF).

Acknowledgement. We would like to acknowledge M. Bravetti, D. Solove-
ichik, H. Wiklicky, E. Winfree, and the anonymous referees for their insightful
comments on previous versions of this paper.
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Abstract. In this paper, we present a unified approach to evaluating the relative
expressive power of process calculi. In particular, we identify a small set of crite-
ria (that have already been somehow presented in the literature) that an encoding
should satisfy to be considered a good means for language comparison. We argue
that the combination of such criteria is a valid proposal by noting that: (i) the best
known encodings appeared in the literature satisfy them; (ii) this notion is not
trivial, because there exist encodings that do not satisfy all the criteria we have
proposed; (iii) the best known separation results can be formulated in terms of
our criteria; and (iv) some widely believed (but never formally proved) separa-
tion results can be proved by using the criteria we propose. Moreover, the way
in which we prove known separation results is easier and more uniform than the
way in which such results were originally proved.

1 Introduction

As argued in [27], one of the hottest topic in concurrency theory, and mainly in process
calculi, is the identification of a uniform way to formally compare different languages
from the expressiveness point of view. Indeed, while the literature contains several re-
sults and claims concerning the expressive power of a language, such results are usually
difficult to appreciate because they are proved sound by using different criteria. For a
very good overview of the problem, we refer the reader to [31].

In the 1980s, the trend was to adopt the approach followed in computability theory
and study the absolute expressive power of languages, e.g. by studying which problems
were solvable or which operators were definable in a given language. In the 1990s, the
focus moved to the relative expressive power: it became more interesting to understand
the extent to which a language could be encoded in another one, also because of the
proliferation of different process calculi.

A very common approach to proving soundness of encodings is based on the notion
of full abstraction. This concept was introduced in the 1970s to require an exact corre-
spondence between a denotational semantics of a program and its operational seman-
tics. Intuitively, a denotational semantics is fully abstract if it holds that two observably
equivalent programs (i.e., two programs that ‘behave in the same way’ in any execu-
tion context) have the same denotation, and vice versa. The notion of full abstraction
has been adapted to prove soundness of encodings by requiring that an encoding maps
equivalent source terms into equivalent target terms, and vice versa. This adaptation was
justified by the fact that an encoding resembles a denotation function: they both map

F. van Breugel and M. Chechik (Eds.): CONCUR 2008, LNCS 5201, pp. 492–507, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Towards a Unified Approach to Encodability and Separation Results 493

elements of a formalism (viz., terms of the source language) into elements of a different
formalism (another language, in the case of an encoding, or a mathematical object, in
the case of a denotation function). In this way, the stress is put on the requirement that
the encoding must translate a language in another one while respecting some associated
equivalences. This can be very attractive, e.g., if in the target we can exploit automatic
tools to prove equivalences and then pull back the obtained result to the source. How-
ever, we believe that full abstraction is too focused on the equivalences and thus it gives
very little information on the computation capabilities of the two languages.

Operational and structural criteria have been developed in the years to state and prove
separation results [9,17,29,32,33], that are a crucial aspect of building a hierarchy of
languages. Indeed, to prove that a languageL1 is more expressive than another language
L2, we need to show that there exists a “good” encoding of the latter in the former, but
not vice versa. Usually, the latter fact is very difficult to prove and is obtained by: (1)
identifying a problem that can be solved in L1 but not inL2, and (2) finding the least set
of criteria that an encoding should meet to translate a solution in L1 into a solution in
L2. Such criteria are problem-driven, in that different problems call for different criteria
(compare, for example, the criteria in [29,32,33] with those in [9,17]). Moreover, the
criteria used to prove separation results are usually not enough to testify to the quality
of an encoding: they are considered minimal requirements that any encoding should
satisfy to be considered a good means for language comparison.

In this paper, we present a new proposal for assessing the quality of an encoding,
tailored to aspects that are strictly related to relative expressiveness. We isolate a small
set of requirements that, in our opinion, are very well-suited to proving both soundness
of encodings and separation results. In this way, we obtain a notion of encodability
that can be used to place two (or more) languages in a clearly organized hierarchy. A
preliminary proposal appeared in [15] but it was formulated in a too demanding way.

Of course, in order to support our proposal, we have to give evidences of its reason-
ableness. To this aim, we exhibit both philosophical and pragmatic arguments. From
the pragmatic side, we notice that most of the best known encodings appeared in the
literature satisfy our criteria and that their combination is not trivial, because there exist
some encodings (namely, the encodings of π-calculus in Mobile Ambients proposed in
[10,11]) that do not satisfy all the criteria we propose. Moreover, we also prove that
the best known separation results can be formulated and proved (in an easier and more
uniform way) in terms of our criteria; furthermost, some widely believed (but never
proved) separation results can be now formally proved by using the criteria we propose
(this task is carried out in [14]). The philosophical part is, instead, more delicate because
we have to convince the reader that every proposed criterion is deeply related to relative
expressiveness. To this aim, we split the criteria in two groups: structural and semantic.
We think that structural criteria are difficult to criticize: we simply require that the en-
coding is compositional and that it does not depend on the specific names appearing in
the source term. Semantic criteria are, as usual, more debatable, because different peo-
ple have different views on the semantics of a calculus and because the same semantic
notions can be defined in different ways. Here, we assume that an encoding should be:
operationally corresponding, in the sense that it preserves and reflects the computations
of the source terms; divergence reflecting, in that we do not want to turn a terminating
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term into a non-terminating one; and success sensitive, i.e., once defined a notion of
successful computation of a term, we require that successful source terms are mapped
into successful target terms and vice versa.

Although intuitively quite clear, the above mentioned criteria can be formulated in
different ways. In particular, operational correspondence is usually defined up to some
semantic equivalence/preorder that gets rid of dead processes yielded by the encod-
ing. However, there is a wide range of equivalences/preorders and choosing one or
another is always highly debatable. In Section 2 we start by leaving the notion of equiv-
alence/preorder unspecified; this is, in our opinion, the ideal scenario, where encodabil-
ity and separation results do not depend on the particular semantic theory chosen. How-
ever, when we want to prove some concrete result, we are forced to make assumptions
on the equivalence used in operational correspondence. In doing this, we try to work
at the highest possible abstraction level; in particular, we never commit to any specific
equivalence/preorder and always consider meaningful families of such relations.

The paper is organized as follows. In Section 2, we present the criteria that we are
going to consider and compare them with other ones already presented in the literature.
Then, in Section 3, we show how to prove (in a simpler and more uniform way) known
separation results appearing in the literature; to this aim, we specialize in three ways the
semantic theory used to define operational correspondence. In Section 4, we conclude
by summing up our main contributions and discussing future work.

For space limitations, we shall work with process calculi (CCS [22]; the asynchro-
nous π-calculus, πa [5]; the separate and mixed choice π-calculus, πsep and πmix [35];
Mobile Ambients, MA [11]; the π-calculus with polyadic synchronizations, eπ and πn

[9]) without defining them; their syntax and operational semantics can be found in the
on-line version of this paper or in the cited references.

2 The Encodability Criteria

In this section we discuss the criteria an encoding should satisfy to be considered a good
means for language comparison. For the moment, we work at an abstract level and do
not commit to any precise formalism. Indeed, we just assume a (countable) set of names
N and specify a calculus as a triple L = (P, '−→,#), where

– P is the set of language terms (usually called processes) that is built up from the
terminated process 0 by at least using the parallel composition operator ‘|’.

– '−→ is the operational semantics, needed to specify how a process computes; fol-
lowing common trends in process calculi, we specify the operational semantics by
means of reductions. As usual, �=⇒ denotes the reflexive and transitive closure of
'−→. To compositionally reason on process reductions, we shall also assume a la-

beled transition relation,
μ
−→ , whose τ’s characterize '−→.

– # is a behavioural equivalence/preorder, needed to describe the abstract behaviour
of a process. Usually,# is a congruence at least with respect to parallel composition;
it is often defined in the form of a barbed equivalence [25] or can be derived directly
from the reduction semantics [20].

A translation of L1 = (P1, '−→1,#1) into L2 = (P2, '−→2,#2), written � · � : L1 →
L2, is a function from P1 into P2. We shall call encoding any translation that satisfies
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the criteria we are going to present. Moreover, to simplify reading, we let S range
over processes of the source language (viz., L1) and T range over processes of the
target language (viz., L2). Notice that, since we aim at a set of criteria suitable for both
encodability and separation results, we have to find a compromise between ‘minimality’
(typical of separation results, where one wants to identify the minimal set of properties
that make a separation result provable) and ‘maximality’ (typical of encodability results,
where one wants to show that the encoding satisfies as many properties as possible).

First of all, a translation should be compositional, i.e. the translation of a compound
term must be defined in terms of the translation of the subterms, where, in general,
the translated subterms can be combined by relying on a context that coordinates their
inter-relationships. A k-ary context C[ 1; . . . ; k] is a term where k occurrences of 0 are
replaced the holes { 1; . . . ; k}. In defining compositionality, we let the context used to
combine the translated subterms depend on the operator that combines the subterms and
on the free names (written Fn(·)) of the subterms. For example, we could think to have
a name handler for every free name in the subterms.

Property 1 (Compositionality). A translation � · � : L1 → L2 is composi-
tional if, for every k-ary operator op of L1 and for every subset of names N,
there exists a k-ary context CN

op[ 1; . . . ; k] such that, for all S 1, . . . , S k with

Fn(S 1, . . . , S k) = N, it holds that � op(S 1, . . . , S k) � = CN
op[� S 1 �; . . . ; � S k �].

Compositionality is a very natural property and, indeed, every encoding we are aware
of is defined compositionally. Compositionality with respect to some specific operator
has been assumed also to prove some separation result, viz. of synchronous vs asyn-
chronous π-calculus [8] or of persistent fragments of the asynchronous π-calculus [7].
However, for separation results, the most widely accepted criterion is homomorphism of
parallel composition [9,17,29,30,32,33]; indeed, translating a parallel process by intro-
ducing a coordinating context would reduce the degree of distribution and show thatL2

has not enough expressive power to simulate L1. This point of view has been, however,
sometimes criticized and, indeed, there exist encodings that do not translate parallel
composition homomorphically [4,6,26].

Our definition of compositionality allows two processes that only differ in their free
names to have totally different translations: indeed, it could be that CN

op[. . . ] is very

different from CM
op[. . . ], whenever N � M. We want to avoid this fact; indeed, a “good”

translation cannot depend on the particular names involved in the source process, but
only on its syntactic structure. However, it is possible that a translation fixes some names
to play a precise rôle or it can translate a single name into a tuple of names. Thus, every
translation assumes a renaming policy, that we now formally define.

Definition 1 (Renaming policy). Given a translation � · �, its underlying renaming pol-
icy is a function ϕ� � : N −→ Nk, for some constant k > 0, such that ∀u, v ∈ N with
u � v, it holds that ϕ� �(u) ∩ ϕ� �(v) = ∅, where ϕ� �(·) is simply considered a set here.

In most of the encodings present in the literature, every name is simply translated to
itself. However, it is sometimes necessary to have a set of reserved names, i.e. names
with a special function within the encoding. Reserved names can be obtained either by
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assuming that the target language has more names than the source one, or by exploiting
what we call a strict renaming policy, i.e. a renaming policy ϕ� � : N −→ N . For
example, we can isolate one reserved name by linearly ordering the set of names N as
{n0, n1, n2, . . .} and by letting ϕ� �(ni) � ni+1, for every i; the reserved name is n0.

The requirement that ϕ� � maps names to tuples of the same length can be justified by
the fact that names are all ‘at the same level’ and, thus, they must be treated uniformly.
Moreover, such tuples must be finite, otherwise it would be impossible to transmit all
ϕ� �(a) in the translation of a communication where name a is exchanged (notice that,
since the sender cannot know how the receiver will use a, all ϕ� �(a) must be some-
how transmitted). Consequently, the requirement that different names are associated to
disjoint tuples can be intuitively justified as follows. Assume that there exists u � v
such that ϕ� �(u) ∩ ϕ� �(v) � ∅; since there is no relationship between different names,
this implies that, for every w, ϕ� �(u) ∩ ϕ� �(w) � ∅. If the name shared by every pair
of tuples is the same, then such a name can be considered reserved and we can define
a renaming policy ϕ′

� �
satisfying the requirement of Definition 1. Otherwise, for every

v and w, ϕ� �(v) and ϕ� �(w) must have a different name in common with ϕ� �(u); thus,
ϕ� �(u) would contain an infinite number of names.

In our view, a translation should reflect in the translated term all the renamings car-
ried out in the source term. In what follows, we denote with σ a substitution of names
for names, i.e. a function σ : N −→ N , and we shall usually specify only the non-
trivial part of a substitution: for example, {b/a} denotes the (non-injective) substitution
that maps a to b and every other name to itself. Moreover, we shall also extend substi-
tutions to tuples of names in the expected way, i.e. component-wise.

Property 2 (Name invariance). A translation � · � : L1 → L2 is name invariant
if, for every S and σ, it holds that

� Sσ �
{
= � S �σ′ if σ is injective
#2 � S �σ′ otherwise

where σ′ is such that ϕ� �(σ(a)) = σ′(ϕ� �(a)) for every a ∈ N .

To understand the distinction between injective and non-injective substitutions, as-
sume that σ fuses two (or more) different names. Then, the set of free names of Sσ is
smaller than the set of free names in S ; by compositionality, this fact leads to different
translations, in general. For example, if the translation introduces a name handler for
every free name, having sets of free names with different cardinality leads to inherently
different translations. However, non-injective substitutions are natural in name-passing
calculi, where language contexts can force name fusions. In this case, the formulation
with ‘=’ is too demanding and the weaker formulation (with ‘#2’) is needed. Thus,
this formulation implies that two name handlers for the same name are behaviourally
equivalent to one handler for that name; this seems to us a very reasonable requirement.
Notice that our definition of name invariance is definitely more complex than those,
e.g., of [9,29,32,33], where it is required that � Sσ � = � S �θ for some (not better speci-
fied) substitution θ. However, we do not think that our formulation is more demanding;
it is just more detailed and we consider this fact a further contribution of our paper.

Up to now, we have presented and discussed properties dealing with the way in
which an translation is defined; we are still left with the more crucial part of the criteria.
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We want to focus our attention on the computation capabilities of the languages (i.e.,
what the languages can calculate); thus, we require that the source and the target lan-
guage have the same computations. A widely accepted way to formalize this idea is via
operational correspondence that, intuitively, ensures two crucial aspects: (i) every com-
putation of a source term can be mimicked by its translation (thus, the translation does
not reduce the behaviours of the source term); and (ii) every computation of a translated
term corresponds to some computation of its source term (thus, the translation does not
introduce new behaviours).

Property 3 (Operational correspondence). A translation � · � : L1 → L2 is
operationally corresponding if it is

Complete: for all S �=⇒1 S ′, it holds that � S � �=⇒2#2 � S ′ �;
Sound: for all � S � �=⇒2 T , there exists an S ′ such that S �=⇒1 S ′

and T �=⇒2#2 � S ′ �.

Notice that operational correspondence is very often used for assessing the quality of
an encoding; thus, we have considered it to have a set of criteria that works well both for
encodability and for separation results. Nothing related to this property has ever been
assumed for separation results, except in [15,16] where, however, it was formulated in a
too demanding way. Also notice that the original formulation of operational correspon-
dence put forward in [28] does not use ‘#2’; for this reason, it is too demanding and,
indeed, several encodings (including those in loc.cit.) do not enjoy it. The problem is
that usually encodings leave some ‘junk’ process after having mimicked some source
language reduction; such a process invalidates the ‘exact’ formulation of this property.
The use of ‘#2’ is justified to get rid of potential irrelevant junks.

Another important semantic issue, borrowed from [9,12,19,26], is that a translation
should not introduce infinite computations, written '−→ω.

Property 4 (Divergence reflection). A translation � · � : L1 → L2 reflects di-
vergence if, for every S such that � S � '−→ω

2 , it holds that S '−→ω
1 .

One may argue that divergence can be ignored if it arises with negligible proba-
bility or in unfair computations. However, suppose that every translation of L1 in L2

introduces some kind of divergence; this means that, to preserve all the functionalities
of a terminating source term, every translation has to add infinite computations in the
translation of the term. This fact makes L2 not powerful enough to encode L1 and is
fundamental to proving several separation results (e.g., that the test-and-set primi-
tive cannot be encoded via any combination of read and write – see [19]).

It is interesting to notice that, with all the properties listed up to now, one can ac-
cept the translation that maps every source term into 0. Of course, this translation is
“wrong” because it does not distinguish processes with different interaction capabili-
ties. In process calculi, interaction capabilities are usually described either by the barbs
that a process exhibits [25] or by the set of tests that a process successfully passes
[13,34]. Barbs are often defined in a very ad hoc way, are chosen as the simplest pred-
icates that induce meaningful congruences and strictly depend on their language (even
though in [34] there is a preliminary attempt at a ‘canonical’ definition of barbs); for
this reason, we found it difficult to work out a satisfactory semantic property relying on
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barbs for encodings that translate a source language into a very different target language
(notice that barb correspondence is instead very natural in, e.g., [9,17,29] where similar
languages are studied). On the contrary, the testing approach is more uniform: it iden-
tifies a binary predicate P ⇓ O of successful computation for a process P in a parallel
context O (usually called observer, that is a normal process containing occurrences of
the success term

√
), and, by varying O, it describes the interactions P can be engaged

in. Moreover, the testing approach is at the same time more general and more elemen-
tary than barbs: the latters can be identified via elementary tests and test passing is the
basic mechanism for the ‘canonical’ definition of barbs in [34].

By following [3,7,8], we shall require that the source and the translated term behave
in the same way with respect to success. However, a formulation like “∀P∀O.P ⇓ O iff
� P � ⇓ � O �” is not adequate in our setting: indeed, it is possible to have a successful
computation for P|O but not for � P � | � O � since, because of compositionality, a suc-
cessful computation in the target would be possible only with the aid of the coordinating
context used to compositionally translate the parallel composition. Thus, we have to de-
fine ⇓ as a unary predicate and require that “∀P∀O.P|O ⇓ iff � P|O � ⇓”. For our aims,
it is not necessary to distinguish between processes and observers. Moreover, to formu-
late our property in a simpler way, we assume that all the languages contain the same
success process

√
and that ⇓means reducibility (in some modality, e.g. may/must/...) to

a process containing a top-level unguarded occurrence of
√

. This is similar to [17,29],
where

√
is an output over a reserved channel and ⇓ is defined in terms of may and must,

respectively. Clearly, different modalities in general lead to different results; in this pa-
per, proof will be carried out in a ‘may’ modality, but all our results could be adapted to
other modalities. Finally, for the sake of coherence, we require the notion of success be
caught by the semantic theory underlying the calculi, viz. #; in particular, we assume
that # never relates two processes P and Q such that P ⇓ and Q �⇓.

Property 5 (Success sensitiveness). A translation � · � : L1 → L2 is success
sensitive if, for every S , it holds that S ⇓ if and only if � S � ⇓.

3 Proving Known Separation Results

The properties we have just presented are met by most of the best known encodings
appearing in the literature (e.g. the encoding of polyadic communications into monadic
ones [24], of synchronous into asynchronous communications [5], and so on). More-
over, their combination yields a non-trivial proposal: the first encoding of the asynchro-
nous π-calculus into Mobile Ambients that satisfies all such criteria is in [14]. We now
show that their combination allows us to prove in a simpler and more uniform way the
best known separation results appearing in the literature.

For example, let us start with the separation results in [17]. There, they work by as-
suming (a form of) success sensitiveness, homomorphism of ‘|’ and name invariance
under any renaming policy that maps every name into a single name. The last two
properties, mainly the last one, are debatable. We now prove such results by removing
any assumption on the renaming policy and by allowing parallel composition be trans-
lated by introducing a centralized coordination process. Thus, we assume that, for every
N ⊆ N , there exist ñ and R such that CN

| [ 1 ; 2] = (ν̃n)( 1 | 2 | R).
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Theorem 1. There exists no encoding of πa in CCS.

Proof. By contradiction. Let a, b, c and d be pairwise distinct names and define
P � [x = b][c = c][d = d]

√
. Property 3 implies that � (a(x).P | 0) | a〈b〉 �

reduces to a process equivalent to �√ � that, by Property 5, reports success. Let

C{a,b,c,d}| [ 1 ; 2] be (ν̃n)( 1 | 2 | R); then, � a(x).P | 0 � ρ
=⇒ K and � a〈b〉 � |R ρ

=⇒ K′, for
(ν̃n)(K | K′) #2 �√ �. In particular, ρ � μ1 · . . . · μk and ρ � μ1 · . . . · μk, for
μi ∈ {mi, m̄i} and {m1, . . . ,mk} ∩ ñ = ∅ (indeed, � a(x).P | 0 � = (ν̃n)(� a(x).P � | � 0 � | R)

and � a(x).P | 0 � ρ
=⇒ imply that the names in ρ do not belong to ñ). Let σ be the per-

mutation that swaps a with c and b with d. By Property 2, � c(x).Pσ | 0 � ρ′

=⇒ Kσ′ and

� c〈d〉 � |R ρ′

=⇒ K′σ′, for (ν̃n)(Kσ′ | K′σ′) #2 �√ � and ρ′ = ρσ′; here σ′ denotes
the permutation of names induced by σ, as defined in Property 2. More precisely,
ρ′ � μ′1 · . . . · μ

′
k and ρ′ � μ′1 · . . . · μ

′
k, for μ′i � μiσ

′ and {σ′(m1), . . . , σ′(mk)} ∩ ñ = ∅.
Now, consider Q � ((a(x).P | 0) | a〈d〉) | ((c(x).Pσ | 0) | c〈b〉). Triv-

ially, Q �⇓ whereas, as we shall see, � Q � ⇓; this yields the desired
contradiction. By compositionality, � Q � � (ν̃n)((ν̃n)(� a(x).P | 0 � | � a〈d〉 � |R) |
(ν̃n)(� c(x).Pσ | 0 � | (� c〈b〉 � |R) | R). Then, consider � Q � �=⇒ (ν̃n)((ν̃n)(K | K′) |
(ν̃n)(Kσ′ | K′σ′) | R) #2 (ν̃n)(�√ � | �√ � | R), obtained by synchronizing

– μi produced by � a(x).P � with μi produced by � a〈d〉 � | R, if mi � ϕ� �(b);
– μi produced by � a(x).P � with μ′i produced by � c〈b〉 � | R, if mi ∈ ϕ� �(b);
– μ′i produced by � c(x).Pσ � with μ′i produced by � c〈b〉 � | R, if mi � ϕ� �(b);
– μ′i produced by � c(x).Pσ � with μi produced by � a〈d〉 � | R, if mi ∈ ϕ� �(b). )*

Theorem 2. There exists no encoding of MA in CCS.

Proof. The previous proof can be adapted to MA: indeed, in [14] we provide an en-
coding of channel based communications of πa in MA and in [32] it is shown how to
encode name matching in MA. Thus, process (a(x).[x = b][c = c][d = d]

√
| 0) | a〈b〉

can be written in MA and the proof then proceeds like above. )*

We now aim at proving other separation results, viz. those in [9,29,32,33], in a more
uniform and abstract setting. To this aim, however, we must leave the ideal framework
presented in Section 2 and make it slightly more concrete; carrying out proofs at the
abstract level is a challenging open problem. Mainly, we have to make some assump-
tions on the semantic theory of the target language, viz. ‘#2’. We propose three possible
instantiations that allow us to develop proofs.

3.1 First Setting

Let us assume that #2 is exact, i.e. T #2 T ′ and T
μ
−→ imply that T ′

μ
=⇒ , whenever μ � τ.

Notice that examples of exact equivalences are (the different kinds of) synchronous
bisimilarity and synchronous trace equivalence. Regretfully, under this assumption, we
are able to develop proofs only if CN

| [ 1; 2], the context used to compositionally trans-
late the parallel composition of two processes with free names in N, is 1 | 2, for
every set of names N; thus, similarly to [9,17,29,30,32,33], we are now working with
encodings that translate ‘|’ homomorphically.
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Theorem 3. Assume that there is a L1-process S such that S '−→/ 1, S �⇓ and S | S ⇓;
moreover, assume that every L2-process T that does not reduce is such that T | T '−→/ 2.
If #2 is exact, then there cannot exist any encoding � · � : L1 −→ L2 that translates ‘|’
homomorphically.

Proof. We work by contradiction. First, let us fix, for every L1-process S that does
not reduce, a L2-process f (� S �) such that � S � �=⇒2 f (� S �) '−→/ 2; such a process
always exists because of Property 4 (when � S � does not reduce, we can always let
f (� S �) = � S �). Now, consider the auxiliary encoding 	 · 
 : L1 −→ L2 such that:

	 S 
 �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f (� S �) if S '−→/ 1	 S 1 
 | 	 S 2 
 if S = S 1 | S 2 '−→1� S � otherwise

Such an encoding satisfies the following two properties:

A. if S '−→/ 1 then 	 S 
 '−→/ 2 B. 	 S 
 #2 � S �
Property A follows by construction of 	 · 
; let us prove Property B, by induction on the
structure of S . If S '−→/ 1 (base step and first sub-case of the inductive step), then, by
operational completeness (that is part of Property 3), we have that � S � �=⇒2 f (� S �)
implies the existence of a S ′ such that S �=⇒1 S ′ and f (� S �) �=⇒2#2 � S ′ �. Since
S '−→/ 1, we have that S ′ can only be S itself; moreover, the fact that f (� S �) '−→/ 1 implies
that 	 S 
 #2 � S �, as desired. If S = S 1 | S 2 '−→1 then, by structural induction, 	 S 1 
 #2� S 1 � and 	 S 2 
 #2 � S 2 �; we easily conclude by congruence of #2 with respect to
parallel composition. The third sub-case is trivial, by reflexivity of #2.

Now, let us take a L1-process S such that S '−→/ 1, S �⇓ and S | S ⇓; by Property 5 and
homomorphism, we have that � S � �⇓ and � S | S � � � S � | � S � ⇓. This implies that

� S � | � S � '−→2, with � S � μ
−→ and � S � μ̄

−→ , for some pair of complementary actions
μ and μ̄ (here we are assuming binary synchronizations, as often happens in process

calculi). Since #2 is ‘exact’, we can use property B to obtain that 	 S 
 μ
−→ and 	 S 
 μ̄

−→ ;
thus, 	 S 
 | 	 S 
 '−→2 whereas, by S '−→/ 1 and property A, 	 S 
 '−→/ 2, in contradiction
with the hypothesis. )*

Corollary 1. There exist no encoding of πmix, CCS and MA in πsep that translates ‘|’
homomorphically.

Proof. Take any ‘exact’ behavioural theory for πsep (e.g., strong/branching/weak bisim-
ilarity, both in their early/late/open form, or may/must/fair testing, just to mention some
possibilities). On one hand, notice that, if T is a πsep-process such that T | T '−→2,
then T ≡ (ν̃n)(Σm

i=1ai(xi).Ti | Σn
j=1a′j〈b j〉.T ′j | T ′′) and there exist i ∈ {1, . . . ,m} and

j ∈ {1, . . . , n} such that ai = a′j. Thus, trivially, T '−→2; hence, every πsep-process T that
does not reduce is such that T | T '−→/ 2.

On the other hand, we can find both in CCS, in πmix and in MA a process
S that does not reduce and does not report success, but such that S | S reports
success: it suffices to let S be a.0 + ā.

√
in CCS, a(x).0 + a〈b〉.

√
in πmix and

(νp)(open p.
√
| n[in n.p[out n.out n.0]]) in MA. )*
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3.2 Second Setting

We now consider a second setting where #2, the semantic theory of the target language,
is reduction sensitive; this means that T #2 T ′ and T ′ '−→ imply that T '−→. Exam-
ples of reduction sensitive equivalence/preorders are strong synchronous/asynchronous
bisimulation [1,22] and the expansion preorder [2].

Working under this assumption has the advantage that we are able to carry out proofs
also under translations of ‘|’ more liberal than the homomorphic one. As already said,
the fact that parallel composition must be translated homomorphically can be criticized
and some authors [26] advocate a more liberal formulation, that we now consider. In
particular, for every N, we let CN

| [ 1; 2] = (ν̃n)( 1 | 2 | R), for some process R and re-
stricted names ñ that only depend on N. We would like to remark that an unconstrained
form of compositionality (where nothing is said on CN

| [ 1; 2]) would not change the
validity of the results we obtain; it would just force us to prove Theorems 4 and 5 is
specific cases and not in a general setting, as now they are.

A Uniform Approach to Separation Results. We now describe the methodological ap-
proach we shall follow to prove separation results. The key fact that will enable all our
proofs is the following (adapted from [15] and corresponding to property A in the proof
of Theorem 3).

Proposition 1. If #2 is reduction sensitive and � · � : L1 −→ L2 is an encoding, then
S '−→/ 1 implies that � S � '−→/ 2, for every S .

Proof. By contradiction, assume that � S � '−→2 T , for some S '−→/ 1. By operational
soundness, there exists a S ′ such that S �=⇒1 S ′ and T �=⇒2 T ′ #2 � S ′ �; but the only
such S ′ is S itself. Since #2 is reduction sensitive and since � S ′ � = � S � '−→2 , then
T ′ '−→2 T ′′. Again, by operational soundness T ′′ �=⇒2 T ′′′ #2 � S �, and so on; thus,
� S � '−→2 T '−→2 T ′′ '−→2 . . ., in contradiction with Property 4 (since S '−→/ 1 implies
that S does not diverge). )*

Another crucial consequence of our criteria is the following proposition.

Proposition 2. Let � · � : L1 −→ L2 be an encoding and #2 be reduction sensitive. If
there exist twoL1-terms S 1 and S 2 such that S 1 | S 2 ⇓, with S i �⇓ and S i '−→/ for i = 1, 2,
then � S 1 � | � S 2 � '−→ .

Proof. In this proof, let us assume the following notation: block(S ) denotes any term S ′

such that Fn(S ′) = Fn(S ), S ′ '−→/ 1 and S ′ #1 0. It is easy to build such a S ′: it suffices
to prefix S with any blocking action involving a fresh restricted name.

By Properties 1 and 5, � S 1 | S 2 � = (ν̃n)(� S 1 � | � S 2 � | R) ⇓. However, since
none of � S 1 �, � S 2 � and � block(S 1) | block(S 2) � can report success, it must be that
� S 1 | S 2 � '−→2 . This can only happen either because � S 1 � | R '−→2 , or because
� S 2 � | R '−→2 , or because � S 1 � | � S 2 � '−→2. The first two possibilities are impos-
sible, because otherwise � S 1 | block(S 2) � '−→2 or � block(S 1) | S 2 � '−→2 and this
would violate Proposition 1: S 1 | block(S 2) '−→/ because S 1 '−→/ 1, block(S 2) '−→/ 1 and
block(S 2) #1 0, and similarly for block(S 1) | S 2. )*
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In this framework, the way in which we prove a separation result between L1 andL2 is
the following:

(a) by contradiction, suppose that there exists an encoding � · � : L1 −→ L2;
(b) find a pair of L1-processes S 1 and S 2 that satisfy the hypothesis of Proposition 2;

by such a result, � S 1 � | � S 2 � '−→ ;
(c) from S 2 obtain a process S ′2 such that S 1 | S ′2 '−→/ but � S 1 � | � S ′2 � '−→ ;
(d) by Property 1, this implies that � S 1 | S ′2 � '−→ , in contradiction with Proposition 1.

Notice that the identification of S 1 and S 2 (point (b) above) is usually very simple: they
are directly obtained from the constructs of L1 that one believes not to be encodable
in L2. This is different from [9,17,29,32,33] where, instead, a lot of efforts must be
spent to define a programming scenario that can be properly implemented in the source
language but not in the target one. Point (c) is the only part that requires some ingenuity
(it can be easy or quite difficult): usually, it strongly relies on Property 2 (sometimes
also on compositionality) to slightly modify S 2 in order to obtain the new process S ′2.

A Simpler Proof of Known Separation Results. First, we reformulate Theorem 3 by
changing the hypothesis on #2; this modification will allow us to obtain Corollary 1
under a different choice of semantic theories for πsep.

Theorem 4. Assume that there is a L1-process S such that S '−→/ 1, S �⇓ and S | S ⇓;
moreover, assume that every L2-process T that does not reduce is such that T | T '−→/ 2.
Also assume that #2 is reduction sensitive. Then, there cannot exist any encoding � · � :
L1 −→ L2.

Proof. By contradiction. Let S be such that S '−→/ 1, S �⇓ and S | S ⇓; by Proposition 2,
� S � | � S � '−→2 that, by hypothesis, implies that � S � '−→2 , in contradiction with
Proposition 1. )*

We now give a second proof-technique that allows us to obtain the hierarchy for
polyadic synchronizations in [9] and to adapt the results in [15,16] to the present set-
ting. To this aim, let us define the matching degree of a language L, written Md(L), as
the greatest number of names that must be matched to yield a reduction in L. For exam-
ple, the matching degree of CCS [22], of the π-calculus [22] and of Mobile Ambients
[11] is 1; the matching degree of Dπ [18] is 2; the matching degree of πn (the π-calculus
with n-ary polyadic synchronizations [9]) is n; the matching degree of eπ (the π-calculus
with arbitrary polyadic synchronizations [9]) is ∞. Indeed, as a representative sample,
the π-calculus process a(x).P | a〈b〉.Q can reduce because of the successful matching
between the channel name specified for input and for output (a here).1

Theorem 5. If Md(L1) > Md(L2), then there exists no encoding � · � : L1 −→ L2.

1 Incidentally, the early-style LTS for the π-calculus also verifies that
āb−→ synchronizes with

ab
−→ . However, this does not imply that the matching degree of the π-calculus is 2. Indeed, the

process that generates label ab can generate label ac, for every name c; thus, the only name
that is matched is the name of the communication channel (a in this case), whereas the second
name (viz. b) is only a parameter exchanged.
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Proof. By contradiction. Pick two L1-processes S 1 and S 2 that satisfy the hypothesis
of Proposition 2 and that synchronize only once (before reporting success) by matching
exactly k = Md(L1) names, viz. {n1, . . . , nk}. By Proposition 2, their encodings must

synchronize: i.e., � S 1 � μ
−→ and � S 2 � μ̄

−→ . Since Md(L1) > Md(L2), it must be that the
names in Fn(μ) ∩ Fn(μ̄) matched when synchronizing μ and μ̄ (say, {m1, . . . ,mh}) are
less than k; this implies the existence of an ni such that ϕ� �(ni) ∩ {m1, . . . ,mh} = ∅. Let
us choose a fresh m (i.e., m � Fn(S 1)∪ Fn(S 2)∪ Fn(μ)∪ Fn(μ̄)) and consider the substi-
tution σ that swaps m and ni. Trivially, S 1 | S 2σ '−→/ 1, whereas their encodings do syn-

chronize (in contradiction with Proposition 1): by Property 2, � S 2σ � = � S 2 �σ′ μ̄σ′

−−→ ,
with μ̄σ′ that is still synchronizable with μ because σ′ swaps component-wise ϕ� �(ni)
and ϕ� �(m) (and so it does not touch {m1, . . . ,mh}). )*

Corollary 2. There exists no encoding from eπ into πm, for every m, and from πm into
πn, whenever m > n.

Proof. Observe that Md(eπ) = ∞ and that Md(πm) = m; then apply Theorem 5. )*

Proving New Separation Results and Building Hierarchies of Languages. We have just
shown that our approach is more ‘usable’ than previous approaches to separation re-
sults, since it can be used to prove known results in a simpler and more uniform way.
However, it also has the advantage of allowing the proof of new separation results: in
[14], we exploit such criteria to compare the relative expressive power of several calculi
for mobility (viz., the asynchronous π-calculus, a distributed π-calculus, a distributed
version of Linda, and Mobile/Safe/Boxed Ambients together with several of their vari-
ants); moreover, the results in [15,16] can be easily re-formulated under Properties 1–5.
Finally, least but not last, the fact that our criteria are also well-suited for encodability
results allows us to build hierarchies of languages in a uniform way.

3.3 Third Setting

The setting presented in Section 3.2 relies on the assumption that #2 is reduction sensi-
tive. This restriction seems us not too severe, since most of the operational correspon-
dence results appearing in the literature are formulated up to such semantic theories; the
only notable exception we are aware of is [26,28], where weak (asynchronous) bisim-
ilarity [1] is exploited. We now sketch a weaker setting, that covers all the separation
results we are aware of (including [26,28]) without breaking the elegant and powerful
proof-techniques developed in Section 3.2.

We have said that the aim of formulating operational correspondence up to #2 is to
get rid of junk processes possibly arising from the encoding. We can make this intuition
explicit by formulating operational correspondence as follows:

– for all S �=⇒1 S ′, there exist ñ and T ′ such that � S � �=⇒2 (ν̃n)(� S ′ � | T ′) #2 � S ′ �;
– for all � S � �=⇒2 T , there exist S ′, ñ and T ′ such that S �=⇒1 S ′ and T �=⇒2

(ν̃n)(� S ′ � | T ′) #2 � S ′ �.

Maybe, such a formulation can be criticized by saying that it is too ‘syntactic’, but
in practice we are not aware of any encoding that does not satisfy it. Restricting #2
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Table 1. Comparison between different separation methodologies. For every result, we list where
it appears (‘×’ if it has never been published and ‘?’ if we believe that it holds but we have not
been able to prove it) and the criteria adopted: (a) stands for homomorphism w.r.t. ‘|’, (a form
of) name invariance and (a form of) success sensitiveness; (b) is (a) plus a condition requiring
that source processes without shared free names must be translated into target processes without
shared free names; (c) is (a) plus divergence reflection.

Electoral Systems Matching Systems Our Criteria
1st setting 2nd setting 3rd setting

CCS −→/ πsep [29] (a) × � � �
πmix −→/ πsep [29] (a) × � � �
MA −→/ πsep [32] (a) × � � �

eπ −→/ πm −→/ πn

(m > n)
× [9] (c) ? � �

MA −→/ CCS [33] (b) [17] (a) �
πa −→/ CCS [29] (b) [17] (a) �

to pairs of kind ((ν̃n)(T | T ′), T ), for (ν̃n)(T | T ′) #2 T , yields a reduction sensitive
relation, for any #2; thus, Propositions 1 and 2 (and, consequently, all the results proved
in Section 3.2) hold also in this setting without requiring reduction sensitiveness of #2.

4 Conclusion

We have presented some criteria that an encoding should satisfy to be considered a
good means for language comparison. We have argued that the resulting set of criteria
is a satisfactory notion for assessing the relative expressive power of process calculi
by noting that most of the best known encodings appearing in the literature satisfy
them. Moreover, this notion is not trivial, because there exist known encodings that do
not satisfy all the criteria we have proposed: a representative sample is given by the
encodings of the π-calculus in Mobile Ambients [10,11].

This paper is mostly methodological, as it describes a new approach both to encod-
ability and to separation results. On one hand, we believe that, for encodability results,
we have proposed a valid alternative to full abstraction for comparing languages: our
proposal is more focused on expressiveness issues, whereas full abstraction is more
appropriate when we look for a tight correspondence between the behavioural equiv-
alences associated with the compared languages. We think that full abstraction is still
an interesting notion to investigate when developing an encoding, but it should be con-
sidered an “extra-value”: if it holds, the encoding is surely more interesting, because
it enables not only a comparison of the languages, but also of their associated equiv-
alences. On the other hand, our proposal is also interesting for separation results: as
we have shown, several separation results appearing in the literature can be formulated
and proved (in an easier and more uniform way) in terms of our criteria. In Table 1
we have comparatively listed such results. Roughly speaking, the approach taken in
[9,17,29,32,33] consists in (i) identifying a problem that can be solved in the source
language but not in the target, and then (ii) finding the least set of criteria that an encod-
ing should meet to translate a solution of the problem in the source into a solution of the
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problem in the target. Concerning point (ii), we have already argued that the criteria put
forward by our criteria are not more demanding than those in [9,17,29,32,33]. Concern-
ing point (i), we are only aware of two kinds of problem: symmetric electoral systems
[29,32,33] and matching systems [9,17]. However, none of them is ‘universal’, in the
sense that different separation results usually require different separation problems (see
the ‘×’ in Table 1).

Of course, there is still a lot of work to do. For example, with the general formulation
of our criteria (see Section 2) we have only been able to prove the last two separation
results of Table 1, even though we strongly believe that also the remaining ones hold.
It would be nice to prove more separation results in the general framework because,
in that setting, such results are very strong, being the formulation of our criteria more
liberal and abstract.

An orthogonal research line could be the study of enhanced kinds of translation.
For example, it may happen to have a ‘two-level’ encoding [4,6] where � · � is a trans-
lation that satisfies Properties 2–5 and is such that � P � � CFn(P)[	 P 
], where 	 · 

is a compositional translation (this property is called weak compositionality in [31]).
The proof-techniques presented in Sections 3.2 and 3.3 can be readily adapted to this
enhanced notion of encoding, whereas the proof-technique of Section 3.1 cannot (re-
call that there we had to work with homomorphic translations of parallel composition).
Another possibility [21,23] is to define an encoding as a family of translations � · �Ξ
indexed with a set or a sequence of names Ξ (representing, e.g., an upper bound on the
free names of the translated process or some auxiliary parameters for the translation).
In this case, our framework is less adequate: it is difficult to adapt our properties and
carry out proofs without knowing what the index represents. For example, which is the
initial (i.e., top-level) value of Ξ in � · �Ξ? Are Ξ names in the source or in the target
language? The latter question is very delicate: in the first case, Property 2 should be
adapted by requiring that � Sσ �Ξσ is equal/equivalent to (� S �Ξ)σ′; in the second case,
we have that � Sσ �Ξσ′ must be equal/equivalent to (� S �Ξ)σ′. Thus, even if we believe
that such an enhanced form of encoding is reasonable, we have problems in adapting
our framework without specifying anything on the index.

To conclude, the challenge raised in [27] is still open, but we think and hope that our
proposal can contribute to its final solution.

Acknowledgments. I am grateful to Daniele Varacca, Jesus Aranda, Frank Valencia
and Cosimo Laneve for several comments that improved an earlier draft of this work.
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Abstract. Comparison between different formalisms and models is of-
ten by flattening structure and reducing them to behaviorally equivalent
models e.g., automaton and Turing machine. This leads to a notion of
expressiveness which is not adequate for component-based systems where
separation between behavior and coordination mechanisms is essential.
The paper proposes a notion of glue expressiveness for component-based
frameworks characterizing their ability to coordinate components.

Glue is a closed under composition set of operators mapping tuples
of behavior into behavior. Glue operators preserve behavioral equiva-
lence. They only restrict the behavior of their arguments by performing
memoryless coordination.

Behavioral equivalence induces an equivalence on glue operators. We
compare expressiveness of two glues G1 and G2 by considering whether
glue operators of G1 have equivalent ones in G2 (strong expressiveness).
Weak expressiveness is defined by allowing a finite number of additional
behaviors in the arguments of operators of G2.

We propose an SOS-style definition of glues, where operators are char-
acterized as sets of SOS-rules specifying the transition relation of com-
posite components from the transition relations of their constituents. We
provide expressiveness results for the glues of BIP and of process algebras
such as CCS, CSP and SCCS. We show that for the considered expres-
siveness criteria, glues of the considered process calculi are less expressive
than general SOS glue. Furthermore, glue of BIP has exactly the same
strong expressiveness as glue definable by the SOS characterization.

1 Introduction

A central idea in systems engineering is that complex systems are built by assem-
bling components. Large components are obtained by “gluing” together simpler
ones. “Gluing” can be considered as an operation on sets of components.

Component-based techniques have seen significant development, especially
through the use of object technologies supported by languages such as C++,
Java, and standards such as UML and CORBA. There exist various component
frameworks encompassing a large variety of mechanisms for composing compo-
nents. They focus rather on the way components interact than on their internal
behavior. We lack adequate notions of expressiveness to compare the merits and
weaknesses of these frameworks.
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Usually, comparison between formalisms and models is by flattening structure
and reduction to a behaviorally equivalent model e.g., automaton and Turing
machine. In this manner, all finite state formalisms turn out to be expressively
equivalent independently of the features used for composition of behaviors. Many
models and languages are Turing-expressive, while their coordination capabilities
are tremendously different. This fact motivated work on the expressive power
of programming languages. Felleisen [1] has provided a framework formally cap-
turing meanings of expressiveness for sequential programming languages and
taking into account not only the semantics but also the primitives of languages.
Although the general framework is interesting, for component-based systems we
need specific results focusing on composition and allowing comparison of differ-
ent composition operators.

This paper proposes a notion of glue expressiveness for component-based sys-
tems. It builds on results and concepts presented in [2] that guided the design
of the BIP (Behavior, Interaction, Priority) framework [3]. BIP allows the con-
struction of complex components from atomic ones represented as labeled tran-
sition systems, by using two classes of operators: 1) Interaction operators which
compose the behavior of their arguments by using interactions (strongly syn-
chronized transitions); 2) Priority operators which are unary operators used to
restrict non-determinism of their arguments by disabling an interaction when
some interaction of higher priority is enabled.

We consider a framework where composite components are built by appli-
cation of glue operators. Components are characterized by their behavior and
represented in some semantic domain B equipped with an equivalence relation
R. For instance, behaviors can be modeled as labeled transition systems, with
an equivalence relation such as strong bisimulation, ready simulation, or simu-
lation. In this case, the behavior of a component consists of all its states and
transitions. In general, the behavior is not modified when the component takes
a transition. This constitutes an important difference with the process algebra
setting, where processes evolve to become other processes.

The concept of glue operator is a generalization of operators in BIP. Parallel
composition operators of the process calculi CCS, SCCS, or CSP, are glue op-
erators as well as their unary operators such as labeling, hiding and restriction.
Contrary to interleaving, non-deterministic choice is not a glue operator, as it
requires additional memory: the choice is applied only once and remains the
same for all subsequent transitions of the composed system.

A glue on B is a closed under composition set G of operators transforming
behavior, i.e. mapping tuples of behaviors to behaviors. We require that glue
operators only restrict the behavior of their arguments without adding new one,
i.e. perform memoryless coordination of behavior.

The equivalence relation R on B induces an equivalence relation on glue op-
erators: two n-ary glue operators are equivalent if for any n-tuple of behaviors
from B they give equivalent behaviors. The proposed notion of expressiveness
allows the comparison of two glues G1 and G2 on the same semantic domain B
by considering whether for any glue operator gl1 ∈ G1 there exists an equivalent
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operator gl2 ∈ G2 (strong expressiveness). Weak expressiveness is defined by
allowing a finite number of additional behaviors in the arguments of gl2.

The main results of the paper can be summarized as follows:

– We propose an SOS-style definition of glues, where operators are charac-
terized as sets of SOS-rules specifying the transition relation of composite
components from the transition relations of their constituents. The premises
of the rules may involve both positive and negative predicates specifying
respectively enabledness or non-enabledness of transitions of components.

– We show that relations, induced on glues by strong bisimulation, ready simu-
lation (preorder and equivalence), and simulation equivalence, coincide. This
allows a simple characterization of glue operators as formulae of an algebra
generated from the set of the ports of the components by using disjunction,
conjunction, and negation operators. The algebra has most of the axioms of
a boolean algebra. It does not have the absorption axiom, which is replaced
by a weaker one.

– Using this algebraic characterization of glues, we provide expressiveness re-
sults for the glues of BIP and of process algebras such as CCS, CSP and
SCCS. They show that, for the considered expressiveness criteria, glues of
the considered process calculi are less expressive than general glue operators.
Furthermore, glue of BIP has exactly the same strong expressiveness as glue
definable by the SOS characterization.

The paper is structured as follows. In Sect. 2, we define basic notions that we
use in the paper: LTS, SOS-style glue operators, and equivalence relations on
these; we provide some results that allow, in particular, to define the algebra of
glue formulae, AGF(P ), used to encode the glue operators. In Sect. 3 we intro-
duce the notions of glue expressiveness. In Sect. 4, we use AGF(P ) to compare
expressiveness of the glues of CCS, CSP, SCCS, and BIP. We conclude, in Sect. 5,
by discussing the results and some directions for future work.

2 Labeled Transition Systems and Glue Operators

In this section, we introduce labeled transition systems (LTS), used to describe
behavior, as well as composition operators on these defined in terms of SOS [4].

2.1 Labeled Transition Systems

Definition 1. A labeled transition system is a triple B = (Q,P,→), where Q is
a set of states, P is a set of ports, and →⊆ Q× 2P ×Q is a set of transitions,
each labeled by an action (i.e. a subset of ports).

For q, q′ ∈ Q and a ∈ 2P , we write q a→ q′, if (q, a, q′) ∈→. An interaction
a is enabled in state q, denoted q a→, if there exists q′ ∈ Q such that q a→ q′. If
such q′ does not exist, a is disabled, denoted q � a→.

Notice that reachability related issues are not in the scope of this paper. Conse-
quently, we do not speak of initial states of LTS.
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Definition 2. Let B1 = (Q1, P1,→) and B2 = (Q2, P2,→) be two LTS, and let
R ⊆ Q1 ×Q2 be a binary relation. R is

1. a simulation iff, for all q1R q2, q1
a→ q′1 implies q2

a→ q′2, for some q′2 ∈ Q2

such that q′1R q′2.
2. a ready simulation iff it is a simulation and, for q1R q2, q1 � a→ implies q2 � a→.
3. a bisimulation iff both R and R−1 are simulations.

We write B1 �S B2 (resp. B1 �RS B2) if there exists a simulation (resp.
ready simulation) relating each state of B1 to some state of B2. �S and �RS are
respectively the simulation and the ready simulation preorders on behaviors. We
denote by ,X = �X ∩ �−1

X , with X ∈ {S,RS}, the corresponding equivalences.
Similarly, B1 ↔B2, iff there exists a bisimulation relating all states of both

B1 and B2. ↔ is the bisimulation equivalence on behaviors.

Remark 1. It is well known (e.g., [5]) that these relations are connected by the
following inclusions: ↔ ⊆ ,RS ⊆ ,S and �RS ⊆ �S .

2.2 Glue Operators

Structural Operational Semantics (SOS) [4,6] has been used to define the seman-
tics of programs in terms of LTS. A number of SOS formats have been developed,
using various syntactic features [7].

We consider a very simple setting focusing exclusively on behavior composi-
tion. In the context of component-based systems, definition of glue only requires
the specification of parallel composition operators, as sequential and recursive
computation can be represented by individual behaviors. Below, we propose an
SOS rules format for component-based composition.

Definition 3. An n-ary glue operator gl is defined as follows. The application
of gl to behaviors Bi = (Qi, Pi,→), for i ∈ [1, n], is a behavior gl(B1, . . . , Bn) =
(Q,P,→), with state space Q =

∏n
i=1Qi the Cartesian product of Qi, set of

ports P =
⋃n

i=1 Pi, and the maximal transition relation derivable with a set of
inference rules of the form

r = {Bi : qi
ai−→ q′i}i∈I {Bj : qj �

bjk−→ | k ∈ [1,mj ]}j∈J

gl(B1, . . . , Bn) : q1 . . . qn
a−→ q̃1 . . . q̃n

(premises)
(conclusion)

, (1)

where I, J ⊆ [1, n]; a =
⋃

i∈I ai; and q̃i = q′i, for i ∈ I, and q̃i = qi, for i �∈ I.
Premises of the form B : q a→ q′ are called positive, those of the form B : q � a→
are called negative. Additionally, we require that

1. for each i ∈ [1, n], r has at most one positive premise involving Bi;
2. r has at least one positive premise;
3. a label can appear either in positive or in negative premises, but not in both.1

1 A rule with contradictory premises would never be applicable. We include this con-
dition, as it simplifies further proofs and formulations.
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We denote by Pos(r) and Neg(r) the sets of positive and negative premises
of r respectively (notice that a rule is completely defined by its premises). We
identify the glue operator gl with its defining set of derivation rules. A glue
operator having no negative premises in any of its derivation rules is called a
positive glue operator.

Lemma 1 ([5]). Glue operators preserve ready simulation and bisimulation,
i.e. B1RB′

1 implies, gl(B1, B2, . . . , Bn)R gl(B′
1, B2, . . . , Bn), for any behaviors

B1, . . . , Bn, and B′
1, an n-ary glue operator gl, and R ∈ {�RS ,,RS , ↔ }.

The simulation preorder is preserved by positive glue operators.

Example 1 (Rendezvous). Consider the family of binary operators ρa,b, parame-
terized by two labels. For each pair of labels a, b ∈ 2P , the composite behavior
ρa,b(B1, B2) is inferred from B1 and B2 by the set of rules

B1 : q1
a→ q′1 B2 : q2

b→ q′2

ρa,b(B1, B2) : q1q2
ab→ q′1q

′
2

. (2)

and, for all x �= a and y �= b,

B1 : q1
x→ q′1

ρa,b(B1, B2) : q1q2
x→ q′1q2

,
B2 : q2

y→ q′2
ρa,b(B1, B2) : q1q2

y→ q1q
′
2

. (3)

For two behaviors B1, B2 having transitions labeled respectively by a and b,
ρa,b(B1, B2) is the parallel composition of B1 and B2, where a strong synchro-
nization of a and b is the only possible action.

Example 2 (Broadcast). Consider the family of binary operators βa,b, parame-
terized by two labels. For each pair of labels a, b ∈ 2P , the composite behavior
βa,b(B1, B2) is inferred from B1 and B2 by the set of rules

B1 : q1
a→ q′1

βa,b(B1, B2) : q1q2
a→ q′1q2

,
B1 : q1

a→ q′1 B2 : q2
b→ q′2

βa,b(B1, B2) : q1q2
ab→ q′1q

′
2

. (4)

For two behaviors B1, B2 having transitions labeled respectively by a and b,
βa,b(B1, B2) is the parallel composition of B1 and B2, where interactions a and
b are weakly synchronized with a being the trigger. In other words, B2 can
perform a transition on b only if it is synchronized with a transition of B1 on a.

Example 3 (Priority). Consider the family of unary operators πa,b, parameter-
ized by two labels. For each pair of labels a, b ∈ 2P , the composite behavior
πa,b(B) is inferred from B by the set of rules

B : q a→ q′ B : q � b→
πa,b(B) : q a→ q′

,
q

b→ q′

πa,b(B) : q b→ q′
. (5)

For a behavior B having transitions labeled by a and b, πa,b(B) is the restriction
of B, where the interaction a can only happen if b is not possible, i.e. a has lower
priority than b.
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2.3 Relations on Glue Operators

The relations on LTS defined above are canonically extended to glue operators.

Definition 4. For R ∈ {�S,�RS ,,S ,,RS , ↔ }, the relation R is extended to
glue operators by putting, for any two n-ary glue operators gl1 and gl2,

gl1R gl2
def⇐⇒ ∀B1, . . . , Bn, gl1(B1, . . . , Bn)R gl2(B1, . . . , Bn) . (6)

Clearly, the inclusions of Rem. 1 also hold for relations on glue operators.

Lemma 2. Two glue operators gl1 = {r1} and gl2 = {r1, r2}, with Pos(r1) =
Pos(r2) and Neg(r1) ⊆ Neg(r2), are bisimilar gl1 ↔ gl2.

Proof. The proof follows immediately from the definition of bisimilarity. It is
based on the fact that, whenever r2 is applicable, r1 can also be applied. "#

Definition 5. If a glue operator does not have redundant rules as in Lem. 2, we
say that it is without redundancy.

Lemma 3. Let gl1, gl2 be glue operators, and gl1 be without redundancy. gl1 �S

gl2 implies that, for each rule r1 ∈ gl1, there is a rule r2 ∈ gl2 having Pos(r2) =
Pos(r1) and Neg(r2) ⊆ Neg(r1).

Proof. Consider the rule (cf. Def. 3)

r1 = {Bi : qi
ai−→ q′i}i∈I {Bj : qj �

bjk−→ | k ∈ [1,mj ]}j∈J

gl(B1, . . . , Bn) : q1 . . . qn
a−→ q̃1 . . . q̃n

∈ gl1 ,

and, for i ∈ [1, n], B1
i = (Qi, P,→i) having Qi = {qi} and →i defined by

→i =

{
{qi a→ qi | a ∈ 2P }, for i �∈ J,
{qi a→ qi | a ∈ 2P } \ {qi

bik→ qi | k ∈ [1,mi]}, for i ∈ J .
(7)

Both behaviors obtained by applying gl1 and gl2 to B1
1 , . . . , B

1
n have exactly one

state that we denote respectively q′ and q′′.
All the premises of r1 are satisfied in q′. Hence q′ a→ q′ in gl1(B1

1 , . . . , B
1
n).

By simulation gl1 �S gl2, we also have gl1(B1
1 , . . . , B

1
n) �S gl2(B1

1 , . . . , B
1
n).

Hence, q′′ a→ q′′ in gl2(B1
1 , . . . , B

1
n), and there exists a rule r2 ∈ gl2 enabling this

transition. Thus, Pos(r2) = Pos(r1) and Neg(r2) ⊆ Neg(r1). "#

Proposition 1. Let gl1, gl2 be glue operators without redundancy. Then gl1 ,S

gl2 implies gl1 = gl2, where = is the equality of sets of derivation rules.

Proof. Consider a rule r1 ∈ gl1. By Lem. 3, gl1 �S gl2 implies that there exists
r2 ∈ gl2 having Pos(r2) = Pos(r1) and Neg(r2) ⊆ Neg(r1), whereas gl2 �S gl1
implies that there exists r′1 ∈ gl1 having Pos(r′1) = Pos(r2) and Neg(r′1) ⊆
Neg(r2). By non-redundancy of gl1, we conclude r′1 = r1 = r2, i.e. gl1 ⊆ gl2. By
symmetry, this proves the proposition. "#
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Proposition 2. Let gl1, gl2 be glue operators without redundancy. Then gl1 �RS

gl2 implies gl1 = gl2, where = is the equality of sets of derivation rules.

Proof. 1) Let gl1 �RS gl2 and consider a rule r1 ∈ gl1. By Lem. 3, there exists
r2 ∈ gl2, such that Pos(r2) = Pos(r1) and Neg(r2) ⊆ Neg(r1). Suppose that
Neg(r2) 
 Neg(r1), i.e. there exists a negative premise (B : q � b→) ∈ Neg(r1) \
Neg(r2). Consider, for i ∈ [1, n], the behaviors B2

i = (Qi, P,→i), constructed
as in (7), but removing the transition corresponding to this premise. As in the
proof of Lem. 3, we denote q′ and q′′ the unique states of gl1(B2

1 , . . . , B
2
n) and

gl2(B2
1 , . . . , B

2
n) respectively. Clearly all the premises of r2 are still satisfied and

a transition q′′ a→ q′′ is possible in gl2(B2
1 , . . . , B

2
n). On the other hand, the

premises of r1 are no longer satisfied.
Suppose that there exists another rule r′1 ∈ gl1, which allows the transition

q′
a→ q′ in gl1(B2

1 , . . . , B
2
n). As above, we have Pos(r′1) = Pos(r1) = Pos(r2) and

Neg(r′1) ⊆ Neg(r2) ⊆ Neg(r1), which violates the non-redundancy assumption.
Assuming that there is no such rule r′1 ∈ gl1, we conclude that q′ � a→ in

gl1(B2
1 , . . . , B

2
n), which, by ready simulation, implies a contradiction: q′′ � a→ in

gl2(B2
1 , . . . , B

2
n). Hence, Neg(r2) = Neg(r1), i.e. r1 = r2 ∈ gl2 and gl1 ⊆ gl2.

2) Assume now that gl1 
 gl2, i.e. there exists a rule r2 ∈ gl2 \ gl1 with
conclusion labeled by some interaction a. We consider again the behaviors B1

i ,
for i ∈ [1, n], constructed as above. Again, we have q′′ a→ q′′ in gl2(B1

1 , . . . , B
1
n),

and, by ready simulation, q′ a→ q′ in gl1(B1
1 , . . . , B

1
n). Hence, there exists r1 ∈

gl1 ⊆ gl2 enabling this transition. As above, we have Pos(r1) = Pos(r2) and
Neg(r1) ⊆ Neg(r2), which contradicts the non-redundancy of r2. "#

This proves the following theorem, implying that to compare glue operators it
is sufficient to compare the corresponding sets of SOS rules.

Theorem 1. Bisimulation, ready simulation preorder and equivalence, and sim-
ulation equivalence on glue operators coincide: ↔ = ,RS = ,S = �RS. All
these relations coincide with the equality of operators as sets of rules.

2.4 The Algebra of Glue Formulae

Theorem 1 also allows to define an algebraic encoding of glue operators, which
we use, in particular, to define the composition of glue operators. Glue compo-
sition must preserve essential information about atomic behavior. For instance,
if interaction a is inhibited by some other interaction b, this relation must be
maintained even when, in the composed system, b cannot be fired for some other
reason: b must be synchronized with another interaction that is not enabled in
the current state, or it is itself inhibited by another interaction.

For instance, assume that firing the interaction a takes one of the components
to a critical state, for which mutual exclusion must be ensured, whereas firing b
takes another component out of such state. If b is possible, a should not be fired
(as this would violate the mutual exclusion) even if b is inhibited by another
interaction c.
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Although, a definition of composition, which respects these requirements, can
be given directly in terms of glue operators, it is much simpler and more intuitive
to give it in terms of the algebra presented below. An up to bisimulation one-to-
one correspondence between formulae of the algebra and glue operators ensures
the translation of composition back to glue operators.
Syntax. Let P be a set of ports, such that 0, 1 �∈ P . The syntax of the algebra
of glue formulae, f ∈ AGF(P ), is given by

f ::= f ∨ f | f ∧ t | e ,
t ::= (t ∨ t) | ¬e | e ,
e ::= e ∨ e | e ∧ e | (e) | a ∈ 2P | 0 | 1 ,

(8)

where the three operations, denoted by ‘¬’, ‘∧’, and ‘∨’ are respectively unary
negation and binary conjunction and disjunction (in order of decreasing binding
power). We often omit ‘∧’ and represent conjunction by simple juxtaposition.

Intuitively, e represents a positive expression, whereas t is a term which can
have a negation at top level, i.e. the negated term must be purely positive. As t
can only appear in conjunction with another term, a negative term, in AGF(P )
formulae, is always in conjunction with a positive term.
Axioms. Both ∧ and ∨ are associative, commutative, idempotent, and distrib-
ute over each other; 0 is the unit for ∨ ; 1 is the unit for ∧ ; f ∧ 0 = 0. Negation
satisfies all the axioms except double negation and excluded middle:

1. ¬0 = 1 and ¬1 = 0,
2. f ∧ ¬f = 0,

3. ¬f1 ∧ ¬f2 = ¬(f1 ∨ f2),
4. ¬f1 ∨ ¬f2 = ¬(f1 ∧ f2).

Lemma 4 (Restricted absorption). ∀f1, f2 ∈ AGF(P ), f1 ¬f2 ∨ f1 = f1.

Lemma 5. Each formula f ∈ AGF(P ) has a disjunctive normal form, i.e. a
representation as a disjunction of conjunctions of positive and negative variables.

Proof (Sketch). This follows from the existence of the DNF of boolean formulae
and the fact that the syntax (8) of AGF(P ) guarantees that negation only ap-
pears at the top level. This property is also preserved by de Morgan’s laws. "#

Semantics. The semantics of AGF(P ) is given in terms of glue operators. It
depends on the mapping of ports in P to components. For a system with n atomic
components B1, . . . , Bn, the partition of P is given by a function κ : P → [1, n],
such that a port p ∈ P belongs to the component Bκ(p). The function κ trivially
extends to interactions within one component.

The meaning of a clause a1 . . . ak ∧ ¬b1 . . .¬bl is given by the rule r, having

Pos(r) =
{
Bκ(ai) : qκ(ai)

ai→ q′κ(ai)

∣
∣
∣ i ∈ [1, k]

}
,

Neg(r) =
{
Bκ(bi) : qκ(bi) �

bi→
∣
∣
∣ i ∈ [1, l]

}
.

Clearly, the DNF of f �= 0, 1, does not contain occurrences of neither 0 nor 1.
The meaning of the formula f �= 0, 1 is then given by the glue operator glf defined
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by the set of rules, corresponding to clauses of the DNF of f . The meaning of 0 is the
operator defined by the empty set of derivation rules, which blocks all interactions
of all the components in the system.

Proposition 3. The axiomatization of AGF(P ) is sound and complete, i.e., for
two formulae f1, f2 ∈ AGF(P ), f1 = f2 if and only if glf1 ↔ glf2 .

For any glue operator gl, there exists f ∈ AGF(P ), such that gl↔ glf .

Proof (Sketch). Clearly, the semantic construction above is one-to-one between
AGF(P ) formulae and glue operators without redundancy. The second part
follows directly from Lemmas 2 and 4. "#

This proposition allows to identify the glue operators with their corresponding
glue formulae. We use this to define a composition of glue operators. The usual
composition is not compatible with the restriction that all interactions in positive
premises of a rule must participate in the conclusion (cf. Def. 3).

Example 4. Consider two operators defined by the corresponding formulae f =
a¬b ∨ b ∨ c and g = a ∨ b¬c ∨ c (cf. also the opening of this section). The usual
composition f ◦ g consists here in substituting b¬c for b in f . Thus, in f , a¬b
becomes a¬(b¬c) = a¬b∨a¬¬c, b becomes b¬c, and c stays the same. This gives
f ◦ g = a¬b ∨ a¬¬c ∨ b¬c∨ c. However, a¬¬c is not authorized by the syntax of
AGF(P ). In terms of SOS, this would correspond to having a positive premise
c that would not participate in the conclusion of the rule.

Consider two glue operators defined by the formulae f =
∨

i∈I aixi and g =∨
j∈J bjyj , where, for i ∈ I and j ∈ J , ai and bj are conjunctions of positive

interaction variables, whereas xi and yj are purely negative expressions.

Definition 6. The composition of f with g is defined by

f ∗ g def
=
∨

i∈I

∨

K⊆J

(

xi ∧
∧

k∈K

bkyk

)

=
∨

i∈I

∨

K⊆J

(

aixi ∧
∧

k∈K

yk

)

, (9)

where the inner disjunction is taken over all K ⊆ J , such that
∧

k∈K bk = ai.

Example 5. Taking on the previous example, we have f ∗ g = a¬b ∨ b¬c ∨ c.
Thus, when all three interactions a, b, and c are ready to be fired, both a and b
are inhibited by b and c respectively.

3 Expressiveness of Glue

Let B be a set of behaviors with a fixed equivalence relation R ⊆ B ×B. A glue
is a set G of operators on B. We denote by Glue the set of all glues on B. We
denote G(n) ⊆ G the set of all n-ary operators in G. Thus, G =

⋃
n≥1G

(n).
To determine whether one glue is more expressive than another, we compare

their respective sets of behaviors composable from the same atomic ones. Several
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approaches to comparing the expressiveness of glues can be considered according
to the type of modifications of the system that one allows in order to perform
the comparison. In any case, this consists in exhibiting for each operator of one
glue an equivalent operator in the other one. Below, we define two criteria for
the comparison of glue expressiveness:

1. Strong expressiveness, where the exhibited glue operator must be applied to
the same set of behaviors as the original one,

2. Weak expressiveness, where the exhibited glue operator must be applied to
the same set of behaviors as the original one, with potentially an addition
of some fixed set of coordination behaviors.

Definition 7. For a given set B and an equivalence R on B, the strong ex-
pressiveness preorder �S ⊆ Glue× Glue w.r.t. R is defined by putting, for G1,
G2 ∈ Glue, G1 �S G2 if, for any n ≥ 1 and B1, . . . , Bn ∈ B,

∀gl1 ∈ G(n)
1 ∃gl2 ∈ G(n)

2 : gl1(B1, . . . , Bn)R gl2(B1, . . . , Bn) . (10)

Definition 8. For a given set B and an equivalence R on B, the weak expres-
siveness preorder �W ⊆ Glue × Glue w.r.t. R is defined by putting, for G1,
G2 ∈ Glue, G1 �W G2 if there exists a finite subset C ⊂ B of coordination
behaviors such that, for any n ≥ 1 and B1, . . . , Bn ∈ B,

∀gl1 ∈ G(n)
1 ∃C1, . . . , Cm ∈ C, gl2 ∈ G(n+m)

2 : (11)
gl1(B1, . . . , Bn)R gl2(B1, . . . , Bn, C1, . . . , Cm) .

These two preorders allow to define the following notions for glue comparison.

Definition 9. Let G1, G2 ∈ Glue. The following relations are defined w.r.t. R.

1. G1 and G2 are strongly equivalent if G1 �S G2 and G2 �S G1.
2. G1 and G2 are weakly equivalent if G1 �W G2 and G2 �W G1.
3. G1 is strongly more expressive than G2 if G2 �S G1 and G1 ��W G2.
4. G1 is weakly more expressive than G2 if G2 �W G1 and G1 ��W G2.

Remark 2. The two order relations (“strongly more expressive” and “weakly
more expressive”) defined above are partial orders (as opposed to preorders).
However, notice that we define the relation “strongly more expressive” to be
stronger than the canonical order induced by the preorder �S . As G1 �S G2

implies G1 �W G2, the case G1 �S G2 and G2 �W G1 fits the case 2 above, i.e.
G1 and G2 are weakly equivalent.

Example 6. We consider behaviors to be LTS. Let P be a universal set of ports.
We define two glues Bin and Ter generated respectively by families of binary
and ternary rendezvous operators: ρ(2)a,b and ρ(3)a,b,c for all a, b, c ∈ 2P (cf. Ex. 1).

Clearly, Ter �S Bin, as for any a, b ∈ 2P , and any B1, B2, B3, we have
ρ
(3)
a,b,c(B1, B2, B3) = ρ

(2)
a,bc

(
B1, ρ

(2)
b,c (B2, B3)

)
. On the contrary, Bin ��W Ter, as

any two components at any given state can only perform two actions (one action
each), whereas three are needed for a ternary synchronization. We conclude that
Bin is strongly more expressive than Ter.
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We have supposed so far that systems are built from components with disjoint
sets of ports and that all actions are observable. To compare expressiveness of
formalisms that do not meet this requirements, we adapt the definition of glue
expressiveness by using labeling functions that modify the labeling of transitions
without otherwise affecting the transition relation.

Definition 10. Let B be a set of behaviors with a universal set of ports P and
R an equivalence on B. Let ϕ, ψ : P → P be two given labeling functions, such
that ψ ◦ϕ = id. The strong (ϕ, ψ)-expressiveness preorder �(ϕ,ψ)

S ⊆ Glue×Glue
w.r.t. R is defined by putting, for G1, G2 ∈ Glue, G1 �(ϕ,ψ)

S G2 iff, for any
n ≥ 1 and B1, . . . , Bn ∈ B,

∀gl1 ∈ G(n)
1 ∃gl2 ∈ G(n)

2 : gl1(B1, . . . , Bn)Rψ
(
gl2

(
ϕ(B1), . . . , ϕ(Bn)

))
, (12)

where e.g., ϕ(B) is the behavior obtained from B by applying ϕ to labels of all
the transitions in B.

Definitions 8 and 9 are adapted analogously.

Example 7. Taking on the previous example, consider τ �∈ P , and let C =
({1}, {τ},→) be an LTS with the only transition 1 τ→ 1.

For any B1, B2 and a, b ∈ 2P , we have ρ(2)a,b(B1, B2)Rψ
(
ρ
(3)
a,b,τ (B1, B2, C)

)
,

where ψ is a labeling function erasing all occurrences of τ , and R is any of the
equivalence relations discussed in Sect. 2.3. Thus, Bin �(id,ψ)

W Ter, i.e. Bin and
Ter are weakly (id, ψ)-equivalent.

4 Glues of BIP and Process Algebras

In the following sections, we compare the glues of BIP [3] and those of classical
calculi: CSP [8], CCS [9], and SCCS [10]. All these glues are positive and consist
in their respective parallel composition and restriction operators.

Lemma 6. Let G1 and G2 be two positive glues (i.e. consisting of only positive
glue operators). G1 �S G2 with respect to any of ,S, ,RS, and ↔ iff G1 ⊆ G2.

Proof (Sketch). Consider a family of behaviors, each having one state with loop
transitions on all corresponding interactions. To enable exactly the same transi-
tions, two positive glue operators must have exactly the same rules. "#

4.1 BIP

In BIP [3], behavior composition is by means of interaction models – sets of
interactions, described by connectors [11] – and priority models (partial orders
on interactions), used to enforce scheduling policies applied to interactions.

The composition operator, defined by a set of interactions γ ⊆ 2P , is given by
the AGF(P ) formula intγ =

∨
γ (the disjunction of all the interactions in γ).
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B :
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Fig. 1. Example behavior for the proof of Prop. 5

We denote by IM the set of all such glue operators. As interactions are sets
of ports, operators in IM are purely positive (each clause of such an operator
being a conjunction of positive port variables).

A priority model π is a strict partial order on 2P . For a, a′ ∈ 2P , we write
a ≺ a′ iff (a, a′) ∈ π, meaning that interaction a has less priority than a′. The
priority operator is given by the AGF(P ) formula

prπ =
∨

a∈2P

(

a ∧
∧

a≺a′

¬a′
)

.

We denote BIP the glue consisting of all operators obtained by composition
(cf. Def. 6) of interaction and priority operators.

Proposition 4. IM is strongly equivalent to the set of all positive glue opera-
tors, whereas BIP is strongly equivalent to the set of all glue operators.

Proof (Sketch). The first affirmation is trivial. It is also clear from the above
presentation that any operator in BIP is a glue operator in the sense of Def. 3.
To show that any glue operator can be realized in BIP, we represent it as a DNF
formula f ∈ AGF(P ). Each conjunctive clause of f has a positive and a negative
part. The positive parts of all clauses uniquely define the the set of interactions
γ, whereas regrouping (by de Morgan’s laws) the negative parts of all clauses
with the same positive part defines the priority model. "#

Proposition 5. BIP is strongly more expressive than IM w.r.t. ,S ( a fortiori
,RS and ↔ ).

Proof (Sketch). First of all, IM ⊂ BIP and IM contains only positive operators.
Hence, by Lem. 6, IM �S BIP and BIP ��S IM . As, in BIP, all interactions
are visible this also implies BIP ��W IM . It is easy to show BIP ��(id,ψ)

W IM ,
with ψ erasing all the ports of coordination behavior, by considering the priority
model π = {(a, b)} applied to the behavior B (see Fig. 1). "#

4.2 CCS and SCCS

In both CCS and SCCS [9,10], one considers the set A of actions along with the
set A = {a | a ∈ A} of complementary actions and the non-observable action τ .
L = A ∪A ∪ {τ} is the set of labels.
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To render the action sets of different components disjoint, we consider (ϕ, ψ)-
expressiveness. We define ϕ(B) to be a behavior obtained from B by renaming
any action a ∈ A ∪ A of B to B.a. Conversely ψ(B) renames any action B.a of
B to a. Furthermore, for any behaviors B1, B2 we put ψ(B1.aB2.a) = τ .

The glue of CCS consists of operators obtained by hierarchical composition of
the parallel composition and restriction operators. Parallel composition ‖ opera-
tor allows binary synchronization of complementary actions a, a ∈ L. Restriction
\a excludes a given action a ∈ A and its complement a from communication,
thus enforcing synchronization a a, when it is possible.

For a system composed of n atomic behaviors B1, . . . , Bn, we consider prefixed
labels as ports, i.e. P = {Bi.a | i ∈ [1, n], a ∈ L}. The CCS parallel composition
operator is expressed in AGF(P ) by the formula

parCCS =
∨

a∈A

n∨

i,j=1

Bi.aBj .a ∨
∨

a∈A

n∨

i=1

(Bi.a ∨Bi.a ∨Bi.τ) . (13)

The unary restriction (i.e. applied to a single component) and the n-ary re-
striction (i.e. combined with the parallel composition of n components) operators
are given respectively by

rsta,1 =
n∨

i=1

∨

l �=a,a

Bi.l , (14)

rsta,n =
∨

l∈A

n∨

i,j=1

Bi.l Bj .l ∨
∨

l∈A\{a}

n∨

i=1

(Bi.l ∨Bi.l ∨Bi.τ) . (15)

All operators in the CCS glue are positive. Moreover, a conjunctive clause
of the corresponding AGF(P ) formula consists of at most two ports. As the
labeling ψ can only erase ports, this remains true even in presence of coordination
behavior. These observations allow us to conclude that, with ϕ and ψ as above,
IM is strongly more (ϕ, ψ)-expressive than the CCS glue.

In SCCS, labels are elements of a free Abelian group Act generated by A (with
a being the inverse of a). The glue of SCCS also consists of hierarchical combina-
tions of the parallel composition and restriction operators. Parallel composition
× forces all components to synchronize. It is given by the formula

parSCCS =
n∧

i=1

(

Bi.τ ∨
∨

a∈A

Bi.a

)

. (16)

Restriction operator in SCCS is complementary to that of CCS, i.e. it states
the actions that are visible, rather than those that are invisible. Although, it can
be easily defined in terms of AGF(P ), we omit this definition here.

The SCCS glue is also positive, which, as above, allows to conclude that it
is strongly less (ϕ, ψ)-expressive than IM . The opposite relation remains to be
investigated. The fact that conjunctive clauses of SCCS operators can comprise
more than two ports suggests that CCS glue is not weakly more expressive than
SCCS glue.
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Fig. 2. Summary of relations between glues

4.3 CSP

In CSP [8], processes communicate over a set C of channels common to the
system. Again, we consider the same relabeling functions ϕ and ψ as in the
previous sections, and ports P = {Bi.c | i ∈ [1, n], c ∈ C ∪ {τ}}.

Again the glue of CSP consists of hierarchical combinations of the parallel
composition and restriction operator. Parallel composition ‖C′ is parameterized
by the subset C′ ⊆ C of channels. Interactions on the channels in C′ must
synchronize, whereas interactions on other channels interleave. This is given by
the formula

parCSP =
∨

c∈C′

n∧

i=1

Bi.c ∨
∨

c �∈C′

n∨

i=1

(Bi.τ ∨Bi.c) . (17)

Again, for the sake of brevity, we omit the restriction operator.
The CSP glue is also positive. It can be observed that conjunctive clauses of

the corresponding AGF(P ) formulae consist exclusively of ports corresponding
to the same channel. This suggests that, as for the CCS glue, IM is strongly more
(ϕ, ψ)-expressive than the CSP glue. Again, the fact that conjunctive clauses of
the operators of the CSP can comprise more than two ports suggests that the
CCS glue is not weakly more expressive than the CSP glue.

Relations between the glues considered above are summarized in Fig. 2.

5 Conclusion

We studied notions for comparing expressiveness of glues in component-based
frameworks. In contrast to usual notions, they enforce separation between be-
havior and composition operators. For instance, it is not possible to have as in
process algebras, expansion theorems expressing parallel composition in terms
of non-deterministic choice and prefixing by actions.

The definition of glue operators considers transitions of composite components
as the result of the transitions of their constituents. We showed that bisimi-
larity, ready simulation (preorder and equivalence), and simulation equivalence
coincide, when canonically extended to glue operators. This allows the charac-
terization of glues as formulae, which drastically simplifies the comparison and
composition of glues.

We have not yet completely explored possible relations between glues of
process calculi. However, they cannot be as expressive as glues with negative
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premises and this weakness cannot be overcome even by allowing additional
behavior for coordination.

We have kept the framework as simple as possible. We only consider behavioral
preorders where all the ports are observable. The robustness of the presented
results for expressiveness based on observational relations should be investigated.
Furthermore, we have not considered rules with lookahead premises (e.g., [7])
which seems to increase expressiveness of positive rules.

We proposed a framework for dealing with expressiveness of composition op-
erators. This is a step towards breaking with reductionistic approaches which
consider glue operators only as behavior transformers. It allows setting up crite-
ria for comparing component-based languages and understanding their strengths
and weaknesses.
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